

Status of DVCS experiments and open questions

Daria Sokhan

University of Glasgow, UK

Probing Nucleons and Nuclei in High Energy Collisions Institute for Nuclear Theory, Seattle - 1st October 2018

Deeply Virtual Compton scattering

DVCS: golden channel for the extraction of GPDs.

* At high exchanged Q^2 and low *t* access to four chiral-even GPDs:

Experimentally accessible (at leading twist, leading order):

$$T^{DVCS} \sim \int_{-1}^{+1} \frac{GPDs(x,\xi,t)}{x\pm\xi+i\varepsilon} dx + \ldots \sim P \int_{-1}^{+1} \frac{GPDs(x,\xi,t)}{x\pm\xi} dx \pm i\pi GPDs(\pm\xi,\xi,t) + \ldots$$

Compton Form Factors (CFF)

Which DVCS experiment?

$$\Delta \sigma_{UT} \sim \cos \phi \,\Im(\frac{t}{4M^2}(F_2H - F_1E) + \dots)d\phi \qquad -$$

 $\Delta \sigma_{LL} \sim (A + B \cos \phi) \Re (F_1 \tilde{H} + \xi G_M (H + \frac{x_B}{2} E) + ...) d\phi$

Neutron Proton $Im\{\boldsymbol{H}_{\mathbf{p}}, \boldsymbol{H}_{\mathbf{p}}, \boldsymbol{E}_{\mathbf{p}}\}$ $Im\{H_n, H_n, E_n\}$ $Im\{H_{p}, H_{p}\}$ $Im\{H_n, E_n, E_n\}$ $Im\{H_{p}, E_{p}\}$ $Im\{H_{n}\}$ $Re\{H_{p}, \tilde{H}_{p}\}$ $Re\{H_n, E_n, E_n\}$

Jefferson Lab: 6 GeV era

CEBAF: Continuous Electron Beam Accelerator Facility.

- **★** Energy up to ∼6 GeV
- * Energy resolution $\delta E/E_e \sim 10^{-5}$

***** Longitudinal electron polarisation up to ~85%

Hall A:

* High resolution($\delta p/p = 10^{-4}$) spectrometers, very high luminosity.

Hall B: CLAS

 Very large acceptance, detector array for multiparticle final states.

Hall C:

Two movable spectrometer arms, well-defined acceptance, high luminosity

JLab @ 12 GeV

High resolution($\delta p/p = 10^{-4}$) spectrometers, very high luminosity, large installation experiments.

full acceptance

Hall B: CLAS12

Hall C

Two movable high momentum spectrometers, welldefined acceptance, very high luminosity.

Very large acceptance, high luminosity.

JLab @ 12 GeV

High resolution($\delta p/p = 10^{-4}$) spectrometers, very high luminosity, large installation experiments.

9 GeV tagged polarised photons, full acceptance

Hall B: CLAS12

Hall C

Two movable high momentum spectrometers, welldefined acceptance, very high luminosity.

Very large acceptance, high luminosity.

 $L \sim 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$

High luminosity & large acceptance: Concurrent measurement of exclusive, semi-inclusive, and inclusive processes

Acceptance for photons and electrons: • $2.5^{\circ} < \theta < 125^{\circ}$

Acceptance for all charged particles: • $5^{\circ} < \theta < 125^{\circ}$

Acceptance for neutrons: • $5^{\circ} < \theta < 120^{\circ}$

DVCS in Hall A

HRS

Detect electron in the Left High Resolution Spectrometer (HRS-L): 0.01% momentum resolution

Detect recoil proton in plastic scintillator array.

Detect photon in PbF₂ calorimeter: < 3% energy resolution

DVCS in Hall C

Detect electron with (Super) High Momentum Spectrometer, (S)HMS.

Detect photon in PbWO₄ calorimeter.

Sweeping magnet to reduce backgrounds in calorimeter.

Reconstruct recoiling proton through missing mass.

First DVCS cross-sections in valence region

HallA

* E00-110: Hall A, ran in 2004, high precision, narrow kinematic range.

