Theory review of jets at the EIC

Felix Ringer

Lawrence Berkeley National Laboratory

INT, Seattle, 10/17/18

Inclusive Jets

Jet Substructure

2

Correlations

CMS Experiment at the LHC, CERN Data recorded: 2015-Sep-28 06:09:43.129280 GMT

Jets and jet substructure at

- LEP, HERA
- Tevatron, RHIC, LHC
- EIC

	Introduction	Inclusive Jets	Jet Substructure	Correlations	Conclusions
4	A few of recent exam	ples:		0.02	$gluon$ $\mu^{2} = 10 \text{ GeV}^{2}$
•	Quark/ gluon taggin	g using for exam	0 <u>u+u</u> z		
•	Jet charge			0.1 0.2 0.3 0 Anderle, Kaufma	.4 0.5 0.6 0.7 0.8 0.9 Inn, Stratmann, FR, Vitev `17
•	• Hadron-in-jet distributions				
• Possible extraction of α_s Les Houches `17					$R_0 = 0.5, \ \beta = 0$ $p_T > 50 \text{ GeV}$ $p_T > 100 \text{ GeV}$
•	Measurement of the Soft drop or subjets	e QCD splitting	function using	$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}z_g} 4$	$p_T > 500 \text{ GeV}$ $p_T > 2000 \text{ GeV}$ F_{UV}^q f_{UV}^q $p_T > 2000 \text{ GeV}$ F_{UV}^q F_{UV}^q f_{UV}^q
tion	Quark let Efficiency - Chuch let Ba	in at in a second secon	ROC curve 100% (1,1) = Quark Jet, 100%	Larkosk	i, Marzani, Thaler `15
Cross Sect	Guark Jet Efficiency Gluon Jet Re		Better Rejection	0.9 0.9 0.8 0.7 0.7 0.6 0.6 1 Jet Charge 0.2 0.1 0.2 0.1 0.4 0.2 0.2 0.1 0.4 0.2 0.4 0.2 0.4 0.4 0.5 0.7 0.3 0.4 0.4 0.5 0.7 0.3 0.4 0.4 0.5 0.7 0.3 0.4 0.4 0.4 0.4 0.5 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	$ \begin{array}{c} \kappa = 0.4 \\ \kappa = 0.5 \\ \kappa = 0.3 \\ \kappa = 0.2 \\ \kappa = 0.1 \end{array} $ 2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
	0	bservable	Quark Jet Efficiency	L	own Quark Jet Efficiency
	Kang, Lee, FR `18		3		Fraser, Schwartz `18

Jets at an EIC

- Jets are inherently interesting
- Constrain non-perturbative quantities e.g. collinear and TMD (un)polarized PDFs

For recent work see for example: Schlegel, Hinderer, Vogelsang `15, Abelov, Boughezal, Liu, Petriello `16, Klasen, Kovarik `18, Currie, Gehrmann, Glover, Huss, Niehus, Vogt `18, Chu, Aschenauer, Lee, Zhang `17...

Jets at an EIC

- Jets are inherently interesting
- Constrain non-perturbative quantities e.g. collinear and TMD (un)polarized PDFs
- No fragmentation functions required
- Complimentary to observables with identified hadrons
- Probe of nuclear matter effects in eA
- Can make use of new methods developed for the LHC and RHIC like jet substructure and tagging

Challenge: We have to understand the NP physics of jets I.Validate with RHIC, HERA measurements or 2. Compare to MC simulations

Outline

- Introduction
- Inclusive jets at the EIC
- Jet substructure
- Jet correlations
- Conclusions

Schlegel, Hinderer, Vogelsang `15, `17, Abelov, Boughezal, Liu, Petriello `16, Boughezal, Petriello, Xing `18

Schlegel, Hinderer, Vogelsang `15, `17, Abelov, Boughezal, Liu, Petriello `16, Boughezal, Petriello, Xing `18

• $pp \rightarrow jet + X$ Lepton unobserved, high p_T

 $\frac{d\sigma}{dp_T d\eta}$

• $pp \rightarrow \ell + \text{jet} + X$ DIS, high p_T, Q^2

 $\frac{d\sigma}{dp_T d\eta dQ^2}$

• $pp \rightarrow \ell + \text{jet} + X$ Photoproduction, high $p_T, Q^2 < 0.1 \text{ GeV}^2$

