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Outline
Intro: Color fluctuations in hadrons - new pattern of high energy hadron - 
nucleus scattering - going beyond single parton structure of nucleon. 

Evidence for x -dependent color fluctuations in nucleons -nucleon squeezing 

A new frontier : probing color fluctuations in photon in γA collisions
 starting with UPC data from LHC (pre-sequel of EIC & LHeC studies)

Calculating leading twist shadowing and antishadowing 



Fluctuations of overall strength of high energy (γ*)hN interaction

High energy projectile stays in a  frozen configuration distances lcoh =cΔt

�t ⇠ 1/�E ⇠ 2ph
m2

int �m2
h

At LHC for                                       lcoh ~ 107 fm>> 2RA>> 2rNm2
int �m2

h ⇠ 1GeV2

coherence up to m2
int ⇠ 106GeV2

Hence system of quarks and gluons passes through the nucleus 
interacting essentially with the same strength but changes from one 
event to another different strength

r

�t ⇠ 1

2xmN
DIS



Strength of interaction of white small  system is proportional to the area occupies by color.

QCD factorization theorem for  the interaction of small size color singlet 
wave package of quarks and gluons. 

For small quark - antiquark  dipole 

For small 3 quark tripole 

r2tr ! (r1 � (r2 + r3)/2)
2 + (r2 � (r1 + r3)/2)

2 + (r3 � (r1 + r2)/2)
2

small but rapidly growing with energy.  

r�(qq̄T ) =
⇡2

3
↵s(Q

2)r2trxgT (x,Q
2 = �r2tr)

In case T= nucleus,  LT interactions with 2,3… nucleons are hidden in gT(x,Q)



We will refer fluctuations of the strength of interaction of nucleon, photon,.. as 
 color fluctuations of interaction strength - studying them allows to go beyond  single 
parton 3-D mapping of the nucleon

●
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●
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●
rtr rtr
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Global fluctuations of the strength of interaction of a fast nucleon/pion/photon, 
can originate from  fluctuations of the overall size /shape, number of constituents.

dependence of �tot(hN) on size holds in the nonperturbative regime 

�tot(KN) < �tot(⇡N)

Example: quark -diquark model of nucleon



Classical low energy picture 
of inelastic h A collisions 
implemented in Glauber 

model  based Monte Carlos 

wounded nucleons

spectator nucleons

High energy picture of 
inelastic h A collisions 

consistent with the Gribov 
- Glauber model - 

interaction of frozen 
configurations 

Constructive  way to account for coherence of the high-energy dynamics is Fluctuations 
of interaction = cross section fluctuation formalism.  Analogy: consider throwing a stick 
through a forest - with random orientation  relative  to the direction of motion.   (No 
rotation while passing through the forest - large lcoh.) Different absorption for different 
orientations.

γ/h
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FIG. 1. Schematic representation of a proton–nucleus col-
lision with fixed target nucleon-level geometry, with a more
weakly (more strongly) interacting projectile proton on the
left (right). The red tube shows the projection of the pro-
jectile proton’s transverse size through the nucleus, with im-
pacted nucleons in red. Typical observables have contribu-
tions from both types of events, while large-xp configurations
may preferentially select weakly interacting cases (left).

Hadrons are composite, quantum mechanical systems12

with a varying spatial and momentum configuration of13

their internal quark and gluon constituents. During the14

short time of a high energy hadronic collision this config-15

uration remains approximatley fixed. Thus certain phys-16

ical properties of the hadron system, such as its total17

transverse size, may change collision by collision, a phe-18

nomenon we refer to as color fluctuations [1, 2]. These19

variations in the internal structure of hadrons have a20

wide range of observable consequences, such as inelastic21

di↵raction [3–5]. In quantum chromodynamics (QCD),22

the configurations in which a large (> 10%) fraction of23

the hadron’s momentum is carried by a single quark or24

gluon are spatially compact. For these cases, in a wide25

range of energies where non-linear (saturation) e↵ects26

are expected to be small [6], the interaction strength of27

the entire configuration decreases along with its overall28

size [7]. Furthermore, while the interaction strength for29

such small configurations is reduced, it rises rapidly with30

collision energy. In this Letter, we quantitatively investi-31

gate these properties of QCD systems in proton– and32

deuteron–nucleus (p/d+A) collision data at the Large33

Hadron Collider (LHC) and the Relativistic Heavy Ion34

Collider (RHIC), respectively.35

Fig. 1 symbolically illustrates how proton configura-36

tions of two di↵erent sizes contribute to p+A interactions.37

For many processes, a large number of projectile config-38

urations contribute to a studied observable, resulting in39

a lack of sensitivity to color fluctuation e↵ects. However,40

in processes to which only a restricted set of projectile41

configurations contribute, these e↵ects are important for42

understanding the experimental data. Some historical43

examples are their role in interpreting multiplicity dis-44

tributions in nuclear collisions [8] and in describing the45

coherent di↵ractive production of dijets [9–11].46

Experimentally, collisions with a restricted set of pro-47

jectile configurations may be selected with a special trig-48

ger such as a hard QCD or electroweak process involving49

a large-xp (>⇠ 0.1) parton in the proton [12]. In this case,50

color charge screening within the dominant Feynman di-51

agrams suppresses the gluon field and density of qq̄ pairs52

in these large-xp configurations, leading to an interaction53

cross-section which is smaller but grows rapidly with en-54

ergy (for a review of this phenomenon in HERA data,55

see Ref. [13]). Arguments based on the quark counting56

rules [14, 15] reach a similar conclusion.57

In p+A collisions, the shrinking of the proton configu-58

ration in large-xp events should lead to a decrease in the59

average number of wounded nucleons struck by the pro-60

ton, ⌫, relative to that for collisions with a more typical61

proton configuration. This feature should also be present62

in d+A collisions, although the magnitude of the e↵ect is63

diminished due to the una↵ected nucleon in the deuteron64

contributing with an average over its configurations.65

Measurements which can test these properties of QCD66

were recently performed in proton–lead (p+Pb) collisions67

at the LHC [16, 17] and deuteron–gold (d+Au) collisions68

at RHIC [18] at center of mass energies of 5.02 TeV69

and 200 GeV, respectively. In these experiments, the70

production of large transverse momentum (pt) jets was71

studied in the large-xp kinematic region as a function of72

hadronic activity in the downstream nucleus-going direc-73

tion (⌘ < �3). Hadron production rates in this rapidity74

range are correlated with the number of wounded nucle-75

ons ⌫, and have been experimentally shown to be insensi-76

tive to energy-momentum conservation e↵ects related to77

jet production at mid- and forward (proton-going) rapidi-78

ties [19] (however, others models disagree [20]). Each ex-79

periment observed a qualitatively consistent picture: for80

events with jets originating from a large-xp scattering,81

the geometric (eikonal) model strongly underestimates82

the number of events with low hadronic activity (geo-83

metrically “peripheral” events in the classical picture)84

and overestimates those with a large hadronic activity85

(“central” events). However, the total inclusive jet pro-86

duction cross-section was unmodified, �p+A = A�p+p, as87

expected from QCD factorization and the small modifi-88

cation of the nuclear parton densities [21].89

In our previous analysis [2] we demonstrated that color90

fluctuation e↵ects which led to a more weakly interacting91

large-xp configuration could quantitatively describe the92

ATLAS data for jet production at xp ⇡ 0.6. In this93

Letter, we present a unified analysis of ATLAS [16] and94

PHENIX [18] data to study the collision energy and xp-95

dependence of this e↵ect in detail.96

To model the e↵ects of color fluctuations in p+A col-97

lisions, we use the Monte Carlo algorithm developed98

in Refs. [1, 22], of which we summarize the main fea-99

tures here. In our procedure, the probability distribu-100

tion, PN (�), for a projectile nucleon configuration to have101

cross-section � for an inelastic interaction with another102

nucleon in the target is given by103

Expect effects similar positronium example = correlation between size and 
number of wounded nucleons



Comment. Though inelastic shadowing effects result in a rather small correction 
for the total pA cross section - presence of the fluctuations of the strength of 
NN interaction leads to significant fluctuations in inelastic pA, AA collisions 
(Baym, LF, MS,.. 92) - recently several attempts to take these effects  into account 
in MC generators.



High energies = Gribov 
-Glauber model

A A A A

h h h h

+

X

Glauber model 
in rescattering diagrams proton 
propagates in intermediate state - 
zero at high energy  - cancelation of 
planar diagrams (Mandelstam & 
Gribov)- no time for projectile to 
come back between interactions.

h hhh

A A AA

+

h

X= set of frozen intermediate 
states the same as in hN 
diffraction

�2 /
Z

dtF 2
A(t)

d�(p+ p ! p+X(p+ inel diff))

dt
 7

deviations from Glauber are small 
for Einc < 10 GeV as inelastic 
diffraction is still small.

Formal account of large lcoh ➟ different set of diagrams describing p A scattering:



Comment : Good Walker picture. h decomposed into scattering eigenstates

|hi =
X

ai |�ii

reproduces Gribov result in the limit RA>> rN

No matching  away from t=0 as no universal basis of scattering eigenstates exists in finite t. 
Not important for A  > 4 where essential t are very small.

�shad /
X

i

|ai|2�2
i

/
d�hN!XN

diff (t = 0)

dt
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p

The diagrams  consider by Glauber in QM treatment of hA scattering are exactly zero at
 Eh >> mh (Mandelstam & Gribov proof of the cancelation of planar (AFS) diagrams). 
Physics: no time for pion to go back to pion during a short time between the interactions.

h n➙ ⇒ σh2H<σhp+σhn

σe2H (x,Q2) <σep(x,Q2)+σen (x,Q2) in DIS???

Glauber model: interaction of the projectile with 
nucleons  via potential

π π π

A A
VV
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a b s t r a c t

We present and discuss the theory and phenomenology of the leading twist theory
of nuclear shadowing which is based on the combination of the generalization of the
Gribov–Glauber theory, QCD factorization theorems, and the HERA QCD analysis of
diffraction in lepton–proton deep inelastic scattering (DIS). We apply this technique for
the analysis of a wide range of hard processes with nuclei – inclusive DIS on deuterons,
medium-range and heavy nuclei, coherent and incoherent diffractive DIS with nuclei, and
hard diffraction in proton–nucleus scattering – and make predictions for the effect of
nuclear shadowing in the corresponding sea quark and gluon parton distributions. We also
analyze the role of the leading twist nuclear shadowing in generalized parton distributions
in nuclei and in certain characteristics of final states in nuclear DIS. We discuss the limits
of applicability of the leading twist approximation for small x scattering off nuclei and the
onset of the black disk regime andmethods of detecting it. It will be possible to checkmany
of our predictions in the near future in the studies of the ultraperipheral collisions at the
Large Hadron Collider (LHC). Further checks will be possible in pA collisions at the LHC and
forward hadron production at the Relativistic Heavy Ion Collider (RHIC). Detailed tests will
be possible at an Electron–Ion Collider (EIC) in the USA and at the Large Hadron–Electron
Collider (LHeC) at CERN.
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Nuclear shadowing in DIS - is this obvious?
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Natural explanation in the Gribov space-time picture of high energy scattering:

photon/ hadron fluctuates into different configurations, X,  long before the 
collisions.

These configurations are frozen during the collision. 
Sum over these configurations = elastic + inelastic diffraction. 

π X π

A A



Though the diagrams  consider by Glauber are 
exactly zero at Eh >> mh , the answer for 
double scattering

Nuclear shadowing in high energy  hadron - nucleus scattering (Gribov 68)

contribution is called the impulse or Born approximation. The right graph corresponds to
the simultaneous interaction with both nucleons of the target and leads to a small negative
contribution to the total pion-deuteron cross section, which is called the nuclear shadowing
correction. Below we consider each graph in detail, assuming that all involved particles

shadowing correctionimpulse approximation

N
N

N

N

DDDD

ππ
ππ

Fig. 2. Feynman graphs for pion-deuteron scattering.

and the deuteron are spinless and the proton and the neutron are indistinguishable.

The contribution of the impulse approximation to the pion-deuteron scattering amplitude,
FN(q), is

FN(q) = i
∫ d4k

(2π)4

1

[(p1

2 + k)2 − m2 + iϵ][(p1

2 − k)2 − m2 + iϵ][(p1

2 + q + k)2 − m2 + iϵ]

×Γ

(

(

p1

2
− k

)2

,
(

p1

2
+ k

)2
)

Γ

(

(

p1

2
− k

)2

,
(

p1

2
+ q + k

)2
)

× fN

(

(

p +
p1

2
+ k

)2

, q2,
(

p1

2
+ k

)2

,
(

p1

2
+ q + k

)2
)

, (4)

where Γ is the D → NN vertex; fN is the pion-nucleon scattering amplitude; m is the
nucleons mass; q is the momentum transfer; p1 is the momentum of the initial deuteron.
The momentum flow used in Eq. (4) is depicted in Fig. 3.

+q

+k+q/21
p

-k

+k

1/2p

/21
p

11
pp

p-qp

Fig. 3. The momentum flow in the left graph in Fig. 2 and in Eq. (4).

10

is expressed through the diffractive cross section (elastic + inelastic) at t~0. For 
triple,... rescatterings (A>2) the answer is related to the low t diffraction but cannot 
be obtained in a model independent way

Author's personal copy
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Fig. 5. Graphical representation of the imaginary part of the scattering amplitude f in terms of Pomeron exchanges in the t-channel.

Fig. 6. An example of the contribution to the pion–deuteron cross section that vanishes at large energies.

The optical theorem relates the imaginary part of the scattering amplitude f to the ⇡N ! XN cross section. Since at high
energies inelastic processes are determined by the Pomeron exchange in the t-channel, =m f is determined by the diagram
presented in Fig. 5. A direct evaluation gives

=m f (s1, Ek2, s0) = �4p0m2(2⇡)3
d3�⇡N

diff (
Ek)

d3Ek
, (16)

where �⇡N
diff is the cross section of all diffractive processes (⇡N ! XN) with a small momentum transfer Ek to the nucleon.

Note that =m f < 0 since each of the Pomeron exchange amplitudes is purely imaginary.
Applying the optical theorem to the pion–deuteron scattering amplitude at q = 0 and using Eqs. (9) and (16), we obtain

the total pion–deuteron cross section,

�⇡D
tot = 2�⇡N

tot � 2
Z

dEk2⇢
⇣
4Ek2

⌘ d�⇡N
diff (

Ek)
dEk2

. (17)

Eq. (17) expresses the shadowing correction to the total hadron–deuteron cross section in terms of the hadron–nucleon
diffractive cross section.

As derived by Gribov, Eq. (17) assumes that the real part of the scattering amplitude f is zero (this corresponds to
the intercept of the Pomeron trajectory ↵P(0) = 1). However, this assumption is not necessary and Eq. (17) can be
straightforwardly generalized:

�⇡D
tot = 2�⇡N

tot � 2
1 � ⌘2

1 + ⌘2

Z
dEk2⇢

⇣
4Ek2

⌘ d�⇡N
diff (

Ek)
dEk2

, (18)

where ⌘ is the ratio of the real to imaginary parts of the scattering amplitude f . The fast convergence of the integral over
dEk2 in Eq. (18) allows us to neglect a weak dependence of ⌘ on k2.

