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Introduction
• {form factors, PDFs} ∈ GPDs

R
dx Hq(x, ξ, t) = F q

1(t)

lim
Δ→0

Hq(x, ξ, t) = f q
1(x)

N(P) N(P)

k = x P k = x P

PDF(x)

N(P) N(P’)

 

γ *

FF(t)

• do tomography (M. Burkardt)

Hq(x, b⊥) =

Z
d2Δ⊥
(2π)2
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• gravitational form factors (polynomiality)
R
dx xHq(x, ξ, t) = Aq(t)+ ξ2Dq(t)

R
dx xEq(x, ξ, t) = Bq(t)− ξ2Dq(t)

Ji sum Aq(t) +Bq(t) = 2Jq(t)
t→0
−→ 2Jq(0)
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graviton*

Tµν

• Tµν ⇒ generators of Poincaré group

matrix elements of Tµν: mass,
| {z }

T00

spin,
| {z }

εijkxjT0k

D-term
| {z }

Tij

M
J

�

external properties

D “internal” property



nucleon EMT form factors (Kobzarev & Okun 1962, Pagels 1966)

hp′|T̂ a
µν|pi = ū(p′)



 Aa(t)
γµPν + γνPµ

2

+ Ba(t)
i(Pµσνρ + Pνσµρ)Δρ

4MN

+ Da(t)
ΔµΔν − gµνΔ2

4MN
± c̄a(t)gµν



u(p) (a = q, g)

• T̂ q
µν, T̂ g

µν both gauge-invariant (not conserved)

• total EMT T̂µν = T̂ q
µν + T̂ g

µν is conserved ∂µT̂ µν = 0 (and
P

a c̄
a(t) = 0, a = q, g)

• constraints: mass ⇔ Aq(0) +Ag(0) = 1 (quarks + gluons carry 100% of nucleon momentum)

spin ⇔ Bq(0) +Bg(0) = 0 (i.e. Jq + Jg = 1
2
nucleon spin due to quarks + gluons)∗

• property: D-term ⇔ Dq(0) +Dg(0) ≡ D → unconstrained! Last global unknown!

2P = (p′ + p) notation: Aq(t) + Bq(t) = 2 Jq(t)

Δ = (p′ − p) Dq(t) = 4
5
dq1(t) = 1

4
Cq(t) or Cq(t)

t = Δ2 Aq(t) = M q
2(t)

∗ also expressed as: vanishing of total gravitomagnetic moment



last global unknown: How do we learn about hadrons?

|Ni = strong interaction particle. Use other forces to probe it!

em: ∂µJ
µ
em = 0 hN ′|Jµ

em|Ni −→ Q, µ, . . .

weak: PCAC hN ′|Jµ
weak|Ni −→ gA, gp, . . .

gravity: ∂µT
µν
grav = 0 hN ′|T µν

grav|Ni −→ M , J, D, . . .

global properties: Qprot = 1.602176487(40)× 10−19C
µprot = 2.792847356(23)µN

gA = 1.2694(28)
gp = 8.06(0.55)
M = 938.272013(23)MeV

J = 1
2

D = ??
and more:
t-dependence . . . . . .
parton structure, etc . . .

→֒ D = “last” global unknown

which value does it have?

what does it mean?



Theoretical results for D

free spin 0 field

• free Klein-Gordon field D = −1
(Pagels 1966; Hudson, PS 2017)

Goldstone bosons (decays of ψ′ → J/ψ ππ, light Higgs → ππ)

• Goldstone bosons of chiral symmetry breaking D = −1 in soft pion limit
Novikov, Shifman; Voloshin, Zakharov (1980); Polyakov, Weiss (1999)

• chiral perturbation theory for Goldstone bosons
Donoghue, Leutwyler (1991); Kubis, Meissner (2000); Diehl, Manashov, Schäfer (2005)

Dπ = −1+ 16 a
m2
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F 2
+
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π

F 2
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m2
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3F 2
Iη +O(E4)

DK = −1+ 16 a
m2

K

F 2
+

2m2
K

3F 2
Iη +O(E4)

Dη = −1+ 16 a
m2

η

F 2
−

m2
π

F 2
Iπ +

8m2
K

3F 2
IK +

4m2
η −m2

π

3F 2
Iη +O(E4)

where
a = L11(µ) − L13(µ)

Ii =
1

48π2 (log
µ2

m2
i

− 1)

i = π, K, η.

