

What is a proton, neutron, nucleus anyway?

The proton is 2 up quarks and 1 down quark, ...

Really? "Just open many textbooks..."

What is a proton, neutron, nucleus?

A high-energy view: an unseparated, broadband beam of quarks, anti-quarks, and gauge bosons (primarily gluons), and perhaps other constituents, yet unknown.

40 years of an amazingly robust idealization: Renormalization group-improved Parton Model

Factorization theorem(s) + one-dimensional parton distributions, no correlations among the partons

Really? More than a few of our high-energy observations are actually different Essential to separate intrinsic structure from interaction dynamics, push the envelope beyond the theoretically established, obtain <u>meaningful accuracy.</u>

 $\sigma(\Rightarrow,\Leftarrow) - \sigma(\Rightarrow,\Rightarrow) \sim \mathbf{g_1}(\mathbf{x},\mathbf{Q^2})$

The sum of quark and anti-quark spins contribute little to the proton spin, and strange quarks are negatively polarized.

4

For the proton,

$$\Gamma_{1} = \int_{0}^{1} g_{1}(x) dx = \int_{0}^{1} \left(\frac{1}{2} \sum e_{q}^{2} \Delta q(x)\right) dx = \frac{1}{2} \left(\frac{4}{9} \Delta_{1} u + \frac{1}{9} \Delta_{1} d + \frac{1}{9} \Delta_{1} s\right)$$

$$= \frac{1}{12} \left(\Delta_{1} u - \Delta_{1} d\right) + \frac{1}{36} \left(\Delta_{1} u + \Delta_{1} d - 2\Delta_{1} s\right) + \frac{1}{9} \left(\Delta_{1} u + \Delta_{1} d + \Delta_{1} s\right)$$

$$\uparrow$$

$$Unique to DIS, \Delta\Sigma$$
Known from weak neutron to proton decay, combined with weak Σ to neutron decay

Known from weak neutron to proton decay

which becomes a prediction if $\Delta_1 s = 0$

No (reliable) substitute for energy; $x \propto 1/\sqrt{s}$

$$\Gamma_{1} = \int_{0}^{1} g_{1}(x) dx = \int_{0}^{1} \left(\frac{1}{2} \sum e_{q}^{2} \Delta q(x) \right) dx = \frac{1}{2} \left(\frac{4}{9} \Delta_{1} u + \frac{1}{9} \Delta_{1} d + \frac{1}{9} \Delta_{1} s \right)$$

$$= \frac{1}{12} \left(\Delta_{1} u - \Delta_{1} d \right) + \frac{1}{36} \underbrace{(\Delta_{1} u + \Delta_{1} d - 2\Delta_{1} s)}_{a_{8} = 3F - D = 0.59 \pm 0.03} + \frac{1}{9} \left(\Delta_{1} u + \Delta_{1} d + \Delta_{1} s \right)$$

$$\downarrow$$
Unique to DIS, $\Delta\Sigma$

Known from weak neutron to proton decay, combined with weak Σ to neutron decay

Since,

one can recover the E-J expectation with a *sizable* shift of $a_8 = 3F - D$, $a_8 \simeq 0.2 \pm 0.1$

7

Numerous follow-up questions and experiment programs,

Among the early attempts at a resolution,

with the gluons polarized.

G. Altarelli and G.G. Ross Phys. Lett. B212 (1998) 391

Note: this attempt requires *very* large polarization, *factors* larger than the nucleon spin itself, and by inference, *huge* compensating *orbital momenta.* Quite the proton, a ground-state object and all.

Other attempts include e.g extrapolation over unmeasured low-x.