It should be noted that the graphs in Fig. 2 give the complete answer for the pion–deuteron scattering amplitude at
high pionmomenta. Other contributions, for instance, the diagram presented in Fig. 6, vanish as p ! 1 [112]. The physical
reason for the negligibly small contribution of the diagram in Fig. 6 is that during the short time required for the pion to cover
the distance between the two nucleons, the slow nucleons in the deuteron cannot (do not have enough time to) interact.

It is possible to extend the Gribov analysis to include the relativistic motion of the nucleons using the light-cone
formalism. One finds that the corrections due to the nucleon Fermi motion are very small due to the dominance of the
pn intermediate states in the deuteronwave function up to the internal momenta⇠500MeV/c. Note here that a small value
of the admixture of non-nucleonic states in the nucleus wave function is confirmed by the smallness of the EMC effect due
to hadronic effects up to x ⇠ 0.55, see the discussion in Section 5.17.

deuteron form factor.  

Theoretical accuracy of the approach - nonnucleonic degrees of freedom - pions, 
off-mass-shell effects. Empirically Glauber model for Ep=1 GeV,  Gribov-Glauber model for 
Ep≤ 500 GeV work with accuracy of better than 5%  including photon - nucleus 
scattering.

ρ(4t) is the deuteron form factor



Small x DIS in the target rest frame: Large longitudinal distance dominate 

Gribov, Ioffe, Pomeranchuk 65, Ioffe 68, Gribov 69

 Follows from the analysis of the representation of the forward Compton scattering amplitude  
expressed as a Fourier transform of the matrix element of the commutator of  two 
electromagnetic (weak) current operators:

Longitudinal distances in DIS

The cross section of DIS can be expressed through the
commutator of two e.m. currents Jµ(y) in coordinate space:

⟨N |[Jµ(y1), Jλ(y2)]|N⟩

y1 and y2 are the points where γ∗ is absorbed and emitted.

** ** γγ γ γ

y
1 y1

y
2 y

2

Small     X Large  X

Analysis of the structure of the DIS processes leads to

(y1 − y2)transv ∼
1

Q
, lcoh ≡ (y1 − y2)long/2 ∼

1

2mNx

Here −Q2 is four momentum squared of the photon,
x = Q2/2(qpN) is the Bjorken scaling variable.

At EIC one can reach in e-A scattering x ∼ 10−3 for
Q2 ∼ 3GeV 2, corresponding to lcoh ∼ 100fm ≫ 2RA.

EIC, March 1, 2002 M.Strikman

In the nucleus rest frame the  z component of y2-y1   
1

2mNx

Scaling violation for small x ⇒z= λs /2mNx, with λs << 1 at large Q2

Kovchegov & MS, Blok & Frankfurt

ImA�⇤N
µ⌫ (q2, 2qp) =

1

⇡

Z
expiq(y2�y1) hp| [jµ(y2), j⌫(y1)] |pi d4(y2 � y1)

full 
shadowing

>> 2 RA

 12

 <z> ~



 The Gribov theory of nuclear shadowing   relates  shadowing in γ* A and 

diffraction in the elementary process:   γ*+N → X +N.

Before  HERA one had to model  ep diffraction to calculate 
shadowing for σγ*A   (FS88-89, Kwiecinski89, Brodsky & Liu 90, 

Nikolaev & Zakharov 91). Several groups  (Capella et al)  used the 
HERA diffractive data  as input to obtain a reasonable description of  
the NMC data.  Also the diffractive data were used to describe 
shadowing in γA scattering without free parameters.

However, this approach does not allow to calculate gluon pdfs and hence quark pdfs

Author's personal copy
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Fig. 9. Graphs for to the total virtual photon–nucleus cross section, �� ⇤A . Graph a gives the impulse approximation; graphs b and c give the shadowing
correction arising from the interaction with two and three nucleons of the target, respectively.

When lc is larger than the diameter of the nucleus, 2RA, the virtual photon coherently (‘‘simultaneously’’) interactswith all
nucleons of the target located at the same impact parameter. For instance, for the nucleus of 40Ca, this happens for x  0.01.
On the other hand, when lc decreases and becomes compatible to the average distance between two nucleons in the nucleus,
rNN ⇡ 1.7 fm, all effects associated with large lc are expected to disappear. Therefore, the nuclear effects of shadowing and
antishadowing disappear for x > 0.2 (see also the discussion in Section 3.2 where this is discussed in the reference frame
of the fast moving nucleus).

The wave function of the projectile virtual photon is characterized by the distribution over components (fluctuations)
that widely differ in the strength of the interaction with the target: the fluctuations of a small transverse size correspond
to the small interaction strength and the large phase volume, while the fluctuations of a large transverse size correspond
to the large interaction strength but the small phase volume. A proper account of the interplay between the phase volume
of different configurations and their strength of interactions shows [122] that these components lead to the contributions
characterized by the same power of Q 2: �� ⇤T / 1/Q 2.1 Hence, at moderately small x, nuclear shadowing is a predominantly
non-perturbative QCD phenomenon complicated by the leading twist Q 2 evolution. At extremely small x, perturbative QCD
(pQCD) interactions become strong which leads to a change of the dynamics of nuclear shadowing, see the discussion in
Section 8.

At sufficiently high energies (small Bjorken x), when the virtual photon interacts with many nucleons of the target, the
lepton–nucleus scattering amplitude receives contributions from the graphs presented in Fig. 9. Considering the forward
scattering and taking the imaginary part of the graphs in Fig. 9 (presented by the vertical dashed lines), one obtains
the graphical representation for the total virtual photon–nucleus cross section, �� ⇤A. Note that there are other graphs,
corresponding to the interaction with four and more nucleons of the target, which are not shown in Fig. 9; the contribution
of these graphs to �� ⇤A is insignificant. However, they appear to be important in the case of the events with the multiplicity
significantly larger than the average.

Graph a in Fig. 9, which is a generalization of the left graph in Fig. 2 to the case of DIS, corresponds to the interaction with
one nucleon of the target (the impulse approximation). The contribution of graph a to �� ⇤A, which we denote �

(a)
� ⇤A, is

�
(a)
� ⇤A = A�� ⇤N , (31)

where �� ⇤N is the total virtual photon–nucleon cross section. The proton and neutron total cross sections (structure
functions) are very close at small x, and, therefore, unless specified, we shall not distinguish between protons and neutrons.
Also, in Eq. (31), we employed the non-relativistic approximation for the nucleus wave function. A more accurate treatment
would involve the light-cone many-nucleon approximation for the description of nuclei which leads to tiny corrections to
Eq. (31) for small x due to the Fermi motion effect, see Section 3.2. The good accuracy of this approximation has been tested
by numerous studies of elastic and total hadron–nucleus scattering cross sections at intermediate energies.

The total cross section in Eq. (31) corresponds to the sumof the cross sectionswith the transverse (�� ⇤
T N ) and longitudinal

(�� ⇤
L N ) polarizations of the virtual photon. These cross sections can be expressed in terms of the isospin-averaged inclusive

(unpolarized) structure function F2N(x,Q 2) and longitudinal structure function FL(x,Q 2), see, e.g. [101]:

�� ⇤
T N + �� ⇤

L N = �� ⇤N =
4⇡2↵em

Q 2(1 � x)
F2N(x,Q 2),

�� ⇤
L N =

4⇡2↵em

Q 2(1 � x)
FL(x,Q 2), (32)

1 This parton-model reasoning ismodified in QCDwhere the configurationswith almost on-mass-shell quarks are suppressed at largeQ 2 by the Sudakov
form factor. An account of radiation (Q 2 evolution) leads to the appearance of hard gluons (in addition to thenear on-mass-shell quarks) in thewave function
of the virtual photon. This property of QCD is important for the theoretical analysis of hard diffractive processes considered in Section 6.

model 
independent

model dependent but 
universal (~ same for 
different A)

four fold 
rescattering a 

small correction 
for x> 10-3
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Fig. 65. Comparison of the F2A(x,Q 2)/[AF2N (x,Q 2)] ratio for 40Ca [17] to our predictions corresponding to the sum of the leading twist and VMD
contributions. The lower band corresponds to LT + VMD; the upper band corresponds to LT + 0.5 VMD (see the text).

Since one does not have an unambiguous way to add the LT and VMD contributions, as an illustration, we consider the
scenario when the VMD contribution is added with the coefficient 1/2. This coefficient accounts for the duality between the
continuum and VMD contributions to diffraction, see also the discussion in Ref. [193]. The corresponding prediction is given
by the upper band in Fig. 65. As one can see from the figure, the ‘‘LT+ 0.5 VMD’’ prescription provides a good description of
the NMC data.

Figs. 63 and 65 illustrate the important qualitative phenomenon that the higher twist effects play an important role
in nuclear shadowing in the considered kinematics. This conclusion is in a broad agreement with the phenomenological
approaches to nuclear shadowing which include both the scaling (leading twist) and lowest mass (⇢,! and �) vector meson
(higher twist) contributions [85–92,94,95].

One should also mention a very different approach to nuclear shadowing, where nuclear shadowing is a purely higher
twist effect [206]. The analysis of [206] confirms our observation that the higher twist effects in the fixed-target kinematics
are large. So far the connection of the approach of [206] to the Gribov theory is not clear. In particular, the diagrams that
correspond to the vector meson production (which dominates the higher twist small-x contribution in the Gribov theory)
seem to be neglected in [206] as a very high twist effect. It would be interesting to compare predictions for the double
scattering contribution to F2A(x,Q 2) made using the approach of Ref. [206] and the Gribov relation between shadowing and
diffraction (see Eq. (43)), which, in this limit, is a consequence of unitarity, see the discussion in Section 3.

5.17. The EMC effect for heavy nuclei and the Lorentz dilation of the nuclear Coulomb field

This subsection is based on Ref. [207]. In QCD one usually treats the partonwave function of a nucleus A as built of quarks
and gluons. As a result, it satisfies the following momentum sum rule:

Z 1

0

⇥
xAVA(xA,Q 2) + xASA(xA,Q 2) + xAGA(xA,Q 2)

⇤
dxA = 1, (152)

where the summation over the quark flavors is assumed; (VA, SA,GA) refer to the (valence quark, sea quark, gluon)
distributions in the target; xA = Q 2/(2q0MA) where q0 is the virtual photon energy and MA is the nucleus mass. In this
approximation, one neglects electromagnetic effects both in the hadron wave function at the initial scale of the evolution,
Q 2
0 , and in the DGLAP QCD evolution.
In the case of a fast particle, its Coulomb field is transformed into the field of equivalent photons. As a result, the photons

become dynamical degrees of freedom. To take them into account requires the modification of the QCD evolution equations
by including the momentum distribution of the photons, PA, in addition to the standard contributions of quarks and gluons.
Thus, the presence of the photon component in the nuclear light-cone wave function leads to the following modification of
the momentum sum rule:

Z 1

0

⇥
xAVA(xA,Q 2) + xASA(xA,Q 2) + xAGA(xA,Q 2) + xAPA(xA,Q 2)

⇤
dxA = 1. (153)

To remove the kinematic effects, it is convenient to rescale the variables by introducing the light-cone fraction x defined as

x = AxA, (154)

- +
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Double scattering diagram for the γ∗D scattering

Qualitatively,  the connection is due to a possibility of scattering with  small momentum 
transfer (t) to the nucleon at small x: 

Deuteron example -amplitudes of 
diffractive scattering off proton and off 
neutron interfere

Connection between nuclear shadowing and diffraction - nuclear rest frame

If √t ≤ “average momentum of nucleon in the nucleus”
 → large shadowing /interference

�tmin = x2m2
N (1 + M2

dif/Q2)2

AGK cutting rules
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�eD = �imp � �double,�diff = �double,

�single N = �imp � 4�double;�two N = 2�double

Number of wounded nucleons is very sensitive to shadowing effects



 Summary of studies of  the  measurement of diffractive pdf’s 

Collins factorization theorem:  consider  hard processes like 

one can define fracture  (Trentadue &Veneziano) parton distributions

For fixed              universal fracture pdf  + the evolution is  the same 
as for normal pdf’s. 

�� + T � X + T (T ⇥), �� + T � jet1 + jet2 + X + T (T ⇥)

f Dj (
x
xIP

,Q2,xIP, t)

xTf = 1� xIP

Theorem is violated in dipole model of γ*N diffraction in several ways

� ⌘ x/xIP = Q2/(Q2 +M2
X)

General QCD feature - smaller the  elementary cross section, larger is the ratio 
σdiff/σel.  (>> for small dipoles)

 15

xIP,t



☞Measurements of F2D(4)

☞Measurements of dijet production

☞ Diffractive charm  production

HERA: Good consistency between H1 and  ZEUS three sets of 
measurements

DGLAP describes totality of 
the data well several 
crosschecks - Collins 
factorization theorem valid for 
discussed Q2,x range

(68), (69) and (70). The χ2 fit to the experimental values of F D(3)
2 determines the free

parameters of the fit: nIR, αIP (0), Aj , Bj and Cj.

The 2006 H1 analysis of hard diffraction in DIS ep → eXY (Y denotes products of
dissociation of the proton) [40,41] is based on its own data sample, which covers the
following kinematics: 8.5 ≤ Q2 < 1600 GeV2, 0.0003 < xIP < 0.03, 0.0017 < β < 0.8,
|t| < 1 GeV2. Since the diffractive events were reconstructed using the rapidity gap
selection method, the proton was allowed to dissociate into states with a low invariant
mass, MY < 1.6 GeV.

The results of the H1 QCD fit in terms of the quark and gluon PDFs, fu/IP and fg/IP , at
Q2 = 2.5 GeV2 as functions of β are presented in Fig. 18. The solid curves correspond to
fit B; the dashed curves correspond to fit A. The main difference between fits A and B
is that while the parameters Aj , Bj and Cj in Eq. (70) are free in fit A, Cg = 0 for the
gluon PDF in Fit B.
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Fig. 18. The quark and gluon PDFs at Q2 = 2.5 GeV2 as functions of β.

The need to have two types of fits is explained by the fact that the gluon diffractive PDF is
determined from the scaling violations of F D(3)

2 . However, at large β, the scaling violations
of F D(3)

2 are predominantly determined by the quark diffractive PDFs. Therefore, the gluon
diffractive PDF at large β is very weakly constrained by the data, which allows (requires)
to consider two scenarios (fit A and fit B) of the gluon diffractive PDFs with different
behavior in the large-β limit, see the right panel of Fig. 18.

