Polarized and unpolarized PDFs and FFs

Nobuo Sato University of Connecticut INT Program Longitudinal spin Seattle, 2018

Motivations

Motivations

- SIDIS data from JLab 12 brings new challenges
 - + Quantitative limits of $x, Q^2, z, ...$ where factorization theorems are applicable
 - + Universality of non perturbative objects \rightarrow predictive power
 - + QCD analysis framework that extracts **simultaneously** all non-perturbative objects (including TMDs)
 - + Framework with the same theory assumptions

Motivations

Inclusion of modern data analysis techniques

+ Bayesian likelihood analysis

$$\mathcal{P}(f|\text{data}) = \mathcal{L}(\text{data}, f)\pi(f)$$

+ Estimation of expectation values and variances:

- o maximum likelihood + Hessian (+tolerance)
- o maximum likelihood + Lagrange multipliers
- o data resampling
- o partition and cross validation
- iterative Monte Carlo (IMC)
- o nested sampling

History

JAM15: \triangle **PDFs** (NS, Melnitchouk, Kuhn, Ethier, Accardi)

 xD_{u}

r

- Inclusion of all II ab 6 GeV data $\rightarrow 0.1 < x < 0.7$
- Non vanishing twist 3 quark distributions
 - Residual twist 4 contributions consistent with zero

JAM15: d_2 matrix element

■ Existing measurements of d₂ are in the resonance region → quark-hadron duality

$$d_2(Q^2) \equiv \int_0^1 dx x^2 \left[2g_1^{\tau 3}(x,Q^2) + 3g_2^{\tau 3}(x,Q^2) \right]$$

JAM15: \triangle PDFs (NS, Melnitchouk, Kuhn, Ethier, Accardi)

- SU2, SU3 constraints imposed
- **D**SSV and JAM Δs^+ is **inconsistent**

JAM16: FFs (NS, Ethier, Melnitchouk, Hirai, Kumano, Accardi)

π and K Belle, BaBar up to LEP energies

• JAM and DSS $D_{s^+}^K$ consistent

JAM17: \triangle **PDF** +**FF** (Ethier, NS, Melnitchouk)

- No SU(3) constraints
- Sea polarization consistent with zero
- Precision of △SIDIS is not sufficient to determine sea polarization

What determines the sign of Δs^+ ?

case 1

- + ~ 5 COMPASS d data points at x < 0.002 favor small $\Delta s^+(x)$
- + To generate $\Delta s^{+(1)}(Q_0^2)\sim -0.1$ a peak at $x\sim 0.1$ is generated

case 2

- + In the absence of x<0.002 data, the negative $\Delta s^{+(1)}(Q_0^2)\sim -0.1$ is mostly generated at small x.
- + No need for negative $\Delta s^+(x)$ at $x\sim 0.1$
- case 3
- $+ \ \Delta s^+(x\sim 0.1) < 0$ disfavored by HERMES $A_{1d}^{K^-}$
- + Smaller $\Delta s^{+(1)}(Q_0^2)$ but larger uncertainties

case	data	sign change	$\Delta s^{+(1)}(Q_0^2)$
1	$\Delta DIS+SU(3)$	No	-0.1
2	$\Delta \text{DIS}+\text{SU}(3) \ (x > 0.02)$	Possible	-0.1
3	$\Delta DIS + \Delta SIDIS + FF$	Possible	-0.03(10)

Updates on the moments

- Flat priors that gives flat a₈ in order to have an unbias extraction of a₈
- Data prefers smaller values for $a_8 \rightarrow 25\%$ larger total spin carried by quarks.

obs.	JAM15	JAM17	
g_A	1.269(3)	1.24(4)	
g_8	0.586(31)	0.46(21)	
$\Delta\Sigma$	0.28(4)	0.36(9)	
$\Delta \bar{u} - \Delta \bar{d}$	0	0.05(8)	

