Semi-Inclusive DIS at low to moderate Q

Ted Rogers

Jefferson Lab/Old Dominion **University**

- Overview of TMD factorization
- SIDIS
- Issues at small/moderate Q

INT workshop, October 8, 2018

TMD Example: Drell-Yan

TMD Example: Drell-Yan

Example: SIDIS

Example: SIDIS

Large and Small Transverse Momentum

Taxonomy

$$
\sigma \sim \int \mathcal{H}(Q) \otimes \underbrace{F_{q/P}(x_1,\mathbf{k}_{1T},S_1)}_{\text{Cov} \sigma} \otimes F_{\bar{q}/\bar{P}}(x_2,\mathbf{q}_T-\mathbf{k}_{1T},S_2)} \\ \sigma \sim \int \mathcal{H}(Q) \otimes \underbrace{F_{q/P}(x_1,\mathbf{k}_{1T},S_1)}_{\text{Cov} \sigma} \otimes D_{H/q}(z,\mathbf{q}_T+\mathbf{k}_{1T}) \\ \underbrace{\underbrace{\text{Unpolarized}}_{\text{polarized}} \underbrace{\text{Nonrized}}_{\text{polarized}} \underbrace{\text{Nonrized}}_{\text{polarized}} \underbrace{\text{Transversely}}_{\text{polarized}} \\ f_1(x,k_T) \\ \underbrace{\underbrace{\text{[Pind]}_{\text{polarized}}}_{\text{polarized}} \underbrace{\text{[Pind]}_{\text{polarized}}}_{\text{polarized}} \underbrace{\text{[Pind]}_{\text{polarized}} \underbrace{\text{[Pind]}_{\text{polarized}}}_{\text{polarized}} \underbrace{\text{[Pind]}_{\text{polarized}} \underbrace{\text{[Pind]}_{\text{polarized}}}_{\text{polarized}} \\ \underbrace{\text{[Pind]}_{\text{polarized}} \underbrace{\text{[Pind]}_{\text{polarized}}}_{\text{polarized}} \underbrace{\text{[Pind]}_{\text{polarized}} \underbrace{\text{[Pind]}_{\text{polarized}}}_{\text{polarized}} \underbrace{\text{[Pind]}_{\text{polarized}} \underbrace{\text{[Pind]}_{\text{polarized}}}_{\text{polarized}} \\ \underbrace{\text{[Pind]}_{\text{polarized}} \underbrace{\text{[Pind]}_{\text{polarized}}}_{\text{polarized}} \underbrace{\text{[Pind]}_{\text{polarized}} \underbrace{\text{[Pind]}_{\text{polarized}}}_{\text{polarized}} \underbrace{\text{[Pind]}_{\text{polarized}} \underbrace{\text{[Pind]}_{\text{polarized}}}_{\text{polarized}} \\ \underbrace{\text{[Pind]}_{\text{polarized}} \underbrace{\text{[Pind]}_{\text{polarized}}}_{\text{polarized}} \underbrace{\text{[Pind]}_{\text{polarized}} \underbrace{\text{[Pind]}_{\text{polarized}}}_{\text{polarized}} \underbrace{\text{[Pind]}_{
$$

Collins-Soper / Light-cone Renormalization

• Collinear PDFs:

Independent of hadron

$$
f_{j/p}(\xi;\mu) = \sum_{i} \int \frac{dz}{z} Z_{ji}(z,\alpha_s(\mu)) f_{0,i/p}(\xi/z) = Z_{ji} \otimes f_{0,i/p}
$$

• TMD PDFs, CS Equation:

$$
\tilde{F}_{f/P}(x_1, \mathbf{b}_T; \mu, y_s) = \lim_{\text{WL Raps} \to \infty} \left(\tilde{F}_{f/P}^{\text{unsub.}}(x_1, \mathbf{b}_T; \mu) \times Z_{\text{CS}}(\mathbf{b}_T; y_s) \right)
$$
\n**Independent of hadron**

X UV renormalization

Collins-Soper / Light-cone Renormalization

• Collinear PDFs:

Transverse Momentum Dependent Evolution

• Collinear / DGLAP, Evolution with Scale:

$$
\frac{\mathrm{d}}{\mathrm{d}\ln\mu}f_{j/P}(x;\mu)=2\int P_{jj'}(x')\otimes f_{j'/P}(x/x';\mu)
$$