One should also mention that both fits correspond to very similar values of αIP (0) and
nIR:

Fit A : αIP (0)= 1.118 ± 0.008 , nIR = (1.7 ± 0.4) × 10−3 ,

36

The quark and gluon diffractive PDFs at 
Q2 =2.5 GeV2 as a function of β 

gluon dPDF >> quark dPDF

Current fits to soft hadron - hadron interactions 
find   αIP(0)=1.09 - 1.10

☛Diffraction at HERA is mostly due to the interaction 
of hadron size components of γ* not small dipoles. 
Confirms QCD aligned jet logic for x > 10-4

↵IP = 1.12± 0.01

independent of Q
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Combining Gribov theory  of shadowing and pQCD factorization theorem for 
diffraction in DIS allows to calculate LT shadowing  for all parton densities  (FS98) 
(instead of calculating F2A only) Detailed study FS + Guzey Phys.Rep. 2012

 Theoretical expectations for shadowing in the  LT limit

Theorem:   In  the low thickness limit the leading twist nuclear shadowing 
is unambiguously expressed through the nucleon diffractive  parton 
densities                         :

 
  

2
Im   −  Re

22
Im  + Re                                         

2

HH

j j

p     p        p      p

γ∗ γ∗HH
γ∗ γ∗

j j

Α Α

PPP P

Hard diffraction 

off parton  "j"

Leading twist contribution

structure function  fj (x,Q2)

to the nuclear shadowing for

N1
N2

A−2

f Dj (
x
xIP

,Q2,xIP, t)

j j j j
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Theorem: in the low thickness limit (or for  x>0.005) 

f j/A(x,Q2)/A= f j/N(x,Q2)� 1
2+2η2

R
d2b

R ∞
�∞dz1

R ∞
z1 dz2

R x0
x dxIP·

· f Dj/N
�
β,Q2,xIP, t

�
|k2t =0

ρA(b,z1) ρA(b,z2)Re
⇥
(1� iη)2 exp(ixIPmN(z1� z2))

⇤
,

f j/A(x,Q2), f j/N(x,Q2)

x0(quarks)⇠ 0.1, x0(gluons)⇠ 0.03

where are nucleus(nucleon) pdf's,

nuclear matter density.� = ReAdiff/ImAdiff � 0.174, ⇥A(r)
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a cutoff  absent when antishadowing is included
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N

!! ""

AA

FIG. 3: The forward γ∗-nucleus triple scattering amplitude.

Corrections to the elastic rescattering approximation can be estimated by taking into

account the effects of fluctuations of the strength of the rescattering interaction. Modeling

of these effects was performed in [23] with the conclusion that for a wide range of cross

section fluctuations, the reduction of nuclear shadowing (for fixed σeff ) remains a rather

small correction for all nuclei.

After introducing the attenuation factor into Eq. (2), the complete expression for the

shadowing correction, δfj/A, becomes

δfj/A(x, Q2) =
A(A − 1)

2
16πRe

[
(1 − iη)2

1 + η2

∫
d2b

∫ ∞

−∞
dz1

∫ ∞

z1

dz2

∫ xIP,0

x

dxIP

×fD(4)
j/N (β, Q2, xIP , tmin)ρA(b, z1)ρA(b, z2)e

ixIP mN (z1−z2)e−(A/2)(1−iη)σj
eff

∫ z2
z1

dzρA(b,z)

]
. (6)

This is our master equation (see also Eq. (14)). It contains several sources of model-

dependence and theoretical ambiguity. First, the attenuation factor T (b, z1, z2) assumes

that multiple rescatterings can be described by a single rescattering cross section [58] σj
eff ,

i.e. cross section fluctuations are neglected in the interaction with three and more nucleons.

Note that in the phenomenologically important kinematic region of fixed-target experiments,

x > 0.01 and Q2 > 2 GeV2, the uncertainty associated with the attenuation factor T (b, z1, z2)

is negligible since the rescattering contribution to shadowing is small, see Fig. 8. Second, the

10

N

!"
!"

AA

N

FIG. 2: The forward γ∗-nucleus rescattering amplitude that g ives the principal contribution to

nuclear shadowing .

nuclear wave function squared can be approximated well by the product of individual

ρA(b, zi) for each nucleon (the so-called independent particle approximation).

• The factor eixIP mN (z1−z2) is a consequence of the propagation of the diffractively pro-

duced intermediate state between the two nucleons involved.

Step 2. The QCD factorization theorems for inclusive [25] and hard diffractive DIS [7]

can be used to relate the structure functions in Eq. (1) to the corresponding – inclusive and

diffractive – parton distribution functions. Since the coefficient functions (hard scattering

parts) are the same for both inclusive and diffractive structure functions, the relation between

the shadowing correction to nPDFs and the proton diffractive parton distribution functions

(PDFs) is given by an equation similar to Eq. (1). The shadowing correction to the nPDF

of flavor j, fj/A, δf (2)
j/A, is related to the proton (nucleon) diffractive PDF fD(4)

j/N of the same

flavor

δf (2)
j/A(x, Q2) =

A(A − 1)

2
16 πRe

[
(1 − iη)2

1 + η2

∫
d2b

∫ ∞

−∞
dz1

∫ ∞

z1

dz2

∫ xIP,0

x

dxIP

×fD(4)
j/N (β, Q2, xIP , t)|t=tmin

ρA(b, z1 )ρA(b, z2)e
ixIP mN (z1−z2)

]
. (2)

8

Including higher order terms + ....+

Color fluctuation approximation: Amplitude to interact with j nucleons  ~σj 

does not 
depend on fj

         integral over σ with weight Pj(σ) - probability for the probe to be in 
configuration which interacts  with cross section σ;

�....⇥j

�
�k

⇥
j

=
⇤ �

0
d�Pj(�)�k

For intermediate x one needs also to keep finite coherence length factor
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⌦
�k+1
j

↵
⌦
�k
j

↵ for k ≥ 2 =

"⌦
�3
j

↵
⌦
�2
j

↵
#k�1

High moments are dominated by soft contributions , so approximately 

Main theoretical unknown - what fraction of  hard scattering does not lead to 
diffraction. Hidden in ⌦

�2
j

↵
⌦
�1
j

↵

⟹ uncertainties in  

⌦
�3
j

↵
⌦
�2
j

↵

known from DIS diffraction

FGS10 H &L (High &  Low)

one parameter is known not sufficiently well and which 
can be fixed from 4He, DIS, diffraction,…
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Fig. 34. Prediction for nuclear PDFs and structure functions for 208Pb. The ratios Rj (ū and c quarks and gluons) and RF2 as functions of Bjorken x at Q 2 = 4,
10, 100 and 10, 000 GeV2. The four upper panels correspond to FGS10_H; the four lower panels correspond to FGS10_L.

The numerical value of the exponent � = 0.25 in Eq. (126) can be understood as follows. The x dependence of nuclear
shadowing at small x is primarily driven by the xP dependence of the Pomeron flux fP/p(xP) / 1/x(2↵P�1)

P / 1/x1.22P . There-
fore, in the very small x limit, one expects from Eq. (64) that, approximately,

�F2A(x,Q 2)/A /

✓
1
x

◆0.22

,

�xgA(x,Q 2)/A /

✓
1
x

◆0.22

, (127)

which is consistent with our numerical result in Eq. (126).
When we present our predictions for nuclear shadowing in the form of the ratios of the nuclear to nucleon PDFs, it is

somewhat difficult to see the leading twist nature of the predicted nuclear shadowing because of the rapid Q 2 dependence
of the free nucleon structure functions and PDFs. In order to see the leading twist nuclear shadowing more explicitly, one
should examine the absolute values of the shadowing corrections.

Fig. 38 presents |�F2A(x,Q 2)/A| and |�xgA(x,Q 2)/A| as functions of Q 2 at fixed x = 10�4 (first and third rows) and
x = 10�3 (second and fourth rows) for 40Ca (four upper panels) and 208Pb (four lower panels). The solid curves correspond
to FGS10_H; the dotted curves correspond to FGS10_L. Also, for comparison, presented by the dot-dashed curves, we give

Q2 dependence of shadowing 

Decrease is stronger for gluons due 
to a faster DGLAP evolution in this 
channel -- “arrival” of gluons from 
larger x. Still shadowing is not 
negligible for Q2=10,000 GeV2.

“Mixing” of small and large x is a 
major effect - neglected in CGC 
models. 

Shadowing is continuing to increase 
with decrease of x below 10-3 - 
qualitative difference from the 
assumption of EKS09 (next slide)

❖

❖

❖



the leading twist theory of nuclear shadowing [the shaded area bound by the two solid
curves corresponding to models FGS10 H (lower boundary) and FGS10 L (upper bound-
ary)], the EPS09 fit (dotted curves and the corresponding shaded error bands) [51], and
the HKN07 fit (dot-dashed curves) [45]; all curves correspond to the NLO accuracy. The
ratios of the nuclear to nucleon PDFs are plotted as a function of x at two fixed values of
Q2: Q2 = 4 GeV2 (upper panels) and Q2 = 10 GeV2 (lower panels).
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Fig. 51. Comparison of predictions of the leading twist theory of nuclear shadowing [the area
bound by the two solid curves corresponding to models FGS10 H (lower boundary) and FGS10 L
(upper boundary)], the EPS09 fit (dotted curves and the corresponding shaded error bands) [51],
and the HKN07 fit (dot-dashed curves) [45]. The NLO fj/A(x,Q

2)/[Afj/N (x,Q2)] ratios for the
ū-quark and gluon distributions in 208Pb are plotted as functions of x at Q2 = 4 GeV2 (upper
panels) and Q2 = 10 GeV2 (lower panels).

As one can see from Fig. 51, the three compared approaches give rather close values for
nuclear shadowing in the sea-quark channel for a wide range of x, 10−5 ≤ x ≤ 0.02−0.03.
For larger x, the HKN07 fit deviates from the other two due to the assumed antishadowing
for the sea quarks.

In the gluon channel, our approach suggests much larger shadowing at Q2 = 4 GeV2 than
that suggested by the extrapolation of the EPS09 and HKN07 results. Here, however,
one has to make a distinction. While the shadowing in the gluon channel is insignificant
in the HKN07 fit for all Q2 scales, at the input scale Q2

0 = 1.69 GeV2, the EPS09 fit
suggests very large gluon shadowing with the very large theoretical uncertainty [51]. This

112

Comparison of predictions of the leading twist theory of nuclear shadowing [the area bound 
by the two solid curves corresponding to models FGS10 H (lower boundary) and FGS10 L 
(upper boundary)], the EPS09 fit (dotted curves and the corresponding shaded error bands), 
and the HKN07 fit (dot-dashed curves). The NLO fj/A(x, Q2)/[Afj/N (x, Q2)] ratios for the u-̄
quark and gluon distributions in 208Pb are plotted as functions of x at Q2 = 4 GeV2 (upper 
panels) and Q2 = 10 GeV2 (lower panels).
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Fig. 40. Impact parameter dependence of nuclear shadowing for 40Ca (upper green surfaces) and
208Pb (lower red surfaces). The graphs show the ratio Rj(x, b,Q2) of Eq. (132) as a function of
x and the impact parameter |⃗b| at Q2 = 4 GeV2. The top panel corresponds to ū-quarks; the
bottom panel corresponds to gluons. For the evaluation of nuclear shadowing, model FGS10 H
was used (see the text).

results for the b-integrated nPDFs (i.e., usual nPDFs), see Figs. 33 and 34. All curves
correspond to our input scale Q2

0 = 4 GeV2 and to model FGS10 H. The antishadowing
for gluons is taken to be exactly as in the b-integrated case. As can be seen from Fig. 41,
nuclear shadowing is larger at small impact parameters than that in the case when one
integrates over all b. This is a natural consequence of the fact that the density of nucleons
is larger in the center of the nucleus.

In Fig. 42, we plot fj/A/(ATA(b)fj/N ) as a function of the impact parameter b for three
different values of x, x = 10−4, x = 10−3, and x = 0.005. All curves correspond to model

100

 Impact parameter dependence of nuclear shadowing for 40Ca (upper green 
surfaces) and 208Pb (lower red surfaces). The graphs show the ratio Rj(x,b,Q2)  as a 
function of x and the impact parameter |b| at Q2 = 4 GeV2. The top panel 
corresponds to u-̄quarks; the bottom panel corresponds to gluons. For the 
evaluation of nuclear shadowing, model FGS10 H was used. 
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Fig. 41. The ratio fj/A/(ATA(b)fj/N ) as a function of x. The solid curves correspond to the
central impact parameter (b = 0); the dotted curves are for the nPDFs integrated over all b (the
same as in Figs. 33 and 34). All curves correspond to Q2

0 = 4 GeV2 and to model FGS10 H.

FGS10 H and Q2
0 = 4 GeV2. As one see from the figure, nuclear shadowing for gluons is

larger than for quarks in essentially an entire region of b.

DIS off nuclear targets involves usual nPDFs that are integrated over all impact param-
eters b. However, using the fact the nuclear shadowing is local in the impact parameter
[nuclear shadowing depends only on the nuclear density at a given b and will be same
for two different nuclei, A1 and A2, for the range of impact parameters satisfying the
condition A1TA1(b1) = A2TA2(b2)], one can enhance the contribution of small b by con-
sidering special linear combinations of the structure functions (parton distributions) of
different nuclei. In particular, one can effectively eliminate the contribution of single and
double scattering, and, thus, essentially subtract the contribution of the nuclear edge
(leave in mostly the contribution of the nuclear center) by considering, e.g., the following
combination:

F2A(x,Q
2)− λA/A0F2A0(x,Q

2)− (A− λA/A0A0)F2N (x,Q
2) , (133)
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Fig. 42. The ratio fj/A/(ATA(b)fj/N ) as a function of the impact parameter b for fixed values of
x = 10−4, x = 10−3, and x = 0.005. All curves correspond to FGS10 H and Q2

0 = 4 GeV2.

where A refers to a heavy nucleus; A0 refers to a light nucleus (such as 4He and 12C); the
parameter λA/A0 is defined as

λA/A0 ≡
∫

d2bA2T 2
A(b)

∫

d2bA2
0T

2
A0
(b)

. (134)

Since the expansion of the expression in Eq. (133) in the number of interactions with the
target nucleons starts from the term proportional to T 3

A(b), the combination in Eq. (133)
has the support for the values of b that are more central (smaller) than those for the
unsubtracted F2A(x,Q2).

The dependence of nPDFs on the impact parameter and, thus, our predictions for nuclear
shadowing as a function of the impact parameter b can be probed in proton-nucleus (pA)
and nucleus-nucleus (AA) collisions, where the centrality (the impact parameter b) is
defined by the multiplicity of binary collisions. Examples of the application of the impact
parameter dependent nPDFs involve inclusive production of pions [177] and J/ψ [178,179]
in dA and AA collisions at RHIC and in pA and AA collisions at the LHC [180], where
collisions with different centrality are selected using, e.g., the number of wounded nucleons.

102

Shadowing strongly depends  on the impact parameter,b,  - one can formally introduce nuclear diagonal 
generalized parton distributions. In LT theory to calculate them one just needs to remove integral over b.  

