Higher Order calculation of SIDIS Y term

Nobuo Sato University of Connecticut INT Program Transverse spin and TMDs Seattle, 2018

SIDIS overview

Semi inclusive deep inelastic scattering (SIDIS)

Key question : How is p_h^{\perp} generated at short distances?

Different regions are sensitive to distinct physical mechanisms

Factorization in the current region

- $q_{\rm T}$ integrated cross sections
 - + 2 non perturbative ingredients: $f_1(\xi)\text{, }d_1(\zeta)$
- $q_{\rm T}$ differential cross sections
 - + 4 non perturbative ingredients: $f_1(\xi)$, $d_1(\zeta)$, $f_1(\xi, k_{\perp})$, $d_1(\zeta, k_{\perp})$
- How to relate the two methods?
 - \rightarrow Collins, Gamberg, Prokudin, Rogers, NS, Wang

$$\frac{d\sigma}{dxdzdQ^2} = \int dq_{\rm T} \frac{d\sigma}{dxdzdQ^2dq_{\rm T}}$$

Can we validate the formalism in nature?

The formalism for $q_{\rm T}$ differential cross section

Theory framework for current fragmentation

Theory framework for current fragmentation

Theory framework for current fragmentation

The formulation of is based on a scale separation governed by the ratio

$$q_{\rm T}/Q$$

where

$$z = \frac{P \cdot p_h}{P \cdot q}, \quad q_{\rm T} = p_h^{\perp} / z$$

The cross section is built as

$$\frac{d\sigma}{dxdQ^2dzdp_h^{\perp}} = \mathbf{W} + \mathbf{FO} - \mathbf{ASY} + \mathcal{O}(m^2/Q^2)$$

$$\sim \mathbf{W} \quad \text{for } q_{\mathrm{T}} \ll Q$$

$$\sim \mathbf{FO} \quad \text{for } q_{\mathrm{T}} \sim Q$$

Why q_{T}/Q ? (J. Gonzalez-Hernandes, T.C Rogers, NS, B. Wang)

Lets define

$$k \equiv k_1 - q$$

Propagators in the blob

$$\frac{1}{k^2 + O(\Lambda_{\text{QCD}}^2)}, \qquad \frac{1}{k^2 + O(Q^2)}$$

Two extreme regions

o
$$|k^2| \sim \Lambda^2_{\rm QCD} \to k$$
 is part of PDF
o $|k^2| \sim Q^2 \to k$ is part of hard blob

■ |k²|/Q² is the relevant Lorentz invariant measure of transverse momentum size

Why $q_{\rm T}/Q$? (J. Gonzalez-Hernandes, T.C Rogers, NS, B. Wang)

In terms of partonic variables

$$\left|\frac{k^2}{Q^2}\right| = (1-\hat{z}) + \hat{z}\frac{q_{\mathrm{T}}^2}{Q^2}$$

• For $q_T < Q$ one can write

$$\left|\frac{q_{\mathrm{T}}^2}{Q^2} < \left|\frac{k^2}{Q^2}\right| < 1 - z \left(1 - \frac{q_{\mathrm{T}}^2}{Q^2}\right)\right|$$

One can conclude that

- o $q_{\rm T} \ll Q$ signals the onset of TMD region
- o $q_{\rm T} \sim Q$ signals the large transverse momentum region

Phenomenology

Existing phenomenology

- These analyzes used only W (Gaussian, CSS)
- Samples with $q_{\rm T}/Q \sim 1.63$ has been included
- **BUT TMDs are only valid for** $q_T/Q \ll 1$!

Large $p_{\rm T}$ SIDIS phenomenology

At LO:

$$\frac{d\sigma}{dxdQ^2dzdp_{\rm T}} \sim \sum_q e_q^2 \int_{\frac{q_{\rm T}}{Q^2}\frac{xz}{1-z}+x}^1 \frac{d\xi}{\xi-x} f_q(\xi,\mu) \ d_q(\zeta(\xi),\mu) \ H(\xi)$$

For collinear distributions we use

• PDFs: CJ15

o FFs: DSS07

FO @ LO predictions (DSS07)

$$\underbrace{\frac{d\sigma}{\frac{dxdzdQ^2}{?}}}_{?} \stackrel{?}{=} \int dq_{\mathrm{T}} \underbrace{\left[\underbrace{\underbrace{\mathbf{W}}_{\checkmark} + \underbrace{\mathbf{FO}}_{?} - \underbrace{\mathbf{ASY}}_{?}\right]}_{?} + \mathcal{O}(m^2/Q^2)$$

Question

- How important is the P_T tail for the integrated SIDIS multiplicities?
- Consider the cumulative distribution function (CDF)

$$\text{CDF} = \int_{0}^{P_{\text{T}}^{2}} dP_{\text{T}}^{2} \frac{1}{M(x,z)} \frac{dM}{dP_{\text{T}}^{2}}(x,z,P_{\text{T}}^{2})$$

From $q_{\rm T}$ differential to $q_{\rm T}$ integrated

• For $q_{\rm T}$ integrated cross section @ NLO:

$$\frac{d\sigma}{dxdQ^2dz} = \sum_q H_q \otimes f_q \otimes d_q(x,z)$$

Data sets:

o SIDIS (h^+, h^-) q_T integrated data from COMPASS o $e^+e^- \rightarrow h^\pm + X$ (work with the 0.2 < z < 0.8 samples) o PDFs: JAM18

 The gluon fragmentation is significantly different → recently observed by the NNPDF

$$\chi^2/\text{npts} = 0.48$$

FO @ LO predictions (DSS07)