***** Luminosity = 10^{37} cm⁻²s⁻¹.

* Measure Q^2 -dependence (Q^2 : 1.5, 1.9, 2.3 GeV²) of DVCS-BH cross-sections at fixed x_B (0.36).

* Also x_B dependence at constant Q^2 .

 CFFs show scaling in DVCS: leading twist (twist-2) dominance at this moderate Q².

* Strong deviation of unpolarised DVCS crosssection from BH: extraction of $|T_{DVCS}|^2$ amplitude as well as interference terms.

* Separation of real part of the twist-2 interference term and the $|T_{DVCS}|^2$ amplitude is very sensitive to relative crosssections at $\phi = 0^\circ$ and $\phi = 180^\circ$.

M. Defurne *et al*, **PRC 92** (2015) 055202.

First DVCS cross-sections in valence region

$$x_B = 0.36, Q^2 = 1.9 \ GeV^2, -t = 0.32 \ GeV^2$$

 High precision of the data: sensitivity to subtle differences in model predictions.

VGG model: Vanderhaeghen, Guichon, Guidal KMS model: Kroll, Moutarde, Sabatié KM model: Kumericki, Mueller

TMC: kinematic twist-4 target-mass and finite-*t* corrections, calculated for proton DVCS and estimated for KMS12.

* KMS parameters tuned on very low x_B mesonproduction data: not adapted to valence quarks.

 \rightarrow

TMC*: TMC extracted from the KMS12 model and applied to KM10a.

*TMC improve agreement for KM10a model, especially at $\phi = 180^{\circ}$. Higher-twist effects?

The devil is in the detail...

M. Defurne et al, PRC 92 (2015) 055202.

CFFs from the Hall A cross-sections

C terms are combinations of CFFs, eg:

$$\mathcal{C}^{\mathcal{I}}(\mathcal{F}) = F_1 \mathcal{H} + \xi (F_1 + F_2) \widetilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E}$$

M. Defurne et al, PRC 92 (2015) 055202.

Here comes the twist...

* Twist: powers of $\frac{1}{\sqrt{Q^2}}$ in the DVCS amplitude. Leading-twist (LT) is twist-2.

- ***** Order: introduces powers of α_s
- LO requires Q² >> M² (M: target mass)
 Bold assumption for JLab 6 GeV kinematics!
- CFFs can be classified according to real and virtual photon helicity:
- \mathcal{F}_{++-} helicity of virtual incoming photon
 - \odot Helicity-conserved CFFs \mathcal{F}_{++}
 - \bigcirc Helicity-flip (transverse) \mathcal{F}_{-+}
 - \odot Longitudinal to transverse flip \mathcal{F}_{0+}

- ***** CFFs contributing to the scattering amplitude:
 - \odot LT in LO: only \mathcal{F}_{++}
 - LT in NLO: both \mathcal{F}_{++} and \mathcal{F}_{-+}
 - \odot Twist-3: \mathcal{F}_{0+}

Here comes the twist...

- * At finite Q^2 and non-zero *t* there's ambiguity in defining the light-cone axis:
 - Traditional GPD phenomenology uses the Belitsky convention, in plane of q and P:
 A. Belitsky et al, Nucl. Phys. B878 (2014), 214
 - New, Braun definition using q and q': more natural.
 V. Braun *et al*, *Phys. Rev. D89* (2014), 074022

Reformulating CFFs in this frame absorbs most kinematic power corrections (TMC):

$$\mathcal{F}_{++} = \mathbb{F}_{++} + \frac{\chi}{2} \left[\mathbb{F}_{++} + \mathbb{F}_{-+} \right] - \chi_0 \mathbb{F}_{0+}$$
$$\mathcal{F}_{-+} = \mathbb{F}_{-+} + \frac{\chi}{2} \left[\mathbb{F}_{++} + \mathbb{F}_{-+} \right] - \chi_0 \mathbb{F}_{0+}$$
$$\mathcal{F}_{0+} = -(1+\chi) \mathbb{F}_{0+} + \chi_0 \left[\mathbb{F}_{++} + \mathbb{F}_{-+} \right]$$
$$\mathbf{F}_{0+} = -(1+\chi) \mathbb{F}_{0+} + \chi_0 \left[\mathbb{F}_{++} + \mathbb{F}_{-+} \right]$$
Belitsky Braun CFFs