Important for modeling centrality dependence of hard processes in pA, AA   

 Nuclear diagonal generalized parton distributions.
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Usually one starts from an impulse approximation  for the scattering of a hard probe (γ*, W) off  a nucleus.  
In the parton language - QCD factorization. Can we trust impulse approximation in the hadronic basis for 
the nucleus wave function? At what step nuclear shadowing emerges in the fast frame?

Connection between nuclear shadowing and diffraction - nucleus  fast  frame

Consider interference between  γ* (“Higgs”) scattering off two 
different nucleons

Introduce light cone fraction α for nucleon

Free nucleon α=1, α f  1� x
For nucleus to have significant overlap of |in> and <out| states

αN f
1
 αNi

1
� x⇠ 1, αNi

2
 αN f

2
� x⇠ 1

⇒
⇒

Interference is very small for  x> 0.1 and impossible for x>0.3.  
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Fig. 12. The interchange (interference) diagram corresponding to the leading twist contribution to the diffractive final state.

For certainty, we will consider the interaction with two nucleons of the target, see Fig. 12. Since �
⇤
’s are attached to the

same quark, it appears at the first glance that it is impossible to break the additivity of the interaction since, naively, the
quark should belong to the same nucleon in the |ini and hout| states (similarly to graph a of Fig. 10). Let us determine the
necessary conditions to avoid this conclusion. In Fig. 12, the nucleon that interacts in the |ini state is denoted as Ni

1 and the
one that interacts in the final state as N

f
2 . For each nucleon in Fig. 12, we introduce the light-cone fractions ↵ ⌘ Ap

+

N /p
+

A ,
where p

+

N and p
+

A are the plus-momenta of the nucleon and the nucleus, respectively (the plus-momentum is defined as
p

+
= (p0 + p3)/

p
2). For the nucleon at rest, ↵ = 1. It follows from the DIS kinematics that

↵
f
1  ↵i

1 � x,

↵i
2  ↵

f
2 � x, (68)

where x is the Bjorken x. Since ↵ � 1 ⇡ p3/mN , where p3 is the projection of the nucleon momentum on the reaction
axis, and typical momenta of nucleons are less than kF ⇠ 250 MeV/c, the interference (interchange) diagram in Fig. 12 is
automatically suppressed for x � 0.1 since this requires scattering off nucleons with very large momenta. Also, there is an
additional suppression since only a small fraction of nucleons is produced with Feynman xF = ↵/(1 � x) close to unity. In
fact, one expects that the �

⇤
N ! NX inclusive cross section behaves as [123,139]:

d�
�

⇤
N!NX (xF )

dxF/xF

��
��
�x

F!1

/ (1 � xF )n(x),

n(x � 0.2) ⇠ 1, n(0.02 < x < 0.1) ⇠ 0, n(x < 0.01) ⇠ �1, (69)

which further suppresses the contribution of the x � 0.05 region and leads to the dominance of the diffractive contribution
for x  0.01.

The above analysis demonstrates that the interference effects are restricted to the region of small x and any deviations
from the additivity for x � 0.2 should be due to the presence of non-nucleonic degrees of freedom in the nucleus wave
function. These effects have indeed been observed – the EMC effect for this kinematics – but they become significant only
for rare configurations of quarks in the nucleons with x � 0.5.

Introducing the light-cone wave function of the nucleus,  A, we can write the contribution due to the diffractive cut of
the interference diagram to the total cross section as (see Fig. 12):

�diffF2A(x,Q 2) =
1

16⇡

Z Y

i=1,2

d↵i

↵i
d2p?i d� d2q? G(↵1,↵2,�, p?1, p?2 + q?, x,Q 2)

⇥ A(↵i, p?i) 
⇤

A (↵1 ��,↵2 +�,↵3, . . . , p?1 + qt , p?2 � q?, p?3, . . .), (70)

where � is related to the invariant mass of the system produced in the intermediate state, M2
X = �Q 2 + �W 2; q?

is the transverse momentum of the intermediate state; G describes the upper part of the diagram associated with the
�

⇤
NN ! �

⇤
NN interaction. Note that� = xP (see Eq. (42)).

Since the nucleon momenta are small, the integration is symmetric with respect to the p3 ! �p3 transformation, and
G only weakly depends on the incident energy, we can neglect the dependence of the factor G on ↵1, ↵2, p?1 and p?2. In
this approximation (implicit in the Gribov derivation of shadowing for hadron–deuteron scattering, see Section 2.2), if we
neglect the Fermi motion and take ↵i ' 1 and � ⌧ 1, G ⌘ G(x,Q 2,�, q?) is the cross section of the nucleon production
for xF ⇠ 1. Indeed, the Fermimotion leads to the rescaling of the invariant energy ŝ in the diffractive amplitude by the factor
↵n
1(↵2 + �)n, where n ⇡ 0.11. Since � is small, the correction factor for ↵1 ' ↵2 ' 1 is (1 + n�) in the integrand where

N1
iN2

i

N2
f N1

f

q q q

Large interference for  x< 0.01 due to the final states where small light cone fraction is 
transferred from one nucleon to another nucleon≡ possible only in diffraction. It results 
in  the  leading twist shadowing.

One obtains essentially the  same expression as we obtained in the nucleus rest frame 
+ small relativistic corrections. The nuclear blob             is the same in the Glauber 
theory and hence for given diffractive input  expected accuracy of the calculation of the 
nuclear effects is similar - few %
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Fig. 13. Geometry of the parton overlap in the transverse plane.

As Bjorken x is decreased, the strength of the interaction increases, and an increasing
number of nucleons screen each other within the cylinder of the radius of ∼

√
2B ≈ 0.9 fm

(although this radius should slowly increase with decreasing x for x ≤ 10−3, the current
data does not find a significant change of the slope in the HERA range of energies).
Therefore, a transverse slice of the wave function of a heavy nucleus for x ∼ 5 × 10−3

looks like as a system of colorless (white) clusters with some clusters (∼ 30% – cf. a
numerical study below) built of two rather than of one nucleon, with a gradual increase
of the number of two-nucleon, three-nucleon, etc. clusters with decreasing x.

The microscopic picture of nuclear shadowing described above allows one to address also
the question of at what transverse distances from the centers of two nucleons, ρ1 = r⊥1 and
ρ2 = r⊥2, for a given transverse internucleon distance, b, shadowing occurs, see Fig. 13.
First we observe that experimentally the t dependence of inclusive diffraction and deeply
virtual Compton scattering (DVCS) for similar values of x and Q2 are very close, BDVCS =
6.02 ± 0.35 ± 0.39 GeV−2 in the H1 2005 analysis [140] and BDVCS = 5.45 ± 0.19 ± 0.34
GeV−2 in the H1 2007 analysis [141], so that |BDVCS − B| < 2 GeV−2. This implies that
the parton removed from the initial nucleon and the parton in the final nucleon are located
at very close impact parameters. As a result, the screening effect occurs very locally in
the transverse plane, mostly in the region along the axis between the two nucleons. If we
neglect the small difference between the slopes of DVCS and diffraction, we obtain:

f(b) =
∫

p(r⊥1) p(r⊥2) δ(r⊥1 − r⊥2 − b) d2r⊥1 d
2r⊥2 , (75)

where f(b) is the Fourier transform of the t dependence of the diffractive cross section;
p(r⊥i) are transverse distributions of partons.

In our derivations, the global and local color neutrality are satisfied at every step. This
is very different from the approaches where the nucleus is initially built from free quarks
and the color neutrality is achieved by imposing additional conditions at a later stage.

46

A transverse slice of the wave function of a heavy nucleus for x ∼ 5 × 10−3 looks like a system 
of colorless (white) clusters with some clusters (∼ 30% ) built of two rather than of one 
nucleon, with a gradual increase of the number of two-nucleon, three-nucleon, etc. clusters 
with decreasing x.

Key element of the logic - nucleus is a system of color singlet clusters - nucleons 
which are weakly deformed in nuclei - checked by success of the Gribov-Glauber 
theory of soft hA interactions - σtot (hA) to few %. 

In our derivations, the global and local color neutrality are satisfied at every step. Not trivial to 
implement  in some other approaches.
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Figure 1: High energy quarkonium photoproduction in the leading twist approximation.

accounts for the inelastic strong interactions of the nuclei at impact parameters b ≤ 2RA

and, hence, suppresses the corresponding contribution to the Υ photoproduction. In
our calculations we use the nuclear matter density ρA(z, b⃗) obtained from the mean field
Hartree-Fock-Skyrme (HFS) model, which describes many global properties of nuclei [27]
as well as many single-particle nuclear structure characteristics extracted from the high
energy A(e, e′p) reactions [28].

The amplitude of Υ photoproduction (necessary for the calculation of σγA→ΥA in
eq. (2.1)) in the leading twist approximation is described by the series of the Feynman
diagrams depicted in figure. 1. The QCD factorization theorem2 for exclusive meson pho-
toproduction [5, 7, 29] allows one to express the imaginary part of the forward amplitude
for the production of a heavy vector meson by a photon, γ + T → V + T , through con-
volution of the wave function of the meson at the zero transverse separation between the
quark and antiquark, the hard interaction block and the generalized parton distribution
(GPD) of the target, GT (x1, x2, Q2, tmin), evaluated at tmin ≈ −x2m2

N . The momentum
light cone fractions xi of the gluons attached to the quark loop satisfy the relation:

x1 − x2 =
m2

Υ

s
≡ x , (2.4)

where s = 4ENω = 4γωmN is the invariant energy for γ − N scattering (EN = γmN is
the energy per nucleon in the c.m. of the nucleus-nucleus collisions). If the quark Fermi
motion and binding effects were negligible, then x2 ≪ x1 as a consequence of the fact that

2The proof of the factorization theorem for diffractive electroproduction of vector mesons is rather

straightforward [29] and, therefore, it is generally accepted in the published literature. At the same time,

the proof of the factorization theorem is more delicate in the case of hadron-initiated processes such as

diffraction of pions into two jets. For such processes factorization was questioned in refs. [30, 31]. However,

approximations used in these papers appear to violate gauge invariance when describing hadron desinte-

gration into jets in high-energy processes off the nucleon (nucleus) target. In particular, the same approx-

imations lead to the formulae for the process of dijet production by the pion projectile off the Coulomb

field of a nucleon (nucleus) [32], which differ from the exact answer deduced from the requirement of the

conservation of the e.m. current and renormalizability of QCD [33].

– 5 –

⇒

⇥�A⇤V A(s) =
d⇥�N⇤V N (s, tmin)

dt

⇥
GA(x1, x2, Q2

eff , t = 0)
AGN (xx, x2, Q2

eff , t = 0)

⇤2 tmin⌅

�⌅

dt

����
⌅

d2bdzei✏qt·✏beiqlz�(✏b, z)
����
2

.

The leading twist prediction (neglecting small t dependence of shadowing)

where x = x1 � x2 = m2
V /W 2

�N

GA(x1, x2, Q2
eff , t = 0)

GN (x1, x2, Q2
eff , t = 0)

�
GA((x1 + x2)/2, Q2

eff , t = 0)
GN ((x1 + x2)/2, Q2

eff , t = 0)

Exclusive vector meson production in DIS  (onium in photoproduction)

--sensitive test  of nuclear shadowing dynamics 
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Special situation for small  σ: 
�(”small dipole” � A)

A�(”small dipole” � N)
=

GA(x,Q2

AGN (x,Q2)
< 1

Prediction of the  LT theory 
of nuclear shadowing based 
on factorization theorem for 
diffraction and AGK 

Strong reduction of nuclear shadowing at 
fixed x due to the DGLAP flow of partons 
from larger x
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Fig. 34. Prediction for nuclear PDFs and structure functions for 208Pb. The ratios Rj (ū and c quarks and gluons) and RF2 as functions of Bjorken x at Q 2 = 4,
10, 100 and 10, 000 GeV2. The four upper panels correspond to FGS10_H; the four lower panels correspond to FGS10_L.

The numerical value of the exponent � = 0.25 in Eq. (126) can be understood as follows. The x dependence of nuclear
shadowing at small x is primarily driven by the xP dependence of the Pomeron flux fP/p(xP) / 1/x(2↵P�1)

P / 1/x1.22P . There-
fore, in the very small x limit, one expects from Eq. (64) that, approximately,

�F2A(x,Q 2)/A /

✓
1
x

◆0.22

,

�xgA(x,Q 2)/A /

✓
1
x

◆0.22

, (127)

which is consistent with our numerical result in Eq. (126).
When we present our predictions for nuclear shadowing in the form of the ratios of the nuclear to nucleon PDFs, it is

somewhat difficult to see the leading twist nature of the predicted nuclear shadowing because of the rapid Q 2 dependence
of the free nucleon structure functions and PDFs. In order to see the leading twist nuclear shadowing more explicitly, one
should examine the absolute values of the shadowing corrections.

Fig. 38 presents |�F2A(x,Q 2)/A| and |�xgA(x,Q 2)/A| as functions of Q 2 at fixed x = 10�4 (first and third rows) and
x = 10�3 (second and fourth rows) for 40Ca (four upper panels) and 208Pb (four lower panels). The solid curves correspond
to FGS10_H; the dotted curves correspond to FGS10_L. Also, for comparison, presented by the dot-dashed curves, we give
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10, 100 and 10, 000 GeV2. The four upper panels correspond to FGS10_H; the four lower panels correspond to FGS10_L.
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Strong reduction of nuclear shadowing at fixed x with increase of Q due to the DGLAP flow of 
partons from larger x

Rg(x,Q)

For 

Interaction of small dipoles with multiple nucleons are not suppressed 

10

 27

For small sizes, d,  dipoles - LT leads to much larger screening than eikonal models 
since in LT screening is proportional to GA(x, Q2 ~ 1/d2) / GN(x, Q2 ~ 1/d2) while in 
the eikonal shadowing term  is a higher twist - much smaller suppression.

�dipole�A/�dipole�N = 1� cd2

Why eikonal works reasonably well for soft processes and not for small dipoles ?

In LT approximation interaction of small dipoles with multiple 
nucleons are not suppressed by d2 factor (LT DGLAP evolution)

in soft physics:       σ(inel diffraction)/σ(elast.)  at t=0 << 1
for small dipoles:  σ(inel diffraction)/σ(elast.)  at t=0 >> 1



Test: J/ψ-meson production:  γ+Α → J/ψ +Α 

Small dipoles ➟ QCD factorization theorem 

SPb =


�(�A ! J/ +A)

�imp.approx.(�A ! J/ +A)

�1/2
=

gA(x,Q2)

gN (x,Q2)

Much larger shadowing than in the eikonal dipole models
Technical remarks: 
a)  elementary amplitudes are expressed through non-diagonal GPD . However 
in J/ψ case light-cone fractions of gluons attached to cc -- x1 and x2 are 
comparable x1=1.5 x ,  & x2 = 0.5  → (x1+ x2 )/2 =x

So non-diagonality effect is very small for J/ψ case.

b)  High energy factorization → HT effects are large  mostly cancel in the ratio of 
nuclear and elementary cross sections at t=0.
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_

(x1 + x2)J/�

2
� x;

(x1 + x2)�
2

� x/2



Strong suppression of coherent J/ψ production observed by ALICE 
confirms our prediction of  significant gluon shadowing on the Q2 ~ 3 GeV2 . 
Dipole models predict very small  shadowing (SPb> 0.9).