Dπ ≈ −0.97± 0.01

DK ≈ −0.77± 0.15

Dη ≈ −0.69± 0.19 (estim. uncertainty, Hudson,PS 2017)



nuclei

• nuclei in liquid drop model D = − 0.2 × A7/3 → potential for DVCS with nuclei!
Maxim Polyakov (2002) (see below)

• nuclei in Walecka model
Guzey, Siddikov (2006)

12C : D = −6.2
16O : D = −115

40Ca : D = −1220
90Zr : D = −6600
208Pb : D = −39000

Q-balls (toy model laboratory)

• Q-balls, non-topological solitons in strongly interacting theory: 90 ≤ −D =≤ ∞
Mai, PS PRD86, 076001 (2012)

• N th excited Q-ball state (decay into ground states): D = − constN8

Mai, PS PRD86, 096002 (2012)

• Q-cloud limit, most extreme instability we could find: D = − const/ε2 in the limit ε → 0
Cantara, Mai, PS NPA953, 1 (2016)

• Q-cloud excitations, even more extreme instability: D < 0 even more negative
Bergabo, Cantara, PS, in preparation (2018)



free spin 1
2 fermion

• D = 0 Dirac equation predicts g = 2 anomalous magnetic moment
analoguously it predicts D = 0 for non-interacting fermion
implicit: Donoghue, Holstein, Garbrecht, Konstandin, PLB529, 132 (2002)

explicit in Hudson, PS Phys.Rev. D97 (2018) 056003

if Dfermion 6= 0 ← interactions!!

interacting fermion systems

• case study I: introduce boundary condition (bag model)

“switch on interaction” D = N2
c

�
−4π2 +15

45

�

| {z }
=−0.54... < 0

in limit mR → ∞

• case study II: chiral quark-soliton model

D = −F 2
πMN

R
d3r r2 P2(cos θ) trF [∇

3U ][∇3U †]+O
�
(∇U)3

�
PS, Radici, Boffi (2002)

“switch off chiral interaction” i.e. pion fields U = exp(iτaπa/Fπ) → 1 ⇒ D → 0

Hudson, PS Phys.Rev. D97 (2018) 056003

D-term distinguishes free bosons and fermions
free spin-0 case D = −1 vs spin-1

2
case D = 0. What does this mean?

matter, visible universe made of fermions! All D-terms due to interaction!?



nucleon

• bag model (always good starting point!) D = −1.145 < 0 due to bag boundary!
Ji, Melnitchouk, Song (1997); Neubelt, Sampino, et al (2018)

• chiral quark soliton model
Petrov et al 1998, Goeke et al, PRD75 (2007) 094021

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  

 (a)A(t) = M2(t)

-t in GeV
2

mπ = 0      

mπ = 140 MeV

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.2  0.4  0.6  

 (b)J(t) = 
1

2
-(A+B)(t) 

-t in GeV
2

mπ = 0      

mπ = 140 MeV

-4

-3

-2

-1

 0

 0  0.2  0.4  0.6  

 (c)d1(t) = 
5

4
- D(t) 

-t in GeV
2

mπ = 0      

mπ = 140 MeV

• lattice DQ: QCDSF Collaboration, Göckeler et al, PRL92 (2004) 042002 & hep-ph/0312104
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• χPT cannot predict D-term, but d1(mπ) =
◦
d1 +

5k g2
AMN

64π f 2
π

mπ + . . . ,
◦
d ′
1(0) = −

k g2
A MN

32πf 2
π mπ

+ . . .

k = 1 for finite Nc, and k = 3 for Nc → ∞ Belitsky, Ji (2002), Diehl et al (2006), Goeke et al (2007)



nucleon dispersion relations

• unsubtracted t-channel dispersion relations (need pion PDFs) at µ2 = 4GeV2

Barbara Pasquini, Maxim Polyakov, Marc Vanderhaeghen (2014)
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. . . predictions are made in models, lattice, dispersion relations.