CFFs

Assuming LO and LT in the Braun frame:

 $\begin{array}{ll} \mathcal{F}_{++} &= (1+\frac{\chi}{2})\mathbb{F}_{++} \\ \mathcal{F}_{-+} &= \frac{\chi}{2}\mathbb{F}_{++} \\ \mathcal{F}_{0+} &= \chi_0\mathbb{F}_{++} \end{array}$

HT/HO contributions in the Belitsky frame, scaled by kinematic factors χ and χ_0 .

Non-negligible at the Q^2 and x_B of the Hall A cross-section measurement:

 $\chi_0=0.25$, $\chi=0.06$ for $Q^2=2~{
m GeV}^2$, $x_B=0.36$, $t=-0.24~{
m GeV}^2$

M. Defurne et al, Nature Communications 8 (2017) 1408

Hints of higher twist or higher orders

E07-007: Hall A experiment to measure helicity-dependent and -independent crosssections at two beam energies and constant x_B and t.

 Simultaneous fit to cross-sections at both energies and three values of Q² using only leading twist and leading order (LT/LO) do not describe the cross-sections fully: higher twist/order effects?

Using Braun's decomposition, \mathbb{H}_{-+} and \mathbb{H}_{0+} can't be neglected.

M. Defurne et al, Nature Communications 8 (2017) 1408.

Hints of higher twist or higher orders

* Including either higher order or higher twist effects (HT) improves the match with data:

Higher-order and / or higher-twist terms are important! A glimpse of gluons.

Wider range of beam energy needed to identify the dominant effect — JLab at 11 GeV.

M. Defurne et al, Nature Communications 8 (2017) 1408.

Rosenbluth separation of DVCS² and BH-DVCS terms

* Generalised Rosenbluth separation of the DVCS² (scales as E_e^2) and the BH-DVCS interference (scales as E_e^3) terms in the cross-section is possible but NLO and/or higher-twist required.

Significant differences
 between pure DVCS and
 interference contributions.

- Helicity-dependent crosssection has a sizeable DVCS² contribution in the higher-twist scenario.
- Separation of HT and NLO effects requires scans across wider ranges of Q² and beam energy: JLab12!

M. Defurne et al, Nature Communications 8 (2017) 1408.

Beam-spin asymmetry in neutron DVCS

M. Mazouz et al, PRL 99 (2007) 242501

 First experimental constraint on E^q, through model interpretation gives constraints on orbital angular momentum of quarks.

Experiment E03-106

DVCS on neutron *a* **different beam energies**

DVCS on neutron @ different beam energies

C. Muñoz Camacho

Towards tomography of the proton

- * CFFs extracted in a VGG fit (local fit: constraint 5 times the predicted value)
- * Imaginary part of CFF: $F_{Im}(\xi, t) = F(\xi, \xi, t) \mp F(-\xi, \xi, t)$

JLab 6 GeV era DVCS X-sections: kinematics

CLAS 2D distributions: H.-S. Jo et al (CLAS), PRL 115 (2015) 212003

★ M. Defurne *et al*, **PRC 92** (2015) 055202

Hall A

M. Defurne *et al*, **Nature Communications 8** (2017) 1408

Beam-spin Asymmetry (A_{LU})

A

Follows first CLAS measurement: S. Stepanyan *et al* (CLAS), *PRL* 87 (2001) 182002

A_{LU} from fit to asymmetry:

$$A_i = \frac{\alpha_i \sin \phi}{1 + \beta_i \cos \phi}$$

A_{LU} characterised by imaginary parts of CFFs via: $F_1 H + \xi G_M \tilde{H} - \frac{t}{4M^2} E$

Qualitative agreement with models, constraints on fit parameters.

F.-X. Girod *et al* (CLAS), *PRL* **100** (2008) 162002.