FO @ LO predictions (JAM18)

$$\underbrace{\frac{d\sigma}{dxdzdQ^2}}_{\checkmark} \stackrel{?}{=} \int dq_{\rm T} \underbrace{\left[\underbrace{\underbrace{\mathbf{W}}_{\checkmark} + \underbrace{\mathbf{FO}}_{?} - \underbrace{\mathbf{ASY}}_{?}\right]}_{?} + \mathcal{O}(m^2/Q^2)$$

order α_S^2 corrections to FO

- There are strong indications that order α_S^2 corrections are very important
- An order of magnitude of corrections at small p_T.
- As a sanity check, we need to have an independent calculation

Daleo,et al. (2005) PRD.71.034013

 $O(lpha_S^2)$ calculation (J. Gonzalez-Hernandes, T.C Rogers, NS, B. Wang)

$$W^{\mu\nu}(P,q,P_H) = \int_{x-}^{1+} \frac{d\xi}{\xi} \int_{z-}^{1+} \frac{d\zeta}{\zeta^2} \hat{W}^{\mu\nu}_{ij}(q,x/\xi,z/\zeta) f_{i/P}(\xi) d_{H/j}(\zeta)$$

$$\begin{aligned} \{ \mathbf{P}_{g}^{\mu\nu} \hat{W}_{\mu\nu}^{(N)}; \mathbf{P}_{PP}^{\mu\nu} \hat{W}_{\mu\nu}^{(N)} \} &\equiv \frac{1}{(2\pi)^4} \int \{ |M_g^{2 \to N}|^2; |M_{pp}^{2 \to N}|^2 \} \, \mathrm{d}\Pi^{(N)} - \text{Subtractions} \\ &\equiv \{ \mathbf{P}_{g}^{\mu\nu} \hat{W}_{\mu\nu}^{(N)}; \mathbf{P}_{PP}^{\mu\nu} \hat{W}_{\mu\nu}^{(N)} \}_{\mathrm{unsub}} - \text{Subtractions} \end{aligned}$$

- ✓ Compute $2 \rightarrow 2$ virtual graphs (Passarino-Veltman)
- ✓ Compute 2 → 3 real graphs
- ✓ Integrate 3-body PS analytically using dim reg
- ✓ Cancel double and single IR poles

Our setup for $O(\alpha_S^2)$ contribution

Born/Virtual

Real

Dots indicates the fragmenting parton

FO @ NLO benchmark

FO @ NLO (JAM FFs)

The large $p_{\rm T}$ puzzle

$$\underbrace{\frac{d\sigma}{dxdzdQ^2}}_{\checkmark} \stackrel{?}{=} \int dq_{\rm T} \underbrace{\left[\underbrace{\underbrace{\mathbf{W}}_{\checkmark} + \underbrace{\mathbf{FO}}_{?\checkmark} - \underbrace{\mathbf{ASY}}_{?}\right]}_{?} + \mathcal{O}(m^2/Q^2)$$

Summary and outlook

$$\frac{d\sigma}{dx \, dy \, d\Psi \, dz \, d\phi_h \, dP_{hT}^2} = \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x}\right) \sum_{i=1}^{18} F_i(x, z, Q^2, P_{hT}^2) \beta_i$$

F_i	Standard label	β_i
F_1	$F_{UU,T}$	1
F_2	$F_{UU,L}$	ε
F_3	F_{LL}	$S_{\parallel}\lambda_e\sqrt{1-\varepsilon^2}$
F_4	$F_{UT}^{\sin(\phi_h + \phi_S)}$	$ \vec{S}_{\perp} \varepsilon \sin(\phi_h + \phi_S)$
F_5	$F_{UT,T}^{\sin(\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \sin(\phi_h - \phi_S)$
F_6	$F_{UT,L}^{\sin(\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \varepsilon \sin(\phi_h - \phi_S)$
F_7	$F_{UU}^{\cos 2\phi_h}$	$\varepsilon \cos(2\phi_h)$
F_8	$F_{UT}^{\sin(3\phi_h-\psi_S)}$	$ \vec{S}_{\perp} \varepsilon \sin(3\phi_h - \phi_S)$
F_9	$F_{LT}^{\cos(\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \lambda_e\sqrt{1-\varepsilon^2}\cos(\phi_h-\phi_S)$
F_{10}	$F_{UL}^{\sin 2\phi_h}$	$S_{ } \varepsilon \sin(2\phi_h)$
F_{11}	$F_{LT}^{\cos \phi_S}$	$ \vec{S}_{\perp} \lambda_e\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_S$
F_{12}	$F_{LL}^{\cos \phi_h}$	$S_{ }\lambda_e\sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_h$
F_{13}	$F_{LT}^{\cos(2\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \lambda_e\sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_h-\phi_S)$
F_{14}	$F_{UL}^{\sin \phi_h}$	$S_{\parallel}\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_h$
F_{15}	$F_{LU}^{\sin \phi_h}$	$\lambda_e \sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_h$
F_{16}	$F_{UU}^{\cos \phi_h}$	$\sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h$
F_{17}	$F_{UT}^{\sin \phi_S}$	$ \vec{S}_{\perp} \sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_S$
F_{18}	$F_{UT}^{\sin(2\phi_h - \phi_S)}$	$ \vec{S}_{\perp} \sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_h-\phi_S)$

- The apparent disagreement between data and FO can be resolved by tunning FFs+NLO
- Maybe it might be possibility to describe F_{UU} in the full
 W + FO ASY
- This is important as all the structure functions that are typically provided in a form of asymmetries A_i = F_i/F_{UU}