SPb =


�(�A ! J/ +A)

�imp.approx.(�A ! J/ +A)

�1/2
=

gA(x,Q2)

gN (x,Q2)

Large gluon shadowing consistent with the leading twist theory prediction of FGS2012
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FGS+MNRT07

FGS+CTEQ6L

Contreras 2017
from peripheral AA data

Models based on fitting the data have large uncertainties as no data constrain gA(x~ 10-3)

SPb(x)  is extracted from the data by Guzey, Zhalov & MS 2014-2017



 30

Dynamical model of antishadowing Guzey et al 16
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FIG. 3: Merging of two ladders coupled to two di↵erent nucleons in the 2IP ! IP process in the nucleus infinite momentum

frame. This process corresponds both to nuclear shadowing and antishadowing.

2.2. Dynamical approach to the antishadowing phenomenon

Nuclear shadowing in DIS at not too small x is described by an exchange of two ladders. This is illustrated by
graph b of Fig. 1 in the target rest frame (each zigzag line represents a ladder).

In the triple Pomeron limit approximation, which is consistent with the HERA data on hard inclusive di↵raction
in ep DIS [27, 28], this contribution can be considered as a result of emission of two ladders at di↵erent impact
parameters [32]. Partons of these two ladders may come close together in the impact parameter plane due to di↵usion
and merge into one ladder. In the infinite momentum frame (IMF), this corresponds to a reduction of the probability
for a fast nucleus (deuteron) to be in the configuration, where its small x component is described as a system of two
independent ladders originating from two nucleons, and an additional contribution to the wave function, where the
system is described by two ladders for the values of the rapidity below the rapidity, where the merger occurred, see
Fig. 3. As a result, at given small x, the probability to have two independent ladders is given by the probability of
di↵raction in a given channel; we denote this probability P1. The probability that merging occurs above given x is
P2 = 1 � P1. Obviously, for large x this model corresponds to nPDFs being equal to the sum of individual nucleon
PDFs, while for small x, the relative reduction of nPDFs is given by the factor of P2. Note that the process illustrated
in Fig. 3 is analogous but not identical to the familiar triple Pomeron processes in hadronic collisions. (Note that the
third ladder may be rather short and not be described by a Pomeron exchange.)

In the nucleus IMF, the merging shown in the right graph in Fig. 3 means that a fraction of the nucleus momentum
carried by the third ladder is a sum of the momentum fractions taken from the two ladders. Therefore, after the merging
of the ladders, the fractions of target momentum are larger than within a single ladder. Hence, the contribution of
the diagrams presented at Fig. 3 to nPDFs is positive at larger x. For su�ciently small x, these diagrams produce a
negative contribution to nPDFs, i.e., they lead to nuclear shadowing. It is essential to point out that since the graphs
in Fig. 3 conserve energy–momentum, they represent a sum of the nuclear shadowing and antishadowing contributions
and allow us to formulate a dynamical approach to the antishadowing phenomenon.

The next important observation is that the QCD analysis of the HERA di↵ractive data [27, 28] indicates that
di↵raction in DIS is dominated by soft Pomeron-like interactions, which follows from the observation that ↵IP (0)
in DIS is practically the same as for soft interactions. Since in soft interactions the correlation length in rapidity
�y ⇠ 1, modifications of parton densities related to the merging of the two ladders should be rather local in the
rapidity and located close to the rapidity position of the vertex describing the 2IP ! IP [(nIP ) ! IP ] transition.
Therefore, for a given light-cone momentum xIP carried by the lower ladder in Fig. 3, the merging of ladders should
predominantly correspond to ln(x/xIP )  1. This means that for a given xIP , nuclear shadowing and antishadowing
should compensate each other in the momentum sum rule for nPDFs on the interval ln(x/xIP )  1.

While the lack of the detailed knowledge of the parton structure of the 2IP ! IP vertex does not allow us to built a
microscopic theory of antishadowing, the realization of the observation that the momentum sum rule is valid locally
on the ln(x/xIP )  1 interval enables us to model antishadowing with only modest uncertainty in the final results.

Above we discussed the dynamical model of shadowing and antishadowing originating from an exchange of two
ladders belonging to two di↵erent nucleons of the nucleus, which exhausts the answer in the cases of low nuclear
density and the deuteron. In a general case, one needs to take into account the interaction with N � 3 nucleons of the
nucleus, which can be done using the quasi-eikonal approximation with the e↵ective cross section �j

soft, see Eq. (1).
These additional elastic interactions do not involve the “first” and the “last” nucleons, which couple to the merging

Merging of two ladders coupled to two different nucleons in the 2IP → IP process in the nucleus infinite 
momentum frame. This process corresponds both to 

At a soft scale one can consider small x infinite momentum frame nucleon wave function as a 
soft ladder - consistent with HERA observation of αIP(diff) =1.12 -soft. In the diffusion ladders 
belonging to two nucleons can overlap and merge into one ladder.

x1

x2

} x1 + x2

:   fewer partons at small x by factor 2- P2  nuclear shadowing:

antishadowing:  more partons at x~x1 + x2

⦿

⦿

Total light cone momentum carried in the merged configuration is the same as for two 
free nucleons, hence the momentum sum rule is automatically concerned
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The parameter B0 determines how local in x/xIP the antishadowing contribution is. The ln(x/xIP )  1 condition
corresponds to B0  3xIP ; in our analysis, we used B0 = 3xIP (B0  0.2) corresponding the rapidity merging range
of �y = 1. We also found that our results very weakly depend on the explicit value of B0 in the B0 = 3xIP � 5xIP

interval. The parameter Nanti(xIP ) is determined from Eq. (10).
Following our analysis in Ref. [20], for the gluon distribution of the free nucleon, we used the NLO CTEQ5M

parameterization [36]. The sensitivity of gA(x,Q2
0)/[AxgN (x,Q2

0)] to the used underlying free nucleon PDFs was
studied in [20] and it was found that, for instance, the di↵erence between the CTEQ5M and CTEQ66 parametrizations
a↵ects gA(x,Q2

0)/[AxgN (x,Q2
0)] only for x < 10�3 leading to at most a 25% di↵erence at x = 10�4, see Fig. 49 of [20].

As we already mentioned in Sect. 2.1, uncertainties of this magnitude in the gluon nPDF at very small x do not
noticeably a↵ect our modeling of the gluon antishadowing as well as the momentum sum rule, see our results in
Sect. 3.

The sketch of the assumed pattern of the x and xIP dependence of �xgantiA (x, xIP , Q2
0) is shown in Fig. 4.

x

shadowing

antishadowing

B0xIP 0.2

FIG. 4: Pattern of x and xIP dependence of the gluon shadowing and antishadowing.

Figure 5 (left) presents our results for �xgantiA (x,Q2
0)/[AxgN (x,Q2

0)] as a function of x for 208Pb at Q2
0 = 4 GeV2.

The solid and dot-dashed curves labeled “High shad.” and “Low shad.” correspond to the scenarios with the higher
and lower nuclear gluon shadowing [20], respectively. One can see from the figure that in all cases, the antishadowing
enhancement does not exceed 15% and peaks around x ⇡ 0.05 � 0.1. Note also that the e↵ect of antishadowing is
rather small for x  10�4. This is a consequence of the fact that for these values of x, the shadowing correction—
and, hence, the compensating antishadowing contribution—receives the dominant contribution from the intermediate
di↵ractive masses corresponding to xIP � 10�4.
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Figure 5 (right) presents our predictions for xgA(x,Q2
0)/[AxgN (x,Q2

0)] as a function of x for 208Pb at Q2
0 = 4 GeV2.

The shaded band spans the range of our predictions for the gluon nuclear shadowing [20] and antishadowing. Note
that in this work we present our results for xgA(x,Q2

0)/[AxgN (x,Q2
0)] for x > 10�4, where the data on di↵raction in

ep scattering are available from HERA. Extrapolation of the HERA fits to smaller x allows one to make estimates for
nuclear shadowing for even smaller smaller x, see Fig. 31 in Ref. [20].

In Fig. 6, we compare our predictions for xgA(x,Q2
0)/[AxgN (x,Q2

0)], when antishadowing is modeled as described
in this work using Eqs. (10) and (11) with B0 = 3xIP (the upper shaded band) with the case when it is modeled

Soft process ⇒ for a merger leading to shadowing at given x the compensating 

antishadowing should occur at nearby rapidities: Δy ≤1 ! B0/xIP ⇠ 3

I do not have time to discuss details of modeling which includes accurate 
definition of x for the nucleus and account for a small fraction of the momentum 
carried by coherent photons (0.8% for Pb)
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The parameter B0 determines how local in x/xIP the antishadowing contribution is. The ln(x/xIP )  1 condition
corresponds to B0  3xIP ; in our analysis, we used B0 = 3xIP (B0  0.2) corresponding the rapidity merging range
of �y = 1. We also found that our results very weakly depend on the explicit value of B0 in the B0 = 3xIP � 5xIP

interval. The parameter Nanti(xIP ) is determined from Eq. (10).
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0)] to the used underlying free nucleon PDFs was
studied in [20] and it was found that, for instance, the di↵erence between the CTEQ5M and CTEQ66 parametrizations
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0)/[AxgN (x,Q2
0)] only for x < 10�3 leading to at most a 25% di↵erence at x = 10�4, see Fig. 49 of [20].

As we already mentioned in Sect. 2.1, uncertainties of this magnitude in the gluon nPDF at very small x do not
noticeably a↵ect our modeling of the gluon antishadowing as well as the momentum sum rule, see our results in
Sect. 3.
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rather small for x  10�4. This is a consequence of the fact that for these values of x, the shadowing correction—
and, hence, the compensating antishadowing contribution—receives the dominant contribution from the intermediate
di↵ractive masses corresponding to xIP � 10�4.
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Figure 5 (right) presents our predictions for xgA(x,Q2
0)/[AxgN (x,Q2

0)] as a function of x for 208Pb at Q2
0 = 4 GeV2.

The shaded band spans the range of our predictions for the gluon nuclear shadowing [20] and antishadowing. Note
that in this work we present our results for xgA(x,Q2

0)/[AxgN (x,Q2
0)] for x > 10�4, where the data on di↵raction in

ep scattering are available from HERA. Extrapolation of the HERA fits to smaller x allows one to make estimates for
nuclear shadowing for even smaller smaller x, see Fig. 31 in Ref. [20].

In Fig. 6, we compare our predictions for xgA(x,Q2
0)/[AxgN (x,Q2

0)], when antishadowing is modeled as described
in this work using Eqs. (10) and (11) with B0 = 3xIP (the upper shaded band) with the case when it is modeled

9

An example of the resulting impact parameter dependent nuclear gluon distribution is presented in Fig. 7, where
for the B0 = 3xIP case, we show xgA(x, b,Q2

0)/[ATA(b)xgN (x,Q2
0)] as a function of x for 208Pb at Q2

0 = 4 GeV2 and
for the central impact parameter b = 0. A comparison with the right panel of Fig. 5 shows that while the nuclear
shadowing e↵ect noticeably increases as one decreases b, this has a much smaller e↵ect on antishadowing, which
increases only by a few percent as one goes from the b-integrated case to the b = 0 case. This is a consequence of the
fact that in the dynamical approach to antishadowing, it has a wide support in x.
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FIG. 7: Impact parameter dependent gluon nuclear distribution of
208

Pb at Q2
0 = 4 GeV

2
. The

xgA(x, b,Q
2
0)/[ATA(b)xgN (x,Q2

0)] ratio as a function of x at b = 0 in the dynamical approach to antishadowing.

Our predictions for the leading twist nuclear shadowing and the dynamical model of antishadowing of gluon nPDFs
can be compared to most recent results of extraction of nPDFs using global QCD fits. Figure 8 shows a comparison of
our predictions for xgA(x,Q2

0)/[AxgN (x,Q2
0)] (the same as in Fig. 6) to the EPPS16 [11] (left panel) and nCTEQ15 [9]

(right panel) results; the shaded error bands around the EPPS16 and nCTEQ15 curves quantify their uncertainties.
One can see from the left panel that while our predictions are within the EPPS16 uncertainty band, comparing to the
EPPS16 central curve one observes the trends of the x dependence are di↵erent. In the right panel, the agreement
between our predictions and the nCTEQ15 result is somewhat worse due to the flat and significant nuclear shadowing
of xgA(x,Q2

0)/[AxgN (x,Q2
0)] in the nCTEQ15 fit, which extends up to x = 0.01 and thus leads to the large gluon

antishadowing. Note that the shown uncertainties of the xgA(x,Q2
0)/[AxgN (x,Q2

0)] ratio include only the nCTEQ15
nPDF errors.

It is important to emphasize that our approach is conceptually di↵erent from global QCD fits of nPDFs: while our
predictions are based on microscopical dynamical models of nuclear shadowing and antishadowing, nPDFs extracted
from global QCD analyses present a model-dependent extrapolation for x < 0.005. In addition, theoretical uncer-
tainties of our results are significantly smaller than those of global QCD fits of nPDFs (see Fig. 8) and are largely
controlled by a single parameter — the e↵ective �j

soft(x,Q
2
0) cross section in Eq. (1).

Figure 9 compares our predictions for the impact parameter dependence of nuclear shadowing and antishadowing
in the xgA(x, b,Q2

0)/[ATA(b)xgN (x,Q2
0)] ratio to the EPS09s [37] result. The shaded area around the EPS09s shows

the fit uncertainty. One can see from the figure that the flat EPS09s nuclear shadowing extending up to x = 0.01
requires the sizable gluon antishadowing. In our case, since antishadowing and shadowing compensate each other
locally in rapidity, antishadowing noticeably reduces shadowing already for x > 0.005, which in turn does not require
a very pronounced antishadowing enhancement.