 A_{UL} from fit to asymmetry:

$$A_i = \frac{\alpha_i \sin \phi}{1 + \beta_i \cos \phi}$$

A_{UL} characterised by imaginary parts of CFFs via: $x_{P} = \frac{\xi t}{\xi t}$

$$F_1\tilde{\boldsymbol{H}} + \xi G_M(\boldsymbol{H} + \frac{x_B}{2}\boldsymbol{E}) - \frac{\zeta\iota}{4M^2}F_2\tilde{\boldsymbol{E}} + \dots$$

High statistics, large kinematic coverage, strong constraints on fits, simultaneous fit with BSA and DSA from the same dataset.

E. Seder *et al* (CLAS), *PRL* 114 (2015) 032001S. Pisano *et al* (CLAS), *PRD* 91 (2015) 052014

Beam- and target-spin asymmetries

 $A = \frac{\alpha sin\phi}{1 + \beta cos\phi}$

GGL: Goldstein, Gonzalez, Liuti GK: Kroll, Moutarde, Sabatié KMM: Kumericki, Mueller, Murray VGG: Vanderhaeghen, Guichon, Guidal

TSA shows a flatter distribution in *t* than BSA.

Double-spin Asymmetry (A_{LL}) $\mathcal{L}_{\mathcal{S}}$

A_{LL} from fit to asymmetry: $\frac{\kappa_{LL} + \lambda_{LL} \cos \phi}{1 + \beta \cos \phi}$

A_{LL} characterised by real parts of CFFs via:

 $F_1 \tilde{\boldsymbol{H}} + \xi G_M (\boldsymbol{H} + \frac{x_B}{2} \boldsymbol{E}) + \dots$

- * Fit parameters extracted from a simultaneous fit to BSA, TSA and DSA.
- Constant term dominates and is almost entirely BH.

E. Seder *et al* (CLAS), *PRL* 114 (2015) 032001
S. Pisano *et al* (CLAS), *PRD* 91 (2015) 052014

CFF extraction from three spin asymmetries at common kinematics.

What can we learn from the asymmetries?

Answers hinge on a global analysis of all available data.

*Information on relative distributions of quark momenta (PDFs) and quark helicity, $\Delta q(x)$.

 $H(x,0,0) = q(x) \quad \tilde{H}(x,0,0) = \Delta q(x)$

Indications that axial charge is more concentrated than electromagnetic charge.

$$\int_{-1}^{+1} H dx = F_1$$
$$\int_{-1}^{+1} \tilde{H} dx = G_A$$

E. Seder *et al* (CLAS), *PRL* **114** (2015) 032001 S. Pisano *et al* (CLAS), *PRD* **91** (2015) 052014

Towards nucleon tomography

Quasi model-independent extraction of CFFs based on a local fit:

- * Set 8 CFFs as free parameters to fit, at each (x_B, t) point, the available observables.
- * Limits imposed within +/- 5 times the VGG model predictions (Vanderhaeghen-Guichon-Guidal).
- * Leading-twist DVCS amplitude parametrisation based on Double Distributions.

Towards nucleon tomography

Relating the impact parameter to helicity-averaged transverse distribution:

$$\rho^{q}(x, \mathbf{b}_{\perp}) = \int \frac{d^{2} \mathbf{\Delta}_{\perp}}{(2\pi)^{2}} e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}_{\perp}} H^{q}_{-}(x, 0, -\mathbf{\Delta}_{\perp}^{2})$$

$$Transverse four-momentum transfer to nucleon$$

$$H^{q}_{-}(x, 0, t) \equiv H^{q}(x, 0, t) + H^{q}(-x, 0, t)$$

Assuming leading-twist and exponential dependence of GPD on *t*, using models to extrapolate to the zero skewness point $\xi = 0$ and assuming similar behaviour for *u* and *d* quarks there:

$$\langle b_{\perp}^2 \rangle^q(x) = -4 \frac{\partial}{\partial \Delta_{\perp}^2} \ln H_-^q(x, 0, -\Delta_{\perp}^2) \bigg|_{\mathbf{A}}$$

R. Dupré et al., Eur. Phys. J A 53, (2017) 171

Imaging pressure within the nucleon

- * GPDs provide indirect access to mechanical properties of the nucleon (encoded in the gravitational form factors, GFFs, of the energy-momentum tensor).
- * Three scalar GFFs, functions of *t*: encode pressure and shear forces $(d_1(t))$, mass $(M_2(t))$ and angular momentum distributions (J(t)).
- * Can be related to GPDs via sum rules:

$$\int x [H(x,\xi,t) + E(x,\xi,t)] dx = 2J(t)$$
$$\int xH(x,\xi,t) dx = M_2(t) + \frac{4}{5}\xi^2 d_1(t)$$

 Possibility of extracting pressure distributions! More data needed.