QCD factorization

• Inclusive jet production $pp \rightarrow \text{jet} + X$

RG evolution of jet functions

$$\mu \frac{d}{d\mu} J_i = \sum_j P_{ji} \otimes J_j$$

Dasgupta, Dreyer, Salam, Soyez `15 Kaufmann, Mukherjee, Vogelsang `15 Kang, FR, Vitev `16 Dai, Kim, Leibovich `16

QCD factorization

• Inclusive jet production $pp \rightarrow \text{jet} + X$

$$\frac{d\sigma^{pp \to jet X}}{dp_T d\eta} = \sum_{a,b,c} f_a \otimes f_b \otimes H^c_{ab} \otimes J_c + \mathcal{O}(R^2)$$

let substructure $\boldsymbol{\tau}$

$$\frac{d\sigma^{pp\to(jet\,\boldsymbol{\tau})X}}{dp_T d\eta \boldsymbol{d\boldsymbol{\tau}}} = \sum_{abc} f_a \otimes f_b \otimes H^c_{ab} \otimes \mathcal{G}_c(\boldsymbol{\tau}) + \mathcal{O}(R^2)$$

Dasgupta, Dreyer, Salam, Soyez `15 Kaufmann, Mukherjee, Vogelsang `15 Kang, FR, Vitev `16 Dai, Kim, Leibovich `16

QCD factorization

• Inclusive jet production $pp \rightarrow \text{jet} + X$

$$\frac{d\sigma^{pp\to \text{jet}X}}{dp_T d\eta} = \sum_{a,b,c} f_a \otimes f_b \otimes H^c_{ab} \otimes J_c + \mathcal{O}(R^2)$$

• Jet substructure au

$$\frac{d\sigma^{pp\to(\text{jet}\,\boldsymbol{\tau})X}}{dp_T d\eta \boldsymbol{d\tau}} = \sum_{abc} f_a \otimes f_b \otimes H^c_{ab} \otimes \mathcal{G}_c(\boldsymbol{\tau}) + \mathcal{O}(R^2)$$

• Hard functions for lepton-proton scattering, e.g.

 $\frac{d\sigma^{\ell p \to \ell' \, \text{jet} + X}}{dp_T d\eta dQ^2 d\tau}$

Photoproduction

Jäger, Stratmann, Vogelsang `03

(unpolarized and polarized)

$$\mathcal{G}_{c}(\tau)$$

• DIS

Daleo, de Florian, Sassot `04, Gonzalez-Hernandez, Rogers, Sato, Wang `18

Photoproduction at the EIC

- Require high p_T and $Q^2 < 0.1 \text{ GeV}^2$
- Access the parton content of (polarized) photons

Jäger, Stratmann, Vogelsang `03 de Florian, Pfeuffer, Schäfer, Vogelsang` I 3 Chu, Aschenauer, Lee, Zhang ` I 7

Photoproduction at the EIC

Jäger, Stratmann, Vogelsang `03 Chu, Aschenauer, Lee, Zhang `17

Phenomenology

 $pp \to \ell + \text{jet} + X$

in collaboration with Aschenauer, Page

Phenomenology

 $pp \to \ell + \text{jet} + X$

in collaboration with Aschenauer, Page

Cold nuclear matter effects in eA

FR, Sato, Vitev - in preparation

 $Q^2 > 1 \text{ GeV}^2$ $\nu < 23 \text{ GeV}$

• Hadron multiplicity ratios $d\sigma/dz_h$

• SIDIS

Outline

- Introduction
- Inclusive jets at the EIC
- Jet substructure
- Jet correlations
- Conclusions

The jet mass at the LHC

20

Kang, Lee, FR `18, Kang, Lee, Liu, FR `18

• Jet mass
$$m_J^2 = \left(\sum_{i \in J} p_i\right)^2$$
 for inclusive jet production $pp \to (\text{jet } m_J^2)X$

- Quark-gluon discrimination
- NP contribution:
 - Multi parton interactions (MPI)
 - Hadronization
 - Pileup
- Including soft drop: α_s extraction possible Les Houches `17

see also: Li, Li, Yuan `II, Dasgupta, Khelifa-Kerfa, Marzani, Spannowsky `I2, ...