SIDIS+Lattice analysis of nucleon tensor charge

Lin, Melnitchouk, Prokudin, NS, Shows

- Extraction of transversity and Collins FFs from SIDIS A_{UT} +Lattice g_T
- In the absence of Lattice, SIDIS has no significant constraints on g_T

Present

JAM18: Universal analysis (preliminary)

Data sets

+ DIS, SIDIS (π, K) , DY + Δ DIS, Δ SIDIS (π, K) + $e^+e^-(\pi, K)$

Theory setup

- + Observables computed at NLO in pQCD
- + DIS structure functions only at leading twist ($W^2 > 10 \text{ GeV}^2$)

Likelihood analysis (first steps)

- $+\,$ Use maximum likelihood to find a candidate solution
- + Use resampling to check for stability and estimate uncertainties
- + 80 shape parameters and 91 data normalization parameters:
 171 dimensional space
- $+\,$ Sampling to be extended with IMC/Nested Sampling

JAM18: PDFs (preliminary)

JAM18: PDFs (preliminary)

JAM18: upolarized sea (preliminary)

JAM18: \triangle PDFs (preliminary)

JAM18: polarized sea (preliminary)

- $\blacksquare \ \Delta f/f \to 1$ only realized for u
- Polarized sea asymmetry is consistent with zero

JAM18: helicity PDFs (preliminary)

Helicity distributions seems to be the same for the sea

JAM18: moments (preliminary)

obs.	JAM15	JAM17	JAM18	JAM18 [truncated]
g_A	1.269(3)	1.24(4)	1.163(5)	1.107(5)
g_8	0.59(3)	0.4(2)	0.5(4)	0.39(2)
$\Delta\Sigma$	0.28(4)	0.36(9)	0.3(2)	0.386(7)
$\Delta \bar{u} - \Delta \bar{d}$	0	0.05(8)	0.0002(6)	-0.0001(5)
Δg	1(15)	-	0.22(1)	0.172(9)

- \blacksquare Large uncertainties on the full $\Delta\Sigma$ stem from
- \blacksquare JAM18 [truncated] means integration over $\Delta {\rm DIS}$ and $\Delta {\rm SIDIS}$ kinematics $\Delta \bar{s}$

JAM18: Δg (preliminary)

JAM18

$$\int_{0.05}^{1} dx \Delta g(x) = 0.145(5)$$

$$\int_{0.001}^{0.05} dx \Delta g(x) = 0.229(9)$$

Not so bad for a prediction

JAM18: FFs (preliminary)

IMC runs...

JAM18: IMC runs

 \leftarrow flat priors

\leftarrow DIS no HERA

← DIS with HERA

 $\leftarrow \text{ DIS with HERA} + \text{DY}$

Summary and outlook

 \blacksquare First **universal** analysis of PDFs, ΔPDF and FFs

- + New insights on nucleon sea distributions (s, \bar{s} asymmetry)
- + π and K gluon FFs are required by SIDIS to peak at larger z \rightarrow relevant for TMD physics
- $+\,$ The universal analysis will to be extend to TMD analysis
- Next steps
 - $+\,$ Perform additional checks using IMC and Nested Sampling
 - + Make predictions to high energy observables and check the genuine predictive power of the universal analysis

Backup

Asymmetries

$$\begin{aligned} A_{||} &= \frac{\sigma^{\uparrow \Downarrow} - \sigma^{\downarrow \Downarrow}}{\sigma^{\uparrow \Downarrow} + \sigma^{\downarrow \Downarrow}} = D(A_1 + \eta A_2) \\ A_{\perp} &= \frac{\sigma^{\uparrow \Rightarrow} - \sigma^{\downarrow \Rightarrow}}{\sigma^{\uparrow \Rightarrow} + \sigma^{\downarrow \Rightarrow}} = d(A_2 - \xi A_1) \\ A_1 &= \frac{(g_1 - \gamma^2 g_2)}{F_1} \qquad A_2 = \gamma \frac{(g_1 + g_2)}{F_1} \qquad \gamma^2 = \frac{4M^2 x^2}{Q^2} \end{aligned}$$