V. Burkert, L. Elouadrhiri, F.-X. Girod, Nature **557**, 396-399 (2018)

DVCS Cross-sections: Halls A and C

Experiments: **E12-06-114** (Hall A, 100 days), **E12-13-010** (Hall C, 53 days)

C. Muñoz Camacho et al., C. Hyde et al.

Unpolarised liquid H₂ target:

- Beam energies: 6.6, 8.8, 11 GeV
- Scans of Q^2 at fixed x_B .
- Hall A: aim for absolute crosssections with 4% relative precision.

* Azimuthal, energy and helicity dependencies of crosssection to separate $|T_{DVCS}|^2$ and interference contributions in a wide kinematic coverage.

* Separate *Re* and *Im* parts of the DVCS amplitude.

Hall A started taking data last spring!

Proton DVCS @ 11 GeV

Experiment E12-06-119 *F. Sabatié et al.*

$$\begin{split} & P_{beam} = 85\% \\ & L = 10^{35} \ cm^{-2}s^{-1} \\ & 1 < Q^2 < 10 \ GeV^2 \\ & 0.1 \ < x_B < 0.65 \\ & -t_{min} < -t < 2.5 \ GeV^2 \end{split}$$

Kinematics similar for all proton DVCS @ 11 GeV with CLAS12 experiments

Unpolarised liquid H₂ target:

- Statistical error: 1% 10% on $\sin \varphi$ moments
- Systematic uncertainties: ~ 6 8%

A_{LU} characterised by imaginary parts of CFFs via: $F_1H + \xi G_M \tilde{H} - \frac{t}{4M^2}E$

First experiment with CLAS12

Started this February!

$$\longrightarrow$$
 Im(H_p)

CLAS12

Proton DVCS @ 11 GeV

Impact of CLAS12 unpolarised target proton-DVCS data on the extraction of Re(H) and Im(H).

Re(H)

(CLAS 6 GeV extraction H. Moutarde)

DVCS at lower energies with CLAS12

Experiment E12-16-010B *F.-X. Girod et al.*

Unpolarised liquid H₂ target:

- Beam energies: 6.6, 8.8 GeV
- Simultaneous fit to beam-spin and total cross-sections.
- * Rosenbluth separation of interference and $|T_{DVCS}|^2$ terms in the cross-section

* Scaling tests of the extracted CFFs

Model-dependent determination of the D-term in the Dispersion Relation between *Re* and *Im* parts of CFFs: sensitivity to Gravitational Form Factors. Deep Process Kinematics with 6.6, 8.8, and 11 GeV

Compare with measurements from Halls A and C: cross-check model and systematic uncertainties.

DVCS at lower energies with CLAS12

Projected extraction of CFFs (red) compared to generated values (green). Three curves on the Re(H) show three different scenarios for the D-term.

F.-X. Girod et al.

Neutron DVCS @ 11 GeV

Experiment E12-11-003 S. Niccolai, D. Sokhan et al.

1.2

0

CLAS12

1-003 *et al.* Simulated statistical sample: $\Delta \sigma_{LU} \sim \sin \phi \operatorname{Im} \{F_1 H + \xi (F_1 + F_2) \widetilde{H} - kF_2 E\} d\phi$

0.7

XB

Q² (GeV²) 6 ավարիակական կողեսիակակակականություն, կատասիական 5 _{\++++}++++++++ 4 3 <mark>┝┽┽┽┽┽┽┽┽┥</mark><u>╊</u>┰┰╂┽┼┼┼ 2 0.5 0.3 0.6 0.2 0.4

Im (E_n) dominates.