4. CONCLUSIONS

In this work, we explore the observation that in the infinite momentum frame, the nuclear e↵ects of shadowing and
antishadowing originate from the same graph describing the merging of two parton ladders belonging to two di↵erent
nucleons of a nucleus and that this merging is local in the rapidity. It enables us to propose that for a given momentum
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FIG. 8: Comparison of the prediction of the leading twist nuclear shadowing and the dynamical model of antishadowing for
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0)] (same as in Fig. 6) with results of the EPPS16 (left panel) and nCTEQ15 (right panel) fits. The

shaded error bands around the EPPS16 and nCTEQ15 curves give their uncertainties.
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of antishadowing (same as in Fig. 7) to the EPS09s result. The shaded areas show uncertainties of the respective predictions.

fraction xIP carried by the di↵ractive exchange, nuclear shadowing and antishadowing should compensate each other
in the momentum sum rule for nPDFs locally on the interval ln(x/xIP )  1. This allows us to construct a model of
nuclear gluon antishadowing, where it naturally has a wide support in x, 10�4 < x < 0.2, peaks at x = 0.05� 0.1 and
rather insignificantly depends on details of the model. In the studied example of the xgA(x,Q2

0)/[AxgN (x,Q2
0)] ratio

for 208Pb at Q2
0 = 4 GeV2, our dynamical approach to antishadowing leads to ⇡ 15% enhancement of this ratio at

x = 0.05 � 0.1. We also studied the impact parameter dependence of antishadowing and found it to be significantly
slower that the b-dependence of the nuclear shadowing correction to nPDFs. While our predictions for the magnitude
of nuclear shadowing and antishadowing of the gluon nPDF agree in general to the EPPS16, EPS09s and nCTEQ15
results within their currently large uncertainties, the predicted shapes of the x dependence are rather di↵erent.
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Convenient quantity - P(σ)  -probability that hadron/photon interacts with cross 
section σ with the target.   

dσ(pp!X+p)
dt

dσ(pp!p+p)
dt

| t = 0
=

�
(� � �tot)2P (�)d�

�2
tot

⇥ ⇥�
variance

�34

∫P(σ)d σ= 1, ∫ σ P(σ)d σ=σtot, 

Pumplin  &Miettinen

∫ (σ - σtot)3 P(σ) dσ= 0, Baym et al from pD diffraction

P (�)|�!0 / �nq�2 Baym et al 1993 -  analog of QCD counting rules
probability for all constituents to be in a small transverse area

+ additional consideration that for a many body system fluctuations near average value should be 
Gaussian 

model and the Monte Carlo calculations which take into account finite radius of the NN

interaction neglected in the optic model.

IV. EFFECTS OF FLUCTUATIONS IN THE MONTE CARLO MODEL

An additional source of event-by-event fluctuations of the number of wounded nucleons

comes from the fluctuations in the number of nucleons at a given impact parameter. These

fluctuations are present already on the level of the Glauber model [8]. These fluctuations

decrease with increase of σtot(NN) due to an increase of the overall number of interacting

nucleons, N , at a given impact parameter. In the case when no fluctuations of σ are present,

we have:

⟨N(σinel)⟩ = ⟨N⟩
σinel

⟨σinel⟩
. (14)

In this case we can write
〈

N(σinel)
2
〉

= ⟨N⟩2 (1 + ωρ) , (15)

where ωρ is the quantity calculated for dispersion in the case of no color fluctuations. The

dependence of ωρ on σinel(NN) is presented in Fig. 1 for b = 0 and b = 4. In the calculation

we use the event generator [8]. The event generator includes short-range correlations between

nucleons, however this effect leads to a very small correction for the discussed quantity.

When both fluctuations are included average N does not change. Hence the dispersion

of the distribution over N including both effects can be calculated as follows:

〈

N2
〉

=
∫

dσinelP (σinel) ⟨N⟩2
(

σinel

⟨σinel⟩

)2

(1 + ωρ) . (16)

Now we can calculate the total dispersion. The first term in (1 + ωρ) gives simply ωσ. The

second term takes into account the dependence of ωρ on σinel:

ωtot = ωσ +
∫

dσinelP (σinel)

(

σinel

⟨σinel⟩

)2

ωρ . (17)

As a result the overall dispersion is somewhat smaller that ωσ+ωρ(σtot) since the the integral

in the second term is dominated by σ > σtot. In order to perform numerical analysis we

follow [10], and take the probability distribution for σtot as [16]:

Ph(σtot) = r
σtot

σtot + σ0
exp{−

σtot/σ0 − 1

Ω2
} , (18)

7

( )2

N

Test:  calculation of coherent diffraction off nuclei: π A→XA, p A→XA  through Ph(σ) 

P�(�)|�!0 / ��1 γ =mix of small qq and mesonic configurations-

cf PMCGlauber (σ)= δ(σ-σtot)

Color fluctuations in protons
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sponds to ((o- - (~r)) 3 ~- 0, as would occur for a distribution nearly
symmetric: of approximately (~r) (88).

For small values of o-, further information can be obtained from QCD,
which implies (19)

P(o’) - "Nq-2 4.4

for ~r << ((r), where Nq is the number of valence quarks. Thus, 
nucleon distribution Pu((r) is --O" for small (~, while for the pion P~(o-)
is approxiimately constant. The results of reconstructing PN(o-) and
P~(o’) from the first few moments of P(o-) and from Equation 4.4 
shown in ].~igure 6. They indicate a broad distribution for proton projec-
tiles and an even broader one for pion projectiles. One expects even
further broadening for K-meson projectiles.

4.3 Sm’all-Sized Configurations in Pions
One can test this approach by using QCD to compute P,(~r = 0) 
high energies. Indeed, the physics at small (r is dominated by small
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Figure 6 C, ross-section probability for pions P~(cr) and nucleons P~v(~) as extracted
from experimental data. P,,(cr = 0) is compared with the perturbative QCD prediction.
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FIG. 1: The cross section distribution P (σ, s) at different energies: the solid curve corresponds to
√

s = 9 TeV (LHC); the dashed curve corresponds to
√

s = 1.8 TeV (Tevatron); the dot-dashed

curve corresponds to
√

s = 200 GeV (RHIC).

IV. RESULTS AND DISCUSSION

Using Eqs. (15) and (18), we calculate the total, elastic and diffractive dissociation cross

sections for proton-208Pb scattering as a function of
√

s. The result is given in Fig. 2.

In our numerical analysis, we used the following parameterization of the nucleon distri-

bution ρA(r⃗)

ρA(r⃗) =
ρ0

1 + exp ((r − c)/a)
, (22)

where c = RA − (π a)2/(3 RA) with RA = 1.145 A1/3 fm and a = 0.545 fm; the constant ρ0

is chosen to provide the normalization of ρA(r⃗) to unity.

One sees from Fig. 2 that cross section fluctuations decrease the total and elastic cross
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Jet production in pA collisions - possible evidence for x -dependent color fluctuations

Summary of some of the relevant  experimental observations of CMS  & ATLAS 

❖  Inclusive jet production is consistent with pQCD expectations 
(CMS) 

8 6 Results and discussion

The fit is restricted to the region Df1,2 > 2p/3. In the data, the width of the azimuthal angle
difference distribution (s in Eq. (1)) is 0.226 ± 0.007, and its variation as a function of E

|h|>4
T is

smaller than the systematic uncertainty, which is 3–4%. The width in the data is also found to
be 4–7% narrower than that in the PYTHIA simulation.

6.3 Dijet pseudorapidity
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Figure 5: (a) Distribution of dijet pseudorapidity (hdijet = [h1 + h2]/2) is shown for pPb dijet
events with pT,1 > 120 GeV/c, pT,2 > 30 GeV/c, and Df1,2 > 2p/3 as the red solid circles. The
results are compared to NLO calculations using CT10 (black dashed curve) and CT10 + EPS09
(blue solid curve) PDFs. (b) The difference between hdijet in data and the one calculated with
CT10 proton PDF. The black squares represent the data points, and the theoretical uncertainty
is shown with the black dashed line. (c) The difference between hdijet in data and the one calcu-
lated with CT10+EPS09 nPDF. The blue solid circles show the data points and blue solid curve
the theoretical uncertainty. The yellow bands in (b) and (c) represent experimental uncertain-
ties. The experimental and theoretical uncertainties at different hdijet values are correlated due
to normalization to unit area.

The normalized distributions of dijet pseudorapidity hdijet, defined as (h1 + h2)/2, are studied
in bins of E

|h|>4
T . Since hdijet and the longitudinal-momentum fraction x of the hard-scattered

parton from the Pb ion are highly correlated, these distributions are sensitive to possible mod-
ifications of the PDF for nucleons in the lead nucleus when comparing hdijet distributions in
pp and pPb collisions. As discussed previously, the asymmetry in energy of the pPb collisions

Evidence for x -dependent color fluctuations in nucleons -nucleon squeezing 
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ATLAS and CMS  studied dijet production in pA at the LHC. Both observed very small nuclear 
effects for inclusive dijet production which rules out energy loss interpretation. However nuclear 
effects are strong function of ν which was estimated using negative rapidities. Forward jet 
production in central collisions is strongly suppressed - suppression is mainly function of xp. and 
not pt of the jet. Consistent with expectation that configurations in protons with large x -belong to 
configurations which are smaller and interact with σ < σtot. 

xp~ 0.5

�37

RCP,  is a function of x of 
the quark. No pT 
dependence for fixed 
xp=Ejet/Eproton
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In order to compare with the data we need to use a model for the distribution in ETPb as a function of ν. 
We use the analysis of ATLAS . Note that ETPb was measured at large negative rapidities which minimizes 
the effects of energy conservation (production of jets with large xp ) suggested as an explanation of 
centrality dependence

ATLAS-CONF-2015-019 analysis of pp data confirms this expectation 

p A

high-xp !

parton

depleted 
ΣET

x in “projectile
” !

proton x in “target” !

proton

is this just a feature 
of pp collisions?

ΣET in target 
proton 

direction 

Measure ΣET at large pseudorapidity vs. 
x in the projectile proton (moving away) 
x in the target proton (moving towards)

outgoing !
jets

35

p A

high-xp !

parton

depleted 
ΣET

x in “projectile
” !

proton x in “target” !

proton

is this just a feature 
of pp collisions?

ΣET in target 
proton 

direction 

Measure ΣET at large pseudorapidity vs. 
x in the projectile proton (moving away) 
x in the target proton (moving towards)

outgoing !
jets

35

Dependence on xproj and xtarg

18

With increasing xproj, only a small (10%) drop in ΣET ratio.

With increasing xtarg, over a factor of two drop in ΣET ratio.
Generators show similar qualitative trends, with Herwig having the worst description 

 [GeV]avg
T
p

  
re

f
〉 T

E
Σ〈/〉 T

E
Σ〈

0

0.2

0.4

0.6

0.8

1

 PreliminaryATLAS
 = 2.76 TeVs, pp

| < 0.3)dijet
η 50-63 GeV, |∈ avg

T
p(〉TEΣ〈 = ref〉TEΣ〈

re
f

〉 T
E
Σ〈 /〉 T

E
Σ〈

-1Data, 4.0 pb
PYTHIA 6 AUET2B
PYTHIA 8 AU2
HERWIG++ UE-EE-3

  targx

 M
C

 / 
D

at
a

0.6
0.8

1
1.2
1.4

0 0.5 1   projx0 0.5 1

0

Dependence on xproj and xtarg 

Dependence on xproj and xtarg

18

With increasing xproj, only a small (10%) drop in ΣET ratio.

With increasing xtarg, over a factor of two drop in ΣET ratio.
Generators show similar qualitative trends, with Herwig having the worst description 

 [GeV]avg
T
p

  
re

f
〉 T

E
Σ〈/〉 T

E
Σ〈

0

0.2

0.4

0.6

0.8

1

 PreliminaryATLAS
 = 2.76 TeVs, pp

| < 0.3)dijet
η 50-63 GeV, |∈ avg

T
p(〉TEΣ〈 = ref〉TEΣ〈

re
f

〉 T
E
Σ〈 /〉 T

E
Σ〈

-1Data, 4.0 pb
PYTHIA 6 AUET2B
PYTHIA 8 AU2
HERWIG++ UE-EE-3

  targx

 M
C 

/ D
at

a
0.6
0.8

1
1.2
1.4

0 0.5 1   projx0 0.5 1

0

0



 39

  M.Alvioli, L.Frankfurt, V.Guzey and M.Strikman,
  ``Revealing nucleon and nucleus flickering 

in pA collisions at the LHC,'  arXiv:1402.2868

DISTRIBUTION OVER THE NUMBER OF 
COLLISIONS FOR PROCESSES WITH A HARD 
TRIGGER

If the radius of strong interaction is small and hard interactions have the same 
distribution over impact parameters as soft interactions multiplicity of hard events: 
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FIG. 2: Comparison of the distributions over N = Ncoll in the color fluctuation models with !� = 0.1 and

di↵erent shapes of distribution over � – Eqs. (2) and 7.

it appears promising to look for their e↵ects in the processes with a hard trigger which correspond

to somewhat di↵erent geometry than the minimal bias inelastic collisions.

III. DISTRIBUTION OVER THE NUMBER OF COLLISIONS FOR PROCESSES WITH

A HARD TRIGGER

One of the typical setups for pA collisions is the study of soft characteristics of the events which

are related to the number of wounded nucleons for events with a hard subprocess (dijet, Z-boson,

. . .). In the case of inclusive production, the cross section is given by the QCD factorization theorem.

Putting an additional requirement on the final state break down the closure approximation and

hence requires special treatment. The main aim here is to get a deeper insight into dynamics of

pA interactions and in particular to probe the flickering phenomenon which we discussed in the

Introduction.

On average, in the geometric model for hard processes in the kinematics, where nuclear

shadowing can be neglected (i.e., for x � 0.01 and even smaller x for large virtualities), the

multiplicity of the events with a hard trigger (HT), which we will denote as MultpA(HT ), is

MultpA(HT ) = �pA(HT + X)/�pA(in). Using Eq. (6) one finds that a simple relation for the

multiplicities of HT events in NN and minimal bias pA collisions holds:

MultpA(HT ) = hNcolliMultpN (HT ) . (8)

8

Here we will consider the rates of hard collisions as a function of Ncoll with the additional

factor of Ncoll in the denominator in order to focus on the deviation from the naive optical model

expectation [19] that Eq. (8) holds for fixed values of Ncoll:

RHT (Ncoll) ⌘
MultpA(HT )

MultpN (HT )Ncoll

= 1 . (9)

Let us denote as b and bj the transverse center of mass of the projectile proton and the target

nucleons relative to the center of the nucleus, respectively. We also denote as ⇢ the transverse

distance of the parton of the projectile from point b. The transverse distance between the point of

hard collision and the distance to the transverse c.m. of nucleon j of the nucleus is

⇢j = b+ ⇢� bj . (10)

ρ
i

b

θ
x

ρ

bi

i
θ

FIG. 3: Sketch of the transverse geometry of collisions.

The generalized gluon distribution in the nucleon can be parametrized as gN (x,Q2
, b) =

gN (x,Q2)Fg(⇢), where Fg(⇢) is the normalized distribution of gluons in the nucleon transverse

plane (we do not write here explicitly the dependence of gN (x,Q2
, b) on x and Q

2);
R
d
2
bFg(⇢) = 1.

This parametrization is reasonable since the distribution over ⇢ is practically independent on Q
2. In

our numerical calculations, we take Fg(⇢) from the analysis of the data on elastic photoproduction

of J/ meson [15–17]. For x ⇠ 0.01:

Fg(b) = (⇡B2)�1 exp
⇥
�b

2
/B

2
⇤
, (11)

where B = 0.5 fm. Note that sensitivity to the exact value of B is rather insignificant as long as

it stays small enough.