Theory

$$\begin{split} g_1(x,Q^2) &= g_1^{\text{LT+TMC}}(\Delta u^+, \Delta d^+, \Delta g, \ldots) + g_1^{\text{T3+TMC}}(D_u, D_d) + g_1^{\text{T4}}(H_{p,n}) \\ g_2(x,Q^2) &= g_2^{\text{LT+TMC}}(\Delta u^+, \Delta d^+, \Delta g, \ldots) + g_2^{\text{T3+TMC}}(D_u, D_d) \end{split}$$

Leading twist structure functions:

$$g_{1}^{\text{LT+TMC}}(x,Q^{2}) = \frac{x}{\xi} \frac{g_{1}^{\text{LT}}(\xi)}{(1+4\mu^{2}x^{2})^{3/2}} + 4\mu^{2}x^{2} \frac{x+\xi}{\xi(1+4\mu^{2}x^{2})^{2}} \int_{\xi}^{1} \frac{dz}{z} g_{1}^{\text{LT}}(z)$$
$$- 4\mu^{2}x^{2} \frac{2-4\mu^{2}x^{2}}{2(1+4\mu^{2}x^{2})^{5/2}} \int_{\xi}^{1} \frac{dz}{z} \int_{z'}^{1} \frac{dz'}{z'} g_{1}^{\text{LT}}(z')$$
$$g_{2}^{\text{LT+TMC}}(x,Q^{2}) = -\frac{x}{\xi} \frac{g_{1}^{\text{LT}}(\xi)}{(1+4\mu^{2}x^{2})^{3/2}} + \frac{x}{\xi} \frac{(1-4\mu^{2}x\xi)}{(1+4\mu^{2}x^{2})^{2}} \int_{\xi}^{1} \frac{dz}{z} g_{1}^{\text{LT}}(z)$$
$$+ \frac{3}{2} \frac{4\mu^{2}x^{2}}{(1+4\mu^{2}x^{2})^{5/2}} \int_{\xi}^{1} \frac{dz}{z} \int_{z'}^{1} \frac{dz'}{z'} g_{1}^{\text{LT}}(z')$$

Leading twist quark distributions:

$$g_1^{\mathrm{LT}}(x) = rac{1}{2} \sum_q e_q^2 \left[\Delta C_{qq} \otimes \Delta q(x) + \Delta C_{qg} \otimes \Delta g(x)
ight]$$

Twist-3 structure functions:

$$g_1^{\text{T3+TMC}}(x,Q^2) = 4\mu^2 x^2 \frac{D(\xi)}{(1+4\mu^2 x^2)^{3/2}} - 4\mu^2 x^2 \frac{3}{(1+4\mu^2 x^2)^2} \int_{\xi}^{1} \frac{dz}{z} D(z) + 4\mu^2 x^2 \frac{2-4\mu^2 x^2}{(1+4\mu^2 x^2)^{5/2}} \int_{\xi}^{1} \frac{dz}{z} \int_{z'}^{1} \frac{dz'}{z'} D(z') g_2^{\text{T3+TMC}}(x,Q^2) = \frac{D(\xi)}{(1+4\mu^2 x^2)^{3/2}} - \frac{1-8\mu^2 x^2}{(1+4\mu^2 x^2)^2} \int_{\xi}^{1} \frac{dz}{z} D(z) - \frac{12\mu^2 x^2}{(1+4\mu^2 x^2)^{5/2}} \int_{\xi}^{1} \frac{dz}{z} \int_{z'}^{1} \frac{dz'}{z'} D(z')$$

Twist-3 quark distributions:

$$D(x,Q^2) = \frac{4}{9}D_u(x,Q^2) + \frac{1}{9}D_d(x,Q^2)$$

Twist-4 structure function:

$$g_1^{\mathrm{T4(p,n)}}(x,Q^2) = H^{(p,n)}(x)/Q^2$$