• TMD Case:

$$
\frac{\partial \ln \tilde{F}(x, b_T; \mu, \zeta)}{\partial \ln \sqrt{\zeta}} = \tilde{K}(b_T; \mu)
$$

$$
\frac{\mathrm{d}\tilde{K}(b_T; \mu)}{\mathrm{d}\ln \mu} = -\gamma_K(g(\mu))
$$

$$
\frac{\mathrm{d}\ln \tilde{F}(x, b_T; \mu, \zeta)}{\mathrm{d}\ln \mu} = \gamma(g(\mu); \zeta/\mu^2)
$$

Transverse Momentum Dependent Evolution

One TMD PDF: Solution to Evolution

Ex: Cutoff Prescription:

Combining Results in TMD Factorization

Translation of results: Collins, TCR (2017)

Low-to-Moderate Q SIDIS: Motivation

• Sensitivity to intrinsic non-perturbative effects.

• Many SIDIS measurements are at low/moderate Q.

- Transition to partonic degrees of freedom.
	- E.g., quark-hadron duality

Low-to-moderate Q

0.4

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Bressan, and M. Contalbrigo, "Experimental results on TMDs" (2016) Help From : Sterling 0.6 0.8 *Gordon* \boldsymbol{x} $Q(GeV)$ $q_T = 2 GeV, z = .25$ 9 8 $\overline{7}$ 6 5 $\overline{4}$ 3 $\overline{2}$ x_{Bj}

H. Avakian, A.

Low-to-moderate Q

H. Avakian, A. Bressan, and M. Contalbrigo, "Experimental results on TMDs" (2016)

> *Help From : Sterling Gordon*

Large Q

Candidate from NC sample

Low-to-moderate Q

Low-to-moderate Q

Challenges at moderate scales

• Non-zero hadron masses.

• Constituents have non-zero virtuality, mass, etc.

• The separation between regions gets squeezed.

Cartography of SIDIS

e 2*y , Q , Q* **Cartography of SIDIS**

Factorization: Inclusive Case

• Power expansion

$$
\frac{\mathrm{d}\sigma}{\mathrm{d}x_{\text{Bj}}\,\mathrm{d}Q^2} = \int \mathrm{d}\xi \,\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}\hat{x}_{\text{Bj}}\,\mathrm{d}Q^2} f(\xi) + O\left(\frac{m^2}{Q^2}\right)
$$

• m^2 = parton virtuality, transverse momentum, mass…

• What about hadron masses?

Massless Target Approximation (MTA)

• Exact:

$$
P=\left(\sqrt{M^2+P_z^2},0,0,P_z\right)=\left(P^+,\frac{M^2}{2P^+},\textbf{0}_\text{T}\right)
$$

• The approximation:

$$
P \to \tilde{P} = (P_z, 0, 0, P_z) = (P^+, 0, \mathbf{0}_T)
$$

$$
2P \cdot q \to 2\tilde{P} \cdot q \qquad M^2/Q^2 \to 0
$$

MTA in Light-Cone Fractions

• Light-cone ratios:

- No MTA:
$$
-\frac{q^+}{P^+} = x_N \equiv \frac{2x_{\text{Bj}}}{1 + \sqrt{1 + \frac{4x_{\text{Bj}}^2 M^2}{Q^2}}}
$$

- MTA: $-\frac{q^+}{P^+} = x_{\text{Bj}} + O\left(\frac{x_{\text{Bj}}^2 M^2}{Q^2}\right)$

Factorization and Parton Approximations

$$
q=\left(-x_\mathrm{N} P^+, \frac{Q^2}{2x_\mathrm{N} P^+}, \mathbf{0}_\mathrm{T}\right)
$$

 $k_i^+ = O(Q)$ $k_i^2 = O(m^2)$ $(k_i + q)^2 = O(m^2)$

 $2k_i^+q^- + 2k_i^-q^+ - Q^2 + k_i^2 = O(m^2)$ $2k_1^+q^- = Q^2 + O(m^2)$

$$
\xi \equiv \frac{k_{\rm i}^{+}}{P^{+}} = x_{\rm N} + O\left(\frac{m^{2}}{Q^{2}}\right)
$$

$$
= x_{\rm Bj} + O\left(\frac{x_{\rm Bj}^{2}M^{2}}{Q^{2}}\right) + O\left(\frac{m^{2}}{Q^{2}}\right)
$$

Aivazis, Olness, Tung (AOT) Phys. Rev. D 50, 3085 (1994)

• Normal factorization, just keeping exact mass.