 $L = 10^{35} \text{ cm}^{-2} \text{s}^{-1}/\text{nucleon}$

 $e + d \rightarrow e' + \gamma + n + (p_s)$

CLAS12 + Forward Tagger + **Neutron Detector**

Scheduled: 2019

Beam-spin asymmetry in neutron DVCS @ 11 GeV

 $J_u = 0.3, J_d = -0.1$ $J_u = 0.3, J_d = 0.1$ $J_u = 0.1, J_d = 0.1$ $J_u = 0.3, J_d = 0.3$

* At 11 GeV, beam spin asymmetry (A_{LU}) in neutron DVCS *is* very sensitive to J_u, J_d

***** Wide coverage needed!

Fixed kinematics: $x_B = 0.17$ $Q^2 = 2 \text{ GeV}^2$ $t = -0.4 \text{ GeV}^2$

Proton DVCS with a longitudinally polarised target

Experiment E12-06-119 *F. Sabatié et al.* A_{UL} characterised by imaginary parts of CFFs via: $F_1 \tilde{H} + \xi G_M (H + \frac{x_B}{2}E) - \frac{\xi t}{4M^2} F_2 \tilde{E} + ...$

Longitudinally polarised NH_3 target:

- Dynamic Nuclear Polarisation (DNP) of target material, cooled to 1K in a *He* evaporation cryostat.
- P_{proton} > 80%
- Statistical error: 2% 15% on $\sin \varphi$ moments
- Systematic uncertainties: ~ 12%

 \longrightarrow Im(H_p)

Neutron DVCS with a longitudinally polarised target

Experiment E12-06-109A. S. Niccolai, D. Sokhan et al.

Longitudinally polarised ND₃ target:

- Dynamic Nuclear Polarisation (DNP) of target material in a cryostat shared with the NH₃ target.
- P_{deuteron} up to 50%
- Systematic uncertainties: ~ 12%

A_{UL} characterised by imaginary parts of CFFs via:

$$F_1\tilde{H} + \xi G_M(H + \frac{x_B}{2}E) - \frac{\xi t}{4M^2}F_2\tilde{E} + \dots$$

 \longrightarrow Im(H_n)

In combination with pDVCS, will allow flavourseparation of the H_q CFFs.

Tentative schedule: 2020

Proton DVCS with transversely polarised target at CLAS12

C12-12-010: with transversely polarised HD target (conditionally approved). *L. Elouardhiri et al.*

 $\Delta \sigma_{\text{UT}} \sim \cos \phi \operatorname{Im} \{k(F_2 H - F_1 E) + \dots \} d\phi$ Sens

Sensitivity to *Im(E)* for the proton.

Projected sensitivities to Im(H) CFF

Projections for *Im(H)* neutron and proton and up and down CFFs extracted from approved CLAS12 experiments.

VGG fit (M. Guidal)

Projected sensitivities to Im(E) CFF

Projections for *Im(E)* neutron and proton and up and down CFFs extracted from approved and conditionallyapproved CLAS12 experiments.

CLAS12

VGG fit (M. Guidal)

DVCS on 4He: CLAS12 with ALERT

Experiment E12-17-012:Measurement of BSA in coherent DVCS from aZ.-E. Meziani et al.4He target: partonic structure of nuclei.

* Spin 0 target, so at leading twist only one chiral-even GPD: **H**_A.

CLAS12 + ALERT: central recoil detector

Incoherent, spectator-tagged DVCS on ${}^{4}He$ and d.

COMPASS @ Cern (SPS)

Compact **M**uon and **P**roton **A**pparatus for **S**tructure and **S**prectroscopy

COMPASS-II: 2012 - 2021

Forward particles: two-stage spectrometer (tracking, muon filters, calorimeters).

2.5m liquidUpgrades: new scintillator ToF for recoil*H*₂ targetproton detection & new EM calorimeter.