The cross section di↵erential in the impact parameter is given by the convolution of the gener-

alized gluon distribution of the colliding particles:

d�HT (NA)

d2b
= �HT (NN)

Z
d
2
⇢

j=AY

j=1

[d2⇢j ]Fg(⇢)⇥
j=AX

j=1

Fg(⇢j) , (12)

9

Consider multiplicity of hard events
as a function of Ncoll

Accuracy? 
 Two effects: Two scale dynamics of pp interaction at the LHC, large 
radius of NN interaction
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lead to hard collisions. As a result, RHT becomes smaller than unity, while in the model without

fluctuations, RHT stays very close to unity up to very large Ncoll. We checked that results of the

calculation are not sensitive to the presence of the correlations between nucleons.

As a result, the color fluctuation model predicts a higher rate of events with a hard trigger

starting at somewhat larger Ncoll than in minimum bias events (cf. Figs. 1 and 5). Hence our
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FIG. 4: Ratio RHT (Eq. (9)) of the rates of hard collisions in the Glauber model and color fluctuation

model and in the optical model as a function of N = Ncoll.

analysis demonstrates that color fluctuations lead to two e↵ects for large Ncoll for the bulk hard

observables: (i) larger probability of the collisions with Ncoll � 12 and (ii) reduced probability of

the hard subprocesses for the same Ncoll range. Further modeling is necessary to determine the

optimal strategy to see these e↵ects in the bulk data sample. Using the information about xp of

parton in the proton undergoing the hard interaction maybe an easier way forward.

IV. HOW TO OBSERVE THE EFFECTS OF FLICKERING IN pA COLLISIONS

In this section we propose strategies for using processes involving both soft and hard interactions

to obtain the definitive evidence for the presence of the flickering phenomenon determining the

correlation between xp of the parton in the proton involved in the hard collision and the overall

interaction strength of the configuration containing this parton. The challenge for all such studies

is that selection of certain classes of events (using a particular trigger) a priori post-selects di↵erent

configurations in both colliding systems and these two e↵ects have to be disentangled.

A natural question to ask is whether the parton distributions in configurations interacting

12

Deviation of  RHT(ν=Ncoll) from 1 
drop due to more 
localized hard 
interactions

increase due to 
more central 
interactions of 
configurations with 
σ< σtot

drop due increased role 
of configurations with
 σ> σtot the cylinder in 
which  interaction occur  
is larger but local density 
does not go up as fast in 
Glauber
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Fluctuations for configurations with small σ maybe different than for 
average one so we considered both ωσ(x~0.5) =0.1 & 0.2

3

In this letter we will focus on the analysis of the AT-
LAS jet production data [12] though qualitatively similar
data were obtained by CMS. The reason is that the AT-
LAS data are presented as a function of the fraction of
the energy of the proton carried by the jet: x = Ejet/Ep

which for kinematics of interest practically coincides with
x of the parton of the proton involved in the hard interac-
tion. Also the analysis have demonstrated that for fixed
energy release in the nuclear hemisphere the rate of the
jet production as compared to the inclusive rate is pre-
dominantly function of x and not pt of the jet.
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FIG. 1: Distribution over the number of collisions for bins in
centrality

It was observed in [12] that the energy release in the
nuclear direction is reasonably well correlated with the
number of the wounded nucleons, Ncoll. and distribution
over Ncoll for fixed centrality interval was determined,
see Fig.1. Hence in order to compare the expectations of
the CFA with the data on jet production as a function of
the centrality we need first to calculate the rates of the
jet production as a function of Ncoll and next convolute
it with the distribution over Ncoll for the experimental
centrality intervals.

The Monte Carlo procedure which we employ and
which is discussed in detail in [9, 15] is based on Eq. 4 and
improves it by taking into account the finite transverse
size of the NN interaction which at the LHC is compara-
ble to the internucleon distance, the transverse spread of
partons in the colliding nucleons given by the generalized
parton densities of the nucleon which allows to take into
account much stronger localization of hard interactions
than the soft interactions. We also employ the realistic
sample of nucleon configurations in nuclei [16]. This al-
lows us to go beyond an approximation of Eq.4 for the
rate of the hard collisions for the interaction with Ncoll

nucleons in which the hard rate is simply / Ncoll and
include both the e↵ects of CFs and of the di↵erence in
the transverse geometry of soft and hard NN collisions
(see Fig. 4 of [15]).

The qualitative expectation is that if the rate of jets
is studied as a function of Ncoll the relative strength of
events corresponding to small � would be enhanced for

small Ncoll since hNcolli is smaller for this subset and and
it should be strongly suppressed for large Ncoll. This is in
a good agreement with the results of the numerical cal-
culation of the rate of hard collisions for a trigger with
� di↵erent from the average one normalized to the rate
for the rate for the generic jet trigger normalized to the
ration of the corresponding inclusive dijet cross sections
(Fig. 2). For the generic hard collisions we used Eq.2
with !� = 0.1 which provides a good description of soft
data of ATLAS. For the small � trigger we considered a
range of h�(x)i /�tot and variances between 0.1 and 0.2.
One can see from the figure that for Ncoll correspond-
ing to relatively peripheral collisions the ratio primerily
depends on h�(x)i – sensitivity to the fluctuations of a
cross section is small in this case. At the same time for
Ncoll � h�(x)i there is a strong sensitivity to the vari-
ance.
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So we can estimate h�(x)i using the data from the most
peripheral bin and check our interpretation using RCP

which is normalized to the 60÷ 90% bin. As mentioned
earlier it also involves using relation between the energy
release in the nuclear fragmentation region and Ncoll [12]
. The results of the calculation and comparison with the
data are presented in Figs. 3, 4.
Overall we find that h�(0.5)i ⇠ �tot/2 gives a reason-

able description of the data giving a strong support to the
idea that large x configurations have a weaker interaction
strength. Natural question is to what � these configura-
tions correspond to at fixed target energies. This can be
estimated from the probability conservation property of
P (�):

Z �(s1)

0
P (�, s1)d� =

Z �(s2)

0
P (�, s2)d�, (5)

leading to an estimate

�(
p
s= 30 GeV, x=0.5) ⇠ 10mb. (6)

This corresponds to a much smaller value of the ratio
�(x = 0.5)/�tot ⇡ 1/4 than at the LHC.This reflects an

Sensitivity to ωσ  is small, so we use  ωσ =0.1 for following comparisons

ν



We extended our 2015 analysis of ATLAS data and extracted RCP(x) 

Alvioli, Frankfurt, Perepelitsa, MSλ(x)= σ(x)/<σ>

�42
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DAu PHENIX  data at y=0 and large transverse momenta of the jets, RCP,   
λ(x)= σ(x)/<σ> . Very different kinematics from the one studied at the LHC 
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cleon at resolution scales Q2 / 1/⇢ and xp ⇠ Q2/s. At
large Q2, g grows quickly with decreasing xp, resulting
in an increase of the cross-section (and of �(xp) at fixed
xp) for these small configurations with increasing colli-
sion energy. However, this increase is slower than what
is observed for perturbative processes, such as J/ pho-
toproduction [13]. Thus the interaction at high energies
may be thought of as lying between the perturbative and
non-perturbative domains, suggesting that chiral sym-
metry is restored for the probed components of the light
cone proton wave function. Finally, the fast growth of
the cross section for small configurations is consistent
with the expected narrowing of the PN (�) distribution
at increasing collision energies [30].

A consistency check of our results can be performed
under the assumption that the probability to find a con-
figuration with some large xp is the same at two collision
energies

p
s1 and

p
s2. If the fluctuations in �(xp) are

small such that, at fixed xp, there is a one-to-one corre-
spondence between �(xp) at two di↵erent energies, one
may express this as the probability to find a configuration
with cross section smaller than �(xp)�tot,

Z �(xp;
p
s1)�tot(

p
s1)

0
d� PN (�;

p
s1) =

Z �(xp;
p
s2)�tot(

p
s2)

0
d� PN (�;

p
s2),

(4)
which along with Eq. (1) is an implicit equation for the
energy dependence of �(xp) at fixed xp.

Starting with the LHC results for �(xp), we use Eq. 4
to systematically predict �(xp) at RHIC energies at the
same values of xp, and vice versa. Fig. 3 shows the re-
sults of this check. For xp

>⇠ 0.15, the relationship be-
tween the extracted �(xp) values at RHIC and LHC ener-
gies is consistent with that predicted by Eq. 4. At lower
xp, this method predicts a larger di↵erence in �(xp) at
the two energies than is extracted in data, suggesting
that our model does not provide a complete description
of color fluctuation phenomena in this xp range (for ex-
ample, since it ignores a possible parton flavor depen-
dence). Using the parameterization for PN (�) at the
lower, fixed–target energies given in Ref. [23], one finds
that �(xp ⇠ 0.5) ⇡ 0.38 at

p
s = 30 GeV.

Recently, data on 200 GeV proton–gold collisions were
recorded at RHIC, allowing for a further test of our
model. Using the same parameters which relate ⌫ to the
hadronic activity as in the d+Au data, we calculate the
distributions of ⌫ in example centrality bins and the RCP

values for hard triggers with di↵erent ranges of xp. These
predictions are summarized in Fig. 2. As also argued in
Ref. [29], the magnitude of the observable e↵ect should
be larger than in the d+Au data, where it is expected to
be washed out by the additional projectile nucleon.

The global analysis presented in this Letter quanti-
tatively extends our initial interpretation of the LHC
data on forward jet production in p+A collisions as aris-
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FIG. 3. Extracted values of �(xp) as a function of xp at
RHIC and LHC energies (solid points), with exponential fits
shown as dashed lines to guide the eye. The shaded bands
are a prediction for �(xp) at each energy using the results at
the other energy as input (see text).

ing from an xp-dependent decrease in the interaction
strength of proton configurations [2], and demonstrates
that the same picture successfully describes RHIC data
on large-xp jet production. Our analysis finds that the
suppression of the interaction strength is stronger at
lower energies, consistent with expectations from QCD
that cross-sections for small configurations grow faster
with energy than do those for average configurations.
Measurements of other processes arising from a di↵erent
mixture of large-xp quarks and gluons (e.g. Drell-Yan or
electroweak processes) would allow for a comparison of
quark- vs. gluon-dominated configurations. Analogous
studies in ultraperipheral collision data [31] may probe
color fluctuations in the photon wavefunction.

Our conclusions also have implications for understand-
ing features in the quark–gluon structure of nuclei such
as the observed suppression of the nuclear structure func-
tion at large-x, commonly known as the EMC e↵ect [32].
Since nucleons in a configuration with a large-x parton
are weakly interacting and the strength of the interaction
at fixed x falls at lower energies, it is natural to expect
that such configurations interact very weakly with other
nucleons at the energy ranges relevant for nuclei. In the
bound nucleon wavefunction, such weakly interacting nu-
cleon configurations are strongly suppressed [12]. Thus,
this picture suggests a natural explanation for the ob-
served suppression of partons in the EMC e↵ect region.

We thank B. Muller for the suggestion to add predic-
tions for p+A running at RHIC within our framework,
A. Mueller for discussion of proton squeezing at large xp,
and J. Nagle for suggestions on the manuscript. L.F.’s
and M.S.’s research was supported by the US Department
of Energy O�ce of Science, O�ce of Nuclear Physics un-
der Award No. DE-FG02-93ER40771.

Highly nontrivial consistency check of interpretation of data at different 
energies and in different kinematics

Eq.(*) suggests  λ(xp=0.5, low energy) ~1/4. Such a strong suppression 
results in the EMC effect of reasonable magnitude  due to suppression of 
small size configurations in bound nucleons (Frankfurt & MS83)
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λ(xp, s) grows with s since 
cross section at higher 

virtualities of the projectile 
grows faster with s

Eq. (*)



Color fluctuations in photon - nucleus collisions
Photon is a multiscale state:  

Equation (1) can be rewritten in terms of the integral over � ⌘ �qq̄(W,dt,mq) (as an approximation,
we neglect the di↵erence between the dipole cross section for the light and the charm quarks):

��p(W ) =

Z
d��P dipole

� (�) , (7)

where the distribution over cross sections P�(�) is:

P dipole
� (�) =

����
d2dt

d�qq̄(W,dt,mq = 300 MeV)

����
X

q

e2q | �,T (z, dt,mq)|2 . (8)

Figure 1 shows the resulting distribution P dipole
� (�) for mq = 250 MeV (red solid curve) and mq = 300

MeV (blue solid curve). Note that since for the dipole sizes dt < 1.5 fm, the dipole cross section does not
exceed 42 mb, the resulting distribution P�(�) (8) has suport only for 0  �  42 mb.

The dipole model prediction for P�(�) can be compared to the result of an approach explicitly taking
into account cross section fluctuations in the ⇢ meson [4]. Taking the sum of the ⇢, ! and � meson
contributions, the resulting distribution reads:

P(⇢+!+�)/�(�) =
11

9

✓
e

f⇢

◆2

P (�) , (9)

where P (�) is taken from [4]; its form is motivated by P⇡(�) for the pion and is constrained to describe
the HERA data on ⇢ photoproduction on the proton. The coe�cient of 11/9 takes into account the !
and � contributions in the SU(3) approximation.

The resulting P(⇢+!+�)/�(�) is shown in Fig. 1 as a green dot-dashed curve. Note that P⇢/�(�) has
the wide support all the way up to � = 100 mb (not shown in the figure).
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Figure 1: The distributions P (�) for the photon in the dipole model (red and blue solid curves) and in
the cross section fluctuation approach (the green dot-dashed curve) at W = 100 GeV.
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qq-

P�(�) / 1/� for� ⌧ �(⇡N) P�(�) / P⇡(�) for� > �(⇡N)

Probability, Pγ(σ) for a photon to interact with nucleon with cross 
section  σ, gets contribution from point - like configurations and 
soft configurations (VM like)
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Exclusive processes of vector meson production  off nuclei at LHC in 
ultraperipheral collisions allow to test theoretical expectations for small and 
large σ.  Pγ(σ) for small σ from photon wave function and dipole DGLAP 
formula. Need model for large enough σ . Build a realistic  model f and 
check in

ρ-meson production:  γ+Α →ρ+Α 

vector dominance model for scattering off proton 

Expectations: 

�(⇢N) < �(⇡N)

since overlapping integral between γ and ρ is suppressed as compared 
to  ρ →ρ case 

observed at HERA but ignored before our analysis: �(⇢N)/�(⇡N) ⇡ 0.85

❖

Analysis of Guzey, Frankfurt, MS, Zhalov 2015 (1506.07150)
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Glauber double scattering Gribov inelastic shadowing

❖  Gribov type inelastic shadowing is enhanced  in discussed process  - fluctuations 
grow with decrease of projectile - nucleon cross section. We estimate ωγ→ρ~ 0.5 
and model Pγ➙ρ(σ)  - distribution  of configurations in transition over σ

Next we use  Pγ➙ρ(σ) to calculate coherent  ρ  production.  Several effects 
contribute to suppression a) large fluctuations, b) enhancement of  inelastic 
shadowing is larger for smaller  σtot.  for the same W,   c)  effect  for coherent cross 
section is square of that for σtot. 