(lattice can and will improve, “tomorrow” or in “3 years”)

What do experiment and phenomenology say?



D-term of nucleon

• HERMES proceeding NPA711, 171 (2002); Airapetian et al PRD 75, 011103 (2007)
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beam charge asymmetry
dotted line: VGG model without D-term (ruled out)
dashed line: VGG model + positive D-term (ruled out)
dashed-dotted: VGG model + negative D-term (yeah!)
model-dependent Frank Ellinghaus, NPA711, 171 (2002)

Belitsky, Müller, Kirchner, NPB629 (2002) 323

COMPASS with µ± beams!!? Nicole D’Hose, Primošten 17-22 Sep 2018
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• fits by Kresimir Kumerički, Dieter Müller et al
some tendency that D < 0 needed!

DVCS parametrizations from:
Kumerički, Müller, NPB 841 (2010) 1

Kumerički, Müller, Murray, Phys. Part. Nucl. 45 (2004) 723

Kumerički, Müller, EPJ Web Conf. 112 (2016) 01012

Fig. 9 in ECT∗ workshop proceeding 1712.04198

statistical uncertainty of D in KMM12: ∼ 50%,

statistical uncertainty of D in KM15: ∼ 20%.

unestimated systematic uncertainty

Kresimir Kumerički private communication + talk yesterday



• CLAS result

Burkert, Elouadrhiri, Girod, Nature 557, 396 (2018) (talk: V. Burkert at SPIN 2016 Sep. 2016)

based on: Girod et al PRL 100 (2008) 162002, Jo et al PRL 115 (2015) 212003

beware: unestimated systematic bias (Kresimir yesterday). Not model independent, first pioneering step
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chiral quark soliton

Skyrme model

bag model

JLab data

D-term = subtraction term in
fixed-t dispersion relations for ADVCS

Teryaev hep-ph/0510031

Anikin, Teryaev, PRD76, 056007 (2007)

Diehl and Ivanov, EPJC52, 919 (2007)

Radyushkin, PRD83, 076006 (2011)

subtraction term ∼ d1 + d3 + d5 + . . .
the di → 0 for i > 1 with Q2 → ∞

assumed d3, d5, . . . small compared to d1
working assumption (do better → future data)

chiral quark-soliton dq3/d
q
1 = 0.3, dq5/d

q
1 = 0.1

Kivel, Polyakov, Vanderhaeghen, PRD63 (2001)

Dq(t) = 4
5
dq1(t) + assumptions

⇒ CLAS, KM-fits, dispersion relations, models, lattice: insight on D(t)! What do we learn?



• D-term of π0

access EMT form factors of unstable particles

through generalized distribution amplitudes

(analytic continuation of GPDs)

via γγ∗ → π0π0 in e+e−

Masuda et al (Belle), PRD 93, 032003 (2016)

 

π0
(P)

π0
(P’)

  

γ
∗

γ

GDA

best fit to Belle data → D
Q
π0 ≈ −0.7

at hQ2i = 16.6 GeV2

compatible with soft pion theorem Dπ0 ≈ −1

(assuming gluons contribute the rest which is reasonable)

Kumano, Song, Teryaev, PRD97, 014020 (2018)

(in principle also other hadrons, even p̄p. But difficult to “extrapolate”

from t > 4m2
p to t = 0. But for pion: very interesting, narrow region

to “extrapolate over” + χPT can help!)







interpretation

• Breit frame Δµ = (0, ~Δ) and t = − ~Δ2

• analog to electric form factor GE(~Δ
2) =

Z

d3~r ρE(~r ) e
i ~Δ~r → charge distribution

Sachs, PR126 (1962) 2256

→֒ Q =

Z

d3~r ρE(~r )

• static EMT Tµν(~r, ~s ) =

Z
d3 ~Δ

2E(2π)3
e−i ~Δ~r hP ′|T̂µν|P i → mechanical properties of nucleon

M.V.Polyakov, PLB 555 (2003) 57

→֒ MN =

Z

d3~r T00(~r ), etc

• limitations: 2D densities exact partonic probability densities.