DIS - Proton spin

For the proton,

$$\Gamma_{1} = \int_{0}^{1} g_{1}(x) dx = \int_{0}^{1} \left(\frac{1}{2} \sum e_{q}^{2} \Delta q(x)\right) dx = \frac{1}{2} \left(\frac{4}{9} \Delta_{1} u + \frac{1}{9} \Delta_{1} d + \frac{1}{9} \Delta_{1} s\right)$$
$$= \frac{1}{12} \left(\Delta_{1} u - \Delta_{1} d\right) + \frac{1}{36} \left(\Delta_{1} u + \Delta_{1} d - 2\Delta_{1} s\right) + \frac{1}{9} \left(\Delta_{1} u + \Delta_{1} d + \Delta_{1} s\right)$$
$$+ \mathcal{O}(\alpha_{s}) \text{ now well known } + \mathcal{O}(1/Q^{2})$$
$$< 10\%$$

Similar can be done for the neutron,

experimentally via the deuteron or ³He,

DIS - Proton spin

For the proton,

$$\Gamma_{1} = \int_{0}^{1} g_{1}(x) dx = \int_{0}^{1} \left(\frac{1}{2} \sum e_{q}^{2} \Delta q(x) \right) dx = \frac{1}{2} \left(\frac{4}{9} \Delta_{1} u + \frac{1}{9} \Delta_{1} d + \frac{1}{9} \Delta_{1} s \right)$$
$$= \frac{1}{12} \left(\Delta_{1} u - \Delta_{1} d \right) + \frac{1}{36} \left(\Delta_{1} u + \Delta_{1} d - 2\Delta_{1} s \right) + \frac{1}{9} \left(\Delta_{1} u + \Delta_{1} d + \Delta_{1} s \right)$$
$$+ \mathcal{O}(\alpha_{s}) \text{ now well known } + \mathcal{O}(1/Q^{2})$$

Similar can be done for the neutron,

experimentally via the deuteron or ³He,

Note, experimental precisions can straightforwardly be matched as can the (low) energies in fixed-target experiments.

Not so at a collider and looking ahead to EIC we should revisit the handling of nuclear effects.

 $\Gamma_1^{\rm NS} = 0.192 \pm 0.007_{\rm stat} \pm 0.015_{\rm syst}$ $|g_{\rm A}/g_{\rm V}| = 1.29 \pm 0.05_{\rm stat} \pm 0.10_{\rm syst}$

Known from weak neutron to proton decay, combined with weak Σ to neutron decay

A 1+1-experiment determination, more or less, with little hope of materially better data,

SU(3) breaking often largely ignored so far, Renewed opportunity for lattice-QCD?

Channel $f_1^{SU(3)}$ $|f_1V_{us}|$ $(g_1/f_1)^{SU(3)}$ $(g_1/f_1)^{\exp}$ $n \rightarrow p$ | 1 n/a F + D (1.2670(30) $\Lambda \to p \quad \left| -\sqrt{3/2} \ 0.2221(33) \quad F + D/3 \quad 0.718(15) \right|$ $\Sigma^{-} \to n$ -1 0.2274(49) F - D (-0.340(17)) $\Xi^- \to \Lambda \mid \sqrt{3/2} \quad 0.2367(97) \quad F - D/3 \quad 0.25(5)$ $\Xi^- \to \Sigma^0 \left| \sqrt{1/2} \quad n/a \quad F+D \quad n/a$ $\Xi^0 \to \Sigma^+$ 1 0.216(33) F + D 1.32(22) → $a_0(Q^2 = 3 (\text{GeV}/c)^2) = 0.32 \pm 0.02_{\text{stat}} \pm 0.04_{\text{syst}} \pm 0.05_{\text{evol}}$. COMPASS PLB 769 (2017) 34

Note, *semi*-inclusive DIS data truly drive the DIS flavor decomposition. 11

RHIC - Polarized Proton-Proton Collider

Unique opportunities to study nucleon spin properties and spin in QCD,

50-60% polarization

Gluon Polarization from RHIC

Gluon polarization is positive in the region of the data; -0.2 h

Some properties of the PSSV polarized gluon:

DSSV, PRL 113, 012001(2014)

Easy to "hide" 1 h in the unmeasured region

Some properties of the PSSV polarized gluon:

DSSV, PRL 113, 012001(2014)

Strong impetus for

better precision, via renewed measurement

sensitivity to underlying kinematics, via correlation (di-jet) measurement

sensitivity to smaller *x*, via 500 GeV data, forward acceptance

Easy to "hide" 1 h in the unmeasured region

Some properties of the PSSV polarized gluon:

DSSV, PRL 113, 012001(2014)

The good news,

STAR is releasing (has released) a *wealth* of data addressing each of these aspects,

has a science-driven plan for forward instrument upgrades (a talk in itself; truth in advertisement plan \neq approval, at least not as of today).