A A A

γ γρ ρ ρ ρ
MX

A

IP IP IP IP

ρ
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◉ Glauber model grossly 
overestimates the cross section (at 
LHC  factor ~2)

◉5
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FIG. 1: The γA → ρA cross section as a function of Wγp. The VMD-GM (the red dashed curve) and VMD-IA (blue dot-
dashed line) predictions for a 208Pb target based on the DL94 parametrization of the ρN cross section are compared to the
experimental values extracted from the STAR and ALICE UPC measurements.

photon wave function has to be modified in order to agree to the whole set of data including the results of 2006 H1
measurements.
To this end, one can write the ρ meson photoproduction amplitude as the dispersion integral over the masses of

the intermediate states generated in the γ → M transitions, which will involve the on-mass-shell fρ and the physical
ρN cross section. It is possible to demonstrate that inclusion of the contribution of the higher states can only weakly
change fρ, but it can significantly reduce the cross section of the ρ meson production. Hence, the effective ρ–nucleon
cross section σ̂ρN should be smaller than σρN = σπN . We assume that σ̂ρN can be extracted from the requirement
that Eq. (5) describes reasonably well the experimentally measured forward γp → ρp cross section:

σ̂ρN (Wγp) =
fρ
e

√

16π
dσexp

γp→ρp(t = 0)

dt
. (9)

This way we effectively take into account the enhanced contribution of the components in the ρ meson wave function
that interact with the strength weaker than the average one. This effect is present in the CDM and can also be
modeled by non-diagonal transitions among different hadronic components of the photon and the ρ meson in the

9

ωN
σ (s) =

⎧

⎪

⎨

⎪

⎩

β
√
s/24 ,

√
s < 24 GeV

β , 24 <
√
s < 200 GeV

β − 0.15 ln(
√
s/200) + 0.03(ln(

√
s/200))2 ,

√
s > 200 GeV .

(17)

where the parameter β ≈ 0.25− 0.35 was determined from the analysis of pp and p̄p data [26].
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FIG. 4: The σγA→ρA cross section as a function of Wγp. The theoretical predictions using the mVMD model for the γp → ρp
cross section and the Gribov-Glauber model with cross section fluctuations for the γA → ρA amplitude are compared to the
STAR (circle) and ALICE (triangle) data. The shaded area reflects the theoretical uncertainty associated with the parameter
β characterizing the strength of cross section fluctuations (see text for details).

It is known [19] from studies of corrections to the Glauber model for total proton–nucleus cross sections that
suppression due to the inelastic shadowing is almost compensated by the effect of short-range correlations (SRC) in
the wave function of the target nucleus. We included the effect of SRC by the following replacement [48]:

TA(b) → TA(b) + ξc
σρN

2

∫

dzρ2A(b, z) , (18)

where ξc = 0.74 fm is the correlation length.
Our predictions for the γA → ρA cross section as a function of Wγp are presented in Fig. 4. The red solid curve

presents the results of the calculation using the mVMD model for the γp → ρp cross section and the Gribov– Glauber
model with the effect of cross section fluctuations, see Eq. (10). The shaded area shows the uncertainty of our
calculations due to the variation of the fluctuation strength ωσ by changing β in the range 0.25 ≤ β ≤ 0.35. The
theoretical curve is compared to the STAR (circle) and ALICE (triangle) data. One can clearly see from the figure
that the inclusion of the inelastic nuclear shadowing enables us to explain the discrepancy between the UPC data on
coherent ρ photoproduction on nuclei at large Wγp and the theoretical description of this process in the framework
of the VMD-GM with the DL94 parametrization of the ρN cross section.

Gribov - Glauber model with cross 
section fluctuations
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Outline of calculation of inelastic  γA scattering  - 
distribution over  number of wounded nucleons ν 

◉ Modeling P�(�)

For 

�  10mb(cross section for a J/ψ -dipole) use pQCD for    

�(d, x) =
⇡2

3
↵s(Q

2
eff )d

2xGN (x,Q2
eff )

For

+ smooth interpolation in between

� > �(⇡N), P�(�) = P�!⇢(�) + P�!!(�) + P�!�(�)

 �(qq̄)

4

where the probability distribution P�(�) is:

P dipole
� (�,W ) =

X

q

e2q

����
⇡dd2t

d�qq̄(W,dt,mq)

���� | �,T (z, dt,mq)|2 . (7)

The resulting distribution P dipole
� (�,W ) as a function of � for di↵erent light quark masses mq and at W = 100 GeV

is shown by the green dashed curves. To examine the sensitivity of P dipole
� (�,W ) to the choice mq, we varied the

light quark mass in the interval 0  mq < 350 MeV; the results are shown in Fig. 1, where the upper dashed curve
corresponds to mq = 0 and the lower one is for mq = 350 MeV. One sees from the figure that P dipole

� (�,W ) is
essentially insensitive to mq for �  10 mb; we take this value of � as a starting point for the smooth interpolation
to the large-� regime.

Note that since in the dipole model that we use, the dipole cross section does not exceed approximately 40 mb, the
resulting distribution P dipole

� (�,W ) of Eq. (7) has support only for 0  �  40 mb.
For large �, the distribution P�(�) can be well approximated by the distribution P (�) for the � ! ⇢ transition, which

was considered in the framework of the mVMD model [15]. Taking the sum of the ⇢, ! and � meson contributions,
the resulting distribution reads:

P(⇢+!+�)/�(�,W ) =
11

9

✓
e

f⇢

◆2

P (�,W ) , (8)

where P (�,W ) is taken from [15]; the coe�cient of 11/9 takes into account the ! and � contributions in the SU(3)
approximation (which overestimates the rather small contribution of the � mesons). The form of P (�,W ) is moti-
vated by P⇡(�,W ) for the pion and takes into account presence of the large-mass di↵raction at high energies. It is
also constrained to describe the HERA data on ⇢ photoproduction on the proton, which requires to account for a
suppression of the overlap of the photon and ⇢ wave function as compared to the diagonal case of ⇢ ! ⇢ transition.

The resulting P(⇢+!+�)/�(�) at W = 100 GeV is shown by the blue dot-dashed curve in Fig. 1.
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FIG. 1: The distributions P�(�) for the photon at W = 100 GeV. The red solid curve shows the full result of the hybrid model,
see Eq. (9). The green dashed and blue dot-dashed curves show separately the dipole model and the vector meson contributions
evaluated using Eqs. (7) and (8), respectively.

We build a hybrid model of P�(�) by interpolating between regimes of small �  10 mb, where CDM is applicable
and there is no dependence on the light quark mass mq, and the regime of large �, where the soft contribution due
to the lightest vector meson dominates (hence we neglect the soft contribution of configurations with the large mass
and small kt). In particular, in our analysis we use the following expression:

P�(�) =

8
<

:

P dipole
� (�) , �  10 mb ,

Pint(�) , 10 mb  �  20 mb ,
P(⇢+!+�)/�(�) , � � 20 mb .

(9)
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Smooth matching for mq~ 300 MeV



◉ Calculation of distribution over the number of 
wounded nucleons

(a) Color fluctuation model

�⌫ =

Z
d�P�(�)

✓
A
⌫

◆
⇥
Z

d~b


�in(�)T (b)

A

�⌫ 
1� �in(�)T (b)

A

�A�⌫

(b) Generalized Color fluctuation model (includes LT shadowing for small σ)

p(⌫) =
�⌫P1
1 �⌫

.

P�(�)

✓
A
⌫

◆
⇥ �in

�in
eff

Z
d~b


�effT (b)

A

�⌫ 
1� �effT (b)

A

�A�⌫

calculated in the LT nuclear shadowing 
theory for small σ

�eff/�
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using σin = σtot - σtot / (16πB)
using  σin = 0.85 σtot
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interaction of small dipoles is screened much stronger than in the eikonal model

evidence from J/psi production  - next slide

consistent with shadowing for J/ψ coherent production
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Ultraperipheral minimum bias γΑ collisions at LHC (WγN< 500 GeV)

 Huge fluctuations of the strength of γN  interaction - soft and small dipoles,.. (Leonya 
Frankfurt’s talk) → large fluctuations in the number of wounded nucleons in γA collisions
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distribution over the number of wounded 
nucleons in γΑ scattering, W ~ 70 GeV 

Alvioli, Guzey, Zhalov, LF, 
MS - Physs.Lett. in press

Phys.Lett. B767 (2017) 450-457

MS

CF broaden very significantly distribution over ν.  
“pA ATLAS/CMS like analysis” using energy flow at large rapidities 
 would test both presence of configurations with large σ ~40 mb,
 and weakly interacting configurations.
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Ultraperipheral minimum bias γA at the LHC (WγN < 0.5 TeV)
Huge fluctuations of the number of wounded nucleons, ν, in 
interaction with both small and large dipoles
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 Color Fluctuations (GCF) model assuming distribution over y 
is the same for pA and γΑ collisions for same ν. 

y = ⌃ET / h⌃ET (hN)i
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Using CASTOR for centrality via measurement of “y” advantageous : 
larger rapidity interval - smaller kinematical/ energy conservation correlations. For 
using ΣET   for centrality determination one needs Δy > 4 



γ A→jets + X

1) Direct photon & xA> 0.01, ν=1?

Color change propagation through matter. 
Color exchanges ? ➠ nucleus excitations, ZDC & 
CASTOR

2) Direct photon & xA< 0.005  - nuclear shadowing increase of ν

3) Resolved  photon   - increase of  ν with
 decrease of xγ and xA W dependence
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Centrality dependence of the forward spectrum in  γ A→h + X 
— connection to modeling cosmic rays  cascades in the atmosphere



Direct photon dijets
x> 10-2

Charm
x~ 10-3

Low transverse 
momentum events

60 mb0 mb

Leading strangeness
x~ 10-3

Min bias

“2D strengthonometer”   - EIC & LHeC  - Q2 dependence - decrease of role of “fat” 
configurations, multinucleon interactions due to LT nuclear shadowing

σ

Tuning strength of interaction of configurations in photon using forward (along γ 
information) . Novel way to study dynamics of γ &γ* interactions with nuclei

 9
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Comment: Forward γA & γp physics at the LHC mostly within acceptance 
of central ATLAS, CMS detectors   



�55

Jet production at RHIC and LHC produced first glimpse of the global quark - 
gluon structure of nucleons as a function of x. Nucleon becomes much smaller at 
large x. Interact weaker than in average, but grows faster with energy.  Need to 
separate gluons and quarks in hard processes at x ~0.1. Critical test pA at RHIC.

Summary

Color fluctuations are a regular  feature of of DIS at small x,  high energy 
nucleon, photon collisions... Effects in very central AA collisions are present.

Gross violation of the Glauber approximation for photoproduction of vector 
mesons due to CFs. CF are much stronger in photons than in nucleons. and 
can be regulated using different triggers (charm, jets,…). EIC will allow to 
study CF in photons at different Q, W - novel tests of interplay of soft and 
hard physics in γ* interactions. UPC = forerunner at the LHC.

✦

✦

✦

✦ LT DGLAP framework for calculation of nuclear pdfs; etc passed the J/psi 
coherent production test.
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Probability of inelastic interaction is  Pin= |1-Γ(b)|2   ➙ Pin=3/4  for 
Γ(b)=1/2

Gluon densities in 
nuclei and proton at 
b=0 are rather  similar.  
Difference at  <b>  is 
~30% larger

Where DGLAP approximation breaks & non-linear(black disk?) regime (BDR)  of strong absorption for 
configurations for small size configurations sets in?   To determine  proximity to BDR - calculate impact factor 
Γ(b) for “qq-dipole”- p (Pb) scattering 
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For nucleus  in pQCD regime for the case of dipole of size d⊥ impact factor for the scattering off 
nucleus is given by

2�A(x, bd?)pQCD =
⇡2F 2

4
d2?↵S(Q

2
eff )x

0gA(x
0, Q2

eff , b)

Author's personal copy

374 L. Frankfurt et al. / Physics Reports 512 (2012) 255–393

Fig. 99. The impact factor �A(x, b, d?) for 208Pb at Q 2 = 4 GeV2 as a function of the impact parameter b for different values of x and dipole sizes d? .
The solid (red) curves correspond to model FGS10_H; the dotted curves correspond to FGS10_L. For comparison, we also give the impulse approximation
predictions for �A(x, b, d?) by the dot-dashed curves and the free proton � (x, b, d?) by the thin solid (black) curves. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

the dotted curves correspond to FGS10_L. For comparison, we also give the dot-dashed curves corresponding to the nuclear
gluon distribution that is not shadowed (impulse approximation) and the thin solid (black) curves corresponding to the free
proton case (same as in Fig. 98).

The results presented in Fig. 99 deserve a discussion.
(i) Model FGS10_H, which corresponds to larger shadowing than model FGS10_L, naturally leads to the smaller value of

�A(x, b, d?). The difference between the two models increases as one decreases x and the amount of nuclear shadowing.
(ii) In both FGS10_H and FGS10_L models, nuclear shadowing at central impact parameters is very large. Therefore, at

small b, the solid and dotted curves lie significantly below the dot-dashed curves.When b increases and becomes compatible
to the nuclear size, RA ⇡ 7 fm for 208Pb, nuclear shadowing begins to rapidly disappear and all nuclear curves converge.

(iii) The b dependence of all nuclear curves is flat for b < 7 fm, which is essentially determined by the nuclear optical
density TA(b) and the nuclear size RA. At the same time, the b dependence of the free nucleon impact factor is determined
by the form factor f (x, d?, b) of Eq. (265), whose characteristic scale is the effective radius of the gluon distribution in the
nucleon, which is smaller than 1 fm. This effective radius decreases as d? is decreased, see Eq. (265), and, hence, the proton
� (x, b, d?) increases. Therefore, at very small dipole sizes, the proton � (x, b, d?) can exceed the nuclear impact factor
�A(x, b, d?).

As we explained above, unitarity of the scattering matrix places the model-independent constraint of the impact factor:
� (x, b, d?)  1. As one can see from Figs. 98 and 99, this unitarity constraint is not always satisfied in the dipole formalism,
unless special measures are taken; wewill not discuss ways andmeans to correct the dipole formalism tomake it to comply
with the unitarity constraint.

It follows from the QCD factorization theorem that the interaction with a target of a colorless two-gluon dipole or a
dipole, where a gluon is substituted by a qq̄ pair, is larger than that for a qq̄ dipole by the factor F 2(8)/F 2(3) = 9/4, where
F 2 is the Casimir operator of color group SU(3)c . Hence, the interaction of such dipoles with nucleons and nuclei reaches the
BDR at significantly lower energies. One example of such processes is diffraction into large masses (M2 � Q 2) in DIS where
the dominant role is played by the qq̄g component of the photon light-cone wave function.

J/ψ for x ~ 10-4 
should be close to 

BDR.

F 2(gg)

F 2(qq̄)
=

9

4
Earlier onset of BDR
 for interaction of gluons

”qq̄”�N(Pb)

_