3D densities not exact, reservations for r � λCompt =
�

mc
∼ 0.2fm for proton

known since earliest days (Sachs, 1962) comprehensive studies, e.g. by
• corrections ABSENT in large-Nc limit (m ∼ Nc, R ∼ N0

c and 1/(mR)2 ∼ 1/N2
c )

• X.-D. Ji, PLB254 (1991) 456 (Skyrme model, not a big effect)
• G. Miller, PRC80 (2009) 045210 (“simple model” with FF from triangle diagram, dramatic effect)

mathematically well-defined, correct and consistent
relative correction for hr2Ei =

R
d3r r2T00(r)/m is δrel = 1/(2m2R2) Hudson, PS PRD (2007)

numerically pion
| {z }
220%

, kaon| {z }
25%

, nucleon| {z }
3%

, deuterium| {z }
1×10−3

, 4He| {z }
5×10−4

, 12C| {z }
3×10−5

, 20Ne| {z }
6×10−6

, 56Fe| {z }
5×10−7

, 132Xe| {z }
6×10−8

, 208Pb| {z }
2×10−8



• important distinction:

2D densities = partonic probability densities (unitarity)

must be exact! → M. Burkardt (2000) is exact
√

apply to any particle including pion

vs

3D densities = mechanical response functions, correlation functions

Subject to corrections (grain of salt, but okay since NOT probabilities!)

can be studied for nucleon or heavier where corrections acceptably small
√

• besides:

no 2D interpretations exist for stress tensor T ij (so far)

T ij 6= diagonal in Fock space (ERBL region!) → Fock components interact!

inherently 3D concepts, have to pay a prize (and pay attention to corrections)



• interpretation as 3D-densities (M.V.Polyakov, PLB 555 (2003) 57)

Breit frame with Δµ = (0, ~Δ): static EMT Tµν(~r) =

Z
d3 ~Δ

2E(2π)3
ei

~Δ~r hP ′|T̂µν|P i

all formulae correct, interpretation in terms of 3D-densities has limitations (see above)

Z

d3r T00(~r ) = MN known

Z

d3r εijk si rj T0k(~r, ~s) =
1

2
known

−
2

5
MN

Z

d3r

 

rirj −
r2

3
δij
!

Tij(~r ) ≡ D new!

with: Tij(~r ) = s(r)
�
rirj

r2
− 1

3
δij

�

+ p(r) δij stress tensor

s(r) related to distribution of shear forces

p(r) distribution of pressure inside hadron

)

−→ “mechanical properties”



relation to stability: EMT conservation ⇔ ∂µT̂µν = 0 ⇔ ∇iTij(~r ) = 0

→֒ necessary condition for stability

Z ∞

0

dr r2 p(r) = 0 (von Laue, 1911)

D = −
16π

15
m

Z ∞

0

dr r4s(r) = 4πm

Z ∞

0

dr r4 p(r) → shows how internal forces balance

let’s gain intuition from models:

• liquid drop model of nucleus
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r in Rd ��

liquid drop

p(r)

s(r)

radius RA = R0A1/3, mA = m0A

surface tension γ = 1
2
p0RA, s(r) = γ δ(r −RA)

pressure p(r) = p0Θ(RA − r)− 1
3
p0RA δ(r −RA)

D-term D = −4π
3
mA γ R4

A ≈ −0.2A7/3

M.V.Polyakov PLB555 (2003); confirmed in Walecka model by

Guzey, Siddikov (2006) different result by Liuti, Taneja (2005)

from a model of a non-rel. nuclear spectral function



• chiral quark soliton model of nucleon

• p(0) = 0.23GeV/fm3 ≈ 4× 1034N/m2

� 10-100×(pressure in center of neutron star)

• p(r) = 0 at r = 0.57 fm change of sign in pressure

• p(r) =

�
3g2A
8πfπ

�2 1

r6
at large r in chiral limit mπ → 0

Goeke et al, PRD75 (2007) 094021
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• How does it look like in nature? Look in Nature article �

see Burkert, Elouadrhiri, Girod Nature 557, 396 (2018)

beware: additional assumptions!
(early state of art, will be improved)