Easy to "hide" 1 h in the unmeasured region

An early glimpse in the forward acceptance region:

- Results are given for transverse momenta in the range $2 < p_T < 10$ GeV/c within two regions of pseudorapidity that span 2.65 < η < 3.9
- These results are sensitive to the polarized gluon parton distribution function, Δg(x), down to the region of parton momentum fraction x ~ 0.001
- These results will provide the first direct experimental constraints in x << 0.01

Correlation measurements will access larger (average) partonic asymmetries.

Mid-central di-jet asymmetries:

Towards sensitivity to Bjorken-x.

Preliminary results at 500 GeV have come out as well, paper in preparation ¹⁶

di-jet asymmetries in a more forward region:

Impact clearly exists; quantifying it will require renewed global analysis (and/or reweighting)

Quark Polarization at RHIC

 $\sqrt{s} = 500 \text{ GeV}$ above W production threshold,

Experiment Signature: large pT lepton, missing ET

Experiment Challenges: charge-ID at large Irapidityl electron/hadron discrimination luminosity hungry

Free of fragmentation (!)

$$\Delta \sigma^{\text{Born}}(\vec{p}p \to W^+ \to e^+\nu_e) \propto -\Delta u(x_a)\bar{d}(x_b)(1+\cos\theta)^2 + \Delta \bar{d}(x_a)u(x_b)(1-\cos\theta)^2$$

Spin Measurements:

$$A_{L}(W^{+}) = \frac{-\Delta u(x_{a})\bar{d}(x_{b}) + \Delta \bar{d}(x_{a})u(x_{b})}{u(x_{a})\bar{d}(x_{b}) + \bar{d}(x_{a})u(x_{b})} = \begin{cases} -\frac{\Delta u(x_{a})}{u(x_{a})}, & x_{a} \to 1 \\ \frac{\Delta \bar{d}(x_{a})}{\bar{d}(x_{a})}, & x_{b} \to 1 \end{cases}$$
LO expressions to illustrate overall behavior,

$$A_L(W^-) = \begin{cases} -\frac{\Delta d(x_a)}{d(x_a)}, & x_a \to 1\\ \frac{\Delta \bar{u}(x_a)}{\bar{u}(x_a)}, & x_b \to 1 \end{cases}$$

NLO known and used in extracting pPDFs.

Quark Polarization at RHIC

Beyond Quark and Gluon Spins

Theory may be ahead of experiment, although many questions remain,

Beautiful initial (DVCS) measurements from HERMES and JLab,

IMHO, very far from reliable insights on angular momentum parts in the (Ji) spin-decomposition,

Looking Ahead

U.S.-based EIC - Proton Spin

Two orders in x and Q² compared to existing data; few, if any, alternatives.

U.S.-based EIC - Proton Spin

Conclusive insights in quark and gluon helicity from inclusive measurements, and orbital momentum by subtraction (!) 22

Also experimentally, we are still very far from a reliable decomposition of the proton spin

DIS data:

- small-x measurements provided the impetus for renewed study of the proton spin,
- data on proton and neutron targets over a wide x-range, confirming the Bjorken Sum rule, decent insight in the sum of quark and anti-quark spins,
- initial sensitivities to scale dependence,
- best (lack of?) insight in strangeness,
- start of DVCS measurements with sensitivity to orbital momentum

RHIC spin program:

- has achieved the most sensitive insights in **gluon polarization** in the nucleon, gluons are positively polarized for momentum fractions x > 0.05, at the level of 0.2 h for $Q^2 = 10 \text{ GeV}^2$
- has provided evidence, with measurements at the W-mass scale that are free of fragmentation uncertainties, of non-perturbative **sea-quark polarization**,
- (quite promising TMD measurements; again a talk by itself)

EIC + theory will be essential to arrive the spin decomposition (or at least a partial one).