* 160 GeV 80% polarised μ^+/μ^- * ~ 4 × 10⁸ $\mu/spill$, 9.6s/40s duty cycle

Full exclusive reconstruction

* 2008 & 2009: two v. short test runs, 40 cm LH₂ target.
 Data: * COMPASS-II: 1 month in 2012, 6 months in 2016 & 2017 each (GPD H).
 * 2022+: transversely pol. NH₃ target (GPD E). LOI stage...

DVCS @ COMPASS (2012 run)

DVCS x-section and t-slope extraction

Kinematically constrained vertex fit applied

Tomography of sea quarks

DVCS with transversely polarised target (a) **COMPASS**

Slide from: N. d'Hose @ Getting to Grips with QCD, Primosten 2018

Summary

JLab 6 GeV programme:

- * Experimental support for factorisation & the handbag diagram, evidence of scaling
- Indications of higher-twist or higher-orders at play: hint of gluons?
- Constraints for GPD models
- * Most information on *Re* and *Im* parts of H_p CFF, a little on \tilde{H}_p , E_n
- * First attempt at tomography with the limited data

JLab 12 GeV programme:

- High precision separation of DVCS and interference terms: sensitivity to higher twist and higher orders, gluons.
- * Extensive mapping of a wider kinematic region tomography.
- * Extraction of *Re* and *Im* parts of **H** CFF, $\mathbf{\tilde{H}}$, **E**, flavour-separation: u/d.
- * OAM contribution to spin, tomography within the valence region, constraints on GPD models.

<u>COMPASS:</u>

* H and E CFFs - tomography, OAM of the sea quarks, model constraints.

Some questions for the EIC...

EIC White Paper, Eur. Phy. J. A 52, 9 (2016)

- Tomography of sea quarks: wide kinematic reach.
- * Higher-twist / higher-order: what sensitivity to this will we have? Luminosity factor of 10³-10⁴ lower than Hall A, *but* can run more or less continuously.
- Access to gluons easier through DVMP...
- * H, \tilde{H}, E what about \tilde{E} ?
- Energy scans separation of DVCS / Interference.
- * Q^2 scans scaling.
- Overlap of kinematics valuable: check of systematics by comparison to JLab, COMPASS results.

GPDs and nucleon spin

$$J_{N} = \frac{1}{2} = \frac{1}{2}\Sigma_{q} + L_{q} + J_{g}$$

* Ji's relation: $J^q = \frac{1}{2} - J^g = \frac{1}{2} \int_{-1}^{1} x dx \left\{ H^q(x,\xi,0) + E^q(x,\xi,0) \right\}$

*H*accessible in DVCS off the proton, first experimental constraint on *E*, through neutron-DVCS: M. Mazouz et al, PRL 99 (2007) 242501

* GPDs can provide insight into the orbital angular momentum contribution to nucleon spin: the spin puzzle.

DVCS in experiment

* Process measured in experiment:

Compton Form Factors in DVCS

Experimentally accessible in DVCS cross-sections and spin asymmetries, eg:

$$A_{LU} = \frac{d\vec{\sigma} - d\vec{\sigma}}{d\vec{\sigma} + d\vec{\sigma}} = \frac{\Delta \sigma_{LU}}{d\vec{\sigma} + d\vec{\sigma}}$$

At leading twist, leading order:

The DVCS/BH amplitude

$$\mathcal{T}^2 = |\mathcal{T}_{\rm BH}|^2 + |\mathcal{T}_{\rm DVCS}|^2 + \mathcal{I} - \frac{Interference\ term}{for\ DVCS/BH}$$
$$|\mathcal{T}_{\rm BH}|^2 = \frac{e^6}{x_B^2 y^2 (1+\epsilon^2)^2 t \,\mathcal{P}_1(\phi) \mathcal{P}_2(\phi)} [c_0^{\rm BH} + \sum_{n=1}^2 c_n^{\rm BH}\ \cos n\phi + s_1^{\rm BH}\ \sin \phi]$$

$$|\mathcal{T}_{\rm DVCS}|^2 = \frac{e^6}{y^2 \mathcal{Q}^2} \{ c_0^{\rm DVCS} + \sum_{n=1}^2 [c_n^{\rm DVCS} \cos n\phi \, + \, s_n^{\rm DVCS} \sin n\phi] \}$$