• technical remark on assumptions in Nature-article

JLab sensitive only to quarks! (also other experiments, see KM fits)

now one can define D-term Dq = −
16π

15
m

Z ∞

0

dr r4sq(r) for quarks, and analog Dg for gluons

“partial” (quark, gluon) contributions to shear forces can be defined

but pressure only defined for total (quark + gluon) system!
“partial” (quark, gluon) contributions to pressure cannot be obtained from Dq,g(t)

reason: Tij(~r ) = s(r)

�
rirj

r2
−

1

3
δij

�

+ p(r) δij such that

(

shear forces ∝ traceless part

pressure ∝ trace of stress tensor

but remember: hp′|T̂ q
µν|pi = ū(p′)

�

· · ·+ Dq(t)
ΔµΔν − gµνΔ2

4MN
± c̄q(t)gµν

�

u(p)

pressure requires Dq,g(t) and c̄q,g(t) M.Polyakov, H.-D. Son JHEP 1809 (2018) 156

[for discussion of c̄q(t) see M.Polyakov, H.-D.Son; Cédric Lorcé (2017), Keh-Fei Liu, Cédric Lorcé (2016)]



• more lessons from toy system: Q-ball

L = 1
2
(∂µΦ∗)(∂µΦ)− V with U(1) global symm., V = A (Φ∗Φ)−B (Φ∗Φ)2 + C (Φ∗Φ)3, Φ(t, ~r ) = eiωt φ(r)

N = 0 ground state, N = 1 first excited state, etc Volkov & Wohnert (2002), Mai, PS PRD86 (2012)

charge density exhibits N shells, p(r) exhibits (2N +1) zeros
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excited states unstable, but
∞R

0

dr r2p(r) = 0 always valid, and D-term always negative!

so far all D-terms negative: pions, nucleons, nuclei, nucleons in nuclear matter, photons, Q-balls, Q-clouds

could perhaps the Roper resonance look like this? Or a “hallo nucleus”? (possible to measure??)

However e.g. Δ-resonance, similar to nucleon in model! Insights through transition form factors?



stress tensor and mechanical radius

• Tij(~r ) = s(r)
�rirj

r2
− 1

3 δij
�

+ p(r) δij = symmetric 3× 3 matrix

→ can be diagonalized with eigenvalues:
2
3 s(r) + p(r) = normal force (eigenvector ~er)

− 1
3 s(r) + p(r) = tangential force (~eθ, ~eφ degenerate for spin 0, 1

2)

• mechanical stability ⇔ normal force directed towards outside

⇔ T ije
j
r dA = [23 s(r) + p(r)]

| {z }

>0

eir dA ⇒ D < 0 crucial: positive definite density!

recall hr2iel < 0 for neutron 6= size of neutron!

• define: hr2imech =

R
d3r r2[23 s(r) + p(r)]
R
d3r [23 s(r) + p(r)]

=
6D(0)

R 0
−∞dtD(t)

vs hr2chi =
6G ′

E(0)

GE(0)

intuitive result for large nucleus 2
3
s(r) + p(r) = p0Θ(RA − r) → hr2imech = 3

5
R2

A

M.Polyakov, PS arXiv:1801.05858 (Kumano, Song, Teryaev PRD (2018) used D′(0) but inadequate)

• proton: hr2imech ≈ 0.75 hr2chi for mπ = 140MeV (chiral quark soliton model)

Notice: in chiral limit hr2imech finite vs hr2chi which diverges

more on normal/tangential forces in future from Trawinski, Lorcé, Moutarde (talk Lightcone 2018)



• Application I: investigating forces

prominent property of proton:
life time τprot > 2.1× 1029 years!

question: how do strong forces
balance to produce stability?

• answer in model: strong cancellation of
repulsive forces due to quark core, and
attractive forces from pion cloud
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quark core

pion cloud

+ -

in chiral quark soliton model
chiral symmtry breaking

√
realization of QCD in large-Nc

√
built on instanton vacuum calculus

√
not bad, but after all a model . . .
Goeke et al, PRD75 (2007)

• answer in QCD: we do not know
nice pictures, attractive insights
underexplored propaganda(?)

be aware: same for neutron,

τneut = 14min 40 sec ≫ 10−23 sec

and even the same picture for Δ . . .