– Target mass corrected (TMC)

$$
W^{\mu\nu} = \int_{x_N}^1 \frac{\mathrm{d}\xi}{\xi} \hat{W}^{\mu\nu}(x_N/\xi, q) f(\xi) + O(m^2/Q^2)
$$

- MTA

$$
W^{\mu\nu} = \int_{x_{\text{B}j}}^{1} \frac{\mathrm{d}\xi}{\xi} \hat{W}^{\mu\nu}(x_{\text{B}j}/\xi, q) f(\xi) + O\left(m^2/Q^2\right) + O\left(x_{\text{B}j}^2 M^2/Q^2\right)
$$

• Purely kinematical.

Extend AOT to SIDIS

• Light-cone fractions versus x and z:

$$
x_{\rm N} = -\frac{q^+}{P^+} = \frac{2x_{\rm Bj}}{1 + \sqrt{1 + \frac{4x_{\rm Bj}^2 M^2}{Q^2}}} \qquad x_{\rm Bj} = \frac{Q^2}{2P \cdot q}
$$

$$
z_{\rm h} = \frac{P \cdot P_{\rm B}}{P \cdot q} = 2x_{\rm Bj} \frac{P \cdot P_{\rm B}}{Q^2}
$$

• Final state hadron mass (M_B) sensitivity:

$$
\begin{split} z_{\rm N} &= \frac{x_{\rm N} z_{\rm h}}{2 x_{\rm Bj}} \left(1 + \sqrt{1 - \frac{4 M^2 M_{\rm B,T}^2 x_{\rm Bj}^2}{Q^4 z_{\rm h}^2}}\right) \\ &= z_{\rm h} \left(1 - \frac{x_{\rm Bj}^2 M^2}{Q^2} \left(1 + \frac{P_{\rm B,T}^2}{z_{\rm h}^2 Q^2}\right) + \left(\frac{x_{\rm Bj}^2 M^2}{Q^2}\right)^2 \left(\frac{P_{\rm B,T}^2}{z_{\rm h}^2 Q^2} - \frac{P_{\rm B,T}^4}{z_{\rm h}^4 Q^4} + 2 - \frac{M_{\rm B}^2}{z_{\rm h}^2 M^2 x_{\rm Bj}^2}\right) + O\left(\left(\frac{x_{\rm Bj}^2 M^2}{Q^2}\right)^3\right)\right) \end{split}
$$

Light-cone fractions

Light-cone fractions

Factorization and Parton Approximations

$$
\xi = x_{\rm N} \left(1 + \frac{k_{\rm f}^2 + k_{\rm T}^2}{Q^2} + \cdots \right)
$$

$$
R_1 \equiv \frac{P_{\rm B} \cdot k_{\rm f}}{P_{\rm B} \cdot k_{\rm i}} \quad m^2 / \mathcal{Q}^2 \rightarrow 0 \quad e^{-\Delta y}
$$

M. Boglione , J. Collins, L. Gamberg , J. O. Gonzalez-Hernandez , TCR , N. Sato (2017)

• Estimate of non-perturbative scales needed.

$$
y_i = \ln \frac{Q}{M_{i,\mathrm{T}}}; \qquad y_f = -\ln \frac{Q}{M_{f,\mathrm{T}}}
$$

"The overlap of kinematic coverage of COMPASS, HERMES and JLab (see fig. 1) would allow studies of Q² dependence in the range of Bjorken x [∼] *0.1–0.2, where the effects related to orbital motion of quarks are expected to be significant."*

*-*H. Avakian, A. Bressan, and M. Contalbrigo, "Experimental results on TMDs" (2016)

N. Sato et al, (20160 M. Hirai et al, (2007)

D. de Florian et al, (2007)

Large and Small Transverse Momentum

Large and Small Transverse Momentum

Help From : Andrew Dotson & Sterling Gordon

Extra Emissions

Region Diagnostics

• From model assumptions of underlying partonic picture, generate:

$$
- W_{\text{SIDIS}}^2
$$

- $x_{\rm N}/x_{\rm Bj}$,
- R_1
- R_2
- R_3
- Make a region map.
- Compare with measurements to constrain underlying picture.

Summary

- TMD factorization: Basics are well-established.
- SIDIS is important for TMD and related studies.
- Low-to-moderate Q opportunities: Access to interesting non-perturbative phenomena.
- Standard physical picture cannot be taken for granted.
	- Mass effects need to be accounted for.
	- Systematic diagnostic tools needed.

Daleo, de Florian, Sassot (2005) Phys.Rev. D71 (2005) 034013

Data: H1 (2004) Eur.Phys.J.C36:441-452,2004