Intermediate lepton propagators

From asymmetries to CFFs

At leading twist, beam-spin asymmetry (BSA) can be expressed as:

$$A_{\rm LU}(\phi) \sim \frac{s_{1,\rm unp}^{\mathcal{I}} \sin \phi}{c_{0,\rm unp}^{\rm BH} + (c_{1,\rm unp}^{\rm BH} + c_{1,\rm unp}^{\mathcal{I}} + \dots) \cos \phi \dots} \quad higher-twist \ terms\dots$$

The leading coefficient is related to the imaginary part of the Compton Form Factors:

$$s_{1,\text{unp}}^{\mathcal{I}} \propto \Im[F_1\mathcal{H} + \xi(F_1 + F_2)\widetilde{\mathcal{H}} - \frac{t}{4M^2}F_2\mathcal{E}]$$

At CLAS kinematics, this dominates F_1, F_2 : Dirac,
Pauli form factors

Likewise, for the target-spin asymmetry (TSA):

$$\begin{aligned} A_{\rm UL}(\phi) &\sim \frac{s_{1,\rm LP}^{\mathcal{I}} \sin \phi}{c_{0,\rm unp}^{\rm BH} + (c_{1,\rm unp}^{\rm BH} + c_{1,\rm unp}^{\mathcal{I}} + ...) \cos \phi + ...} \\ s_{1,\rm LP} &\propto \Im [F_1 \widehat{\mathcal{H}} + \xi (F_1 + F_2) \widehat{\mathcal{H}} + \frac{x_B}{2} \mathcal{E}) - \xi (\frac{x_B}{2} F_1 + \frac{t}{4M^2} F_2) \widetilde{\mathcal{E}}] \\ At CLAS kinematics, these CFFs dominate \end{aligned}$$

* Obtain coefficients from fitting the phidependence of the asymmetry:

$$A_i = \frac{\alpha_i \sin \phi}{1 + \beta_i \cos \phi}$$

Double-spin asymmetry

At leading twist, double-spin asymmetry (DSA) can be expressed as:

$$A_{\rm LL}(\phi) \sim \frac{c_{0,\rm LP}^{\rm BH} + c_{0,\rm LP}^{\mathcal{I}} + (c_{1,\rm LP}^{\rm BH} + c_{1,\rm LP}^{\mathcal{I}})\cos\phi}{c_{0,\rm unp}^{\rm BH} + (c_{1,\rm unp}^{\rm BH} + c_{1,\rm unp}^{\mathcal{I}} + ...)\cos\phi...}$$

$$c_{0,\mathrm{LP}}^{\mathcal{I}}, c_{1,\mathrm{LP}}^{\mathcal{I}} \propto \Re e[F_1 \widehat{\mathcal{H}} + \xi(F_1 + F_2)(\mathcal{H} + \frac{x_B}{2}\mathcal{E}) - \xi(\frac{x_B}{2}F_1 + \frac{t}{4M^2}F_2)\widetilde{\mathcal{E}}]$$

At CLAS kinematics, leading-twist dominance of these CFFs

***** Fit function for the phi-dependence of the asymmetry:

 $\frac{\kappa_{\rm LL} + \lambda_{\rm LL}\cos\phi}{1 + \beta\cos\phi}$

Shares denominator with BSA and TSA! If measurements at same kinematics, can do a simultaneous fit.

Transverse extension of partons in the proton

Comparison to GPD models

Figure from Moutarde, Sznajder, Wagner arXiv: 1807.07620 20 2 GeV 15 = 10 GeV² VGG 10 o [1/GeV²] GK 0 PDF unc. Pol. PDF unc. EFF unc. -5 10-4 10-3 10-2 10-1 X_{Bi}

The grey band is a global fit of CFF in the PARTON framework at LO and LT using a GPD parametrization (only valence and sea quarks)

GK includes gluons (at next order in α_s)

Manifestation of gluons or NLO

Slide from: N. d'Hose @ Getting to Grips with QCD, Primosten 2018

Nucleon tomography: imaging glue

* Gluon GPDs can be accessed through deeply virtual meson production (DVMP), eg: J/Ψ