τΔ ∼ 10−23 sec → necessary condition!

• as mental support for GPD program: okay

. . . but is there any practical use of that?

answer before: not really . . .

answer today: Yes!



Application II: hidden-charm pentaquarks as hadrocharmonia

Λ0
b −→ J/Ψ pK− seen

Aaij et al. PRL 115 (2015)

Λ0
b m = 5.6GeV, τ = 1.5ps

J/Ψ m = 3.1GeV, Γ = 93keV, Γµ+µ− = 6%

Λ∗ m = 1.4GeV or more, Λ∗ → K−p in 10−23s

−→ J/ΨΛ∗

−→ K−P+
c

   

d
u
s
 
 

d
u
b

−c
c

Λb

J/ ψ

Λ  *
W 

−

   

d
u
c

−c
u

d
u
b

−u
s

Λb

K 

−

P  c 

   +

W 

−

state m [MeV] Γ [MeV] Γrel mode JP

P+
c (4380) 4380± 8± 29 205± 18± 86 (4.1± 0.5± 1.1)% J/ψ p 3

2

∓
or 5

2

+

P+
c (4450) 4450± 2± 3 39± 5± 19 (8.4± 0.7± 4.2)% J/ψ p 5

2

±
or 3

2

−



appealing approach to new pentaquarks

M. I. Eides, V. Y. Petrov and M. V. Polyakov, PRD93, 054039 (2016)

• theoretical approach

Rcc̄ ≪ RN ⇒ non-relativistic multipole expansion Gottfried, PRL 40 (1978) 598
baryon-quarkonium interaction dominated by 2 virtual chromoelectric dipole gluons

Veff = − 1
2
α ~E2 Voloshin, Yad. Fiz. 36, 247 (1982)

• chromoelectric polarizability

α(1S) ≈ 0.2GeV−3 (pert),

α(2S) ≈ 12GeV−3 (pert),

α(2S → 1S) ≈

n
−0.6GeV−3 (pert),
±2GeV−3 (pheno),

in heavy quark mass limit & large-Nc limit
� “perturbative result” Peskin, NPB 156 (1979) 365

value for 2S → 1S transition from
phenomenological analysis of ψ′ → J/ψ π π data
Voloshin, Prog. Part. Nucl. Phys. 61 (2008) 455

• chromoelectric field strength:

~E2 = g2
�
8π2

bg2
T µ

µ + TG
00

�

b = 11
3
Nc −

2
3
NF leading coeff. of β-function

g = strong coupling at low (nucleon) scale � 1GeV
gs = strong coupling at scale of heavy quark (gs 6= g)
TG
00 = ξT00 with ξ = fractional contributions of gluon to MN

T µ
µ = T 00−T ii, stress tensor T ij =

�
ri

r

rj

r
−
1

3
δij
�

s(r)+δij p(r)

• universal effective potential

Veff = −1
2
α

8π2

b

g2

g2
s

�

ν T00(r) + 3p(r)

�

, ν = 1 + ξs
b g2

s

8π2

ν ≈ 1.5 estimate by Eides et al, op. cit.
Novikov & Shifman, Z.Phys.C8, 43 (1981);
X. D. Ji, Phys. Rev. Lett. 74, 1071 (1995)



• compute quarkonium-nucleon bound state

solve

 

−
~∇2

2µ
+ Veff(r)

!

ψ = Ebindψ

µ = reduced quarkonium-baryon mass

Veff from EMT of chiral quark soliton model (Eides et al, 2015); Skyrme (Perevalova et al 2016)

-cc

u

   u

d

• results:

no J/ψ-nucleon bound state! Supported by lattice data on J/ψ-N potential! Sugiura et al, 1711.11219

ψ(2S)-nucleon bound states if α(2S) ≈ 17 GeV−3, JP = 1
2

−
, 3

2

−
around 4450MeV

with narrow width Γ = |α(2S → 1S)|2 × · · · = few tens MeV, mass-splitting O(20)MeV

supported by lattice data, Sugiura et al; Polyakov, PS, PRD (2018)

• test approch: predicted bound states of ψ(2S) with Δ and hyperons!

Perevalova et al 2016, Eides et al, 2017 waiting for test at LHCb, JLab (Meziani et al, XXX), EIC (!!)



Application III: extract chromoelectric polarizabilities

• J/ψ-nucleon potential studied on lattice Sugiura et al, 1711.11219
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• actually no model for EMT densities needed:
R
d3r Veff(r) = −α(1S)

4π2

b

g2s
g2c

νMN

b = (11
3
Nc −

2
3
Nf) leading coefficient of Gell-Mann–Low function

1 � g2s /g
2
c � 1.7 with gc (gs) is strong coupling at scale of charmonium (nucleon)

ν = 1+ ξs
b g2

s

8π2 ≈ 1.5± 0.1 with ξs fraction of nucleon momentum carried by gluons at µs

• non-perturbative method: α(1S) = (1.5 ± 0.6)GeV−3 (“proof of principle”)
uncertainities (estimated + unestimated due to lattice systematic uncertainty)
if α(2S)/α(1) ≈ 15 lattice potential admits ψ(2S)-nucleon bound states, compatible!

1/mQ corrections not large (small mass splitting of predicted JP = 1
2

−
, 3

2

−
pentaquarks)

Polyakov, PS, PRD98 (2018) 034030

• applications: hadrocharmonia, hadronic decays of c̄c, photo/hadro-production of c̄c and

charmed hadrons on nuclear targets, diagnostics of quark gluon plasma in heavy-ion coll.



Application IV: hidden-charm hidden-strangeness tetraquarks

• decay in J/ψ and φ, JPC = 0++, 1++ Aaij et al PRD95 (2017) 012002

• X(4140) possibly a rescattering effect Swanson, Int.J.Mod.Phys.E 25 (2016) 1642010

• X(4500), X(4700) hadronic molecules of D- or D∗ mesons, bound states in diquark picture
Karliner, Rosner (2016), Ding (2009), Branz et al (2009), Drenska et al (2009), Anisovich et al (2015)

• X(4274) cannot be a molecular state, but is candidate for φ-ψ(2S) hadrocharmonium!

• what do we know about EMT of φ-meson??? Nothing!!! Wide assumptions e.g.
A(t) = 1/(1− t/M2

1)
2, D(t) = D/(1− t/M2

2)
3, r2E = 12/M2

1 , r2mech = 12/M2
2

0.05 fm2 < hr2iE,mech < 1 fm2

and −15 < D < 0
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conclusion:
X(4274) may be φ-ψ(2S) bound state!
If this is was the case: we have insight
on EMT of φ: hr2iE ∈ [0.1,0.6] fm2,
hr2imech ∈ [0.1,0.5] fm2, D ∈ [−5,0]
(smaller radii ↔ larger |D|)



Application V: nucleon, Δ, large-Nc artifacts Witten 1979

in large Nc baryons = rotational excitations of soliton with S = I =
1

2
,

3

2
,

| {z }
observed

5

2
, . . .

| {z }
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MB = Msol +
S(S +1)

2Θ
nucleon s(r) 6= γδ(r−R)
Δ much more diffuse

Z ∞

0

dr r2p(r) = 0

stability needs more:
p(r) > 0 in center,
negative outside
okay for nucleon, Δ
=⇒ implies D < 0

mechanical stability
T ij daj ≥ 0
⇔ 2

3
s(r) + p(r) ≥ 0

artifacts do not satisfy!
⇒ have positive D-term!!

That’s why they do not exist!

EMT: dynamical understanding
Perevalova et al (2016)

⇒ particles with positive D unphysical!!!



Summary & Outlook

• GPDs, GDAs → form factors of energy momentum tensor

mass decomposition, spin decomposition, and D-term!

• D-term: last unknown global property, related to forces

attractive and physically appealling → “motivation”

• first results(!) from experiment/phenomenology for proton, π0

compatible with results from theory and models (see review arXiv:1805.06596)

• define pressure & mechanical radius → complementary information!

• development: apply to hadrocharmonia pentaquarks & tetraquarks

rich potential, new predictions, ongoing work
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