Factorization

Kang, Lee, FR `18, Kang, Lee, Liu, FR `18

 $=\frac{m_J^2}{p_T^2}$

 $pp \to (\text{jet} \, m_J^2) X$

• Hard-collinear factorization $R\ll 1$

$$\frac{d\sigma}{d\eta dp_T d\tau} = \sum_{abc} f_a(x_a, \mu) \otimes f_b(x_b, \mu) \otimes H^c_{ab}(x_a, x_b, \eta, p_T/z, \mu) \otimes \mathcal{G}_c(z, p_T, R, \tau, \mu)$$

• Hard-collinear-soft factorization $\tau \ll R^2$

$$\mathcal{G}_{c}(z, p_{T}, R, \tau, \mu) = \sum_{i} \mathcal{H}_{c \to i}(z, p_{T}R, \mu) C_{i}(\tau, p_{T}, \mu) \otimes S_{i}(\tau, p_{T}, R, \mu)$$
hard-matching

Kang, Lee, FR `18, Kang, Lee, Liu, FR `18

22 ATLAS, JHEP 05 (2012) 128

Conclusions

Jet angularities

• Family of observables with a continuous parameter a

- Jet mass (a = 0), jet broadening (a = 1)
- Dependence on jet axis: standard, recoil free
- Event shape type of observables

$$\tau_a = \frac{1}{p_T} \sum_{i \in J} p_{Ti} \, \Delta R_{iJ}^{2-a}$$

Berger, Kucs, Sterman `03, Ellis, Vermilion, Walsh, Hornig, Lee `10, Hornig, Makris, Mehen `16, Kang, Lee, FR `18

hard
hard-collinear
collinear
collinear-soft
$$\mu_{H} \sim p_{T}$$

$$\mu_{J} \sim p_{T}R$$

$$\mu_{C} \sim p_{T} (\tau_{a})^{\frac{1}{2-a}}$$

• Factorization $\tau_a^{1/(2-a)} \ll R$

$$\mathcal{G}_{c}(z, p_{T}, R, \tau_{a}, \mu) = \sum_{i} \mathcal{H}_{c \to i}(z, p_{T}R, \mu) C_{i}(\tau_{a}, p_{T}, \mu) \otimes S_{i}(\tau_{a}, p_{T}, R, \mu)$$

Jet angularities

Kang, Lee, FR `18

 $F(\tau_a;\eta,p_T,R) = \frac{d\sigma^{pp \to (jet \tau_a)X}}{d\eta dp_T d\tau_a} \left/ \frac{d\sigma^{pp \to jetX}}{d\eta dp_T} \right|$

Inclusive Jets

Quark-gluon discrimination

Kang, Lee, FR `18

Quark-gluon discrimination

Kang, Lee, FR `18

Introduction

Photoproduction at the EIC

CT14, GRS 99 PDFs

Photoproduction at the EIC

Power corrections

• e.g.
$$m_J^2 = \left(\sum_{i\in J} p_i\right)^2$$
 vs.

vs.
$$au_0 = \frac{1}{p_T} \sum_{i \in J} p_{Ti} \Delta R_{iJ}^2$$

Angularity e⁺e⁻ Over Tau (Massive Particles): R=0.4 pT>10.0

Angularity e⁺e⁻ Over Tau (Massive Particles): R=0.8 pT>10.0

in collaboration with Aschenauer, Page

(a)

The jet energy profile

ATLAS, PRD 83 (2011) 052003

0.5

0.6

0.4

- Most frequently studied jet substructure observable
- LEP, HERA, Tevatron, LHC, ...
- Inclusive jets, Z+jet, Higgs+jet, ...

The jet energy profile

The jet energy profile

Kang, FR, Waalewijn `I 6 Cal, FR, Waalewijn - in preparation

$$\psi(r) = \frac{\sum_{\Delta R_{iJ} < r} p_{Ti}}{\sum_{\Delta R_{iJ} < R} p_{Ti}}$$

$$\rho(r) = \frac{\mathrm{d}\psi(r)}{\mathrm{d}r}$$

ATLAS, PRD 83 (2011) 052003

• Factorization beyond leading-log

$$\begin{aligned} \mathcal{G}_i(z, p_T R, r/R, \mu) &= \sum_j \mathcal{H}_{i \to j}(z, p_T R, \mu) \\ &\times \int d^2 k_\perp \, C_j(p_T r, k_\perp, \mu, \nu) \, S_j^{\rm G}(k_\perp, \mu, \nu R) \, S_j^{\rm NG}(r/R) \end{aligned}$$

- NLL' resummation of $\ln(r/R)$
- Rapidity RG evolution, SCET ${\scriptstyle \parallel}$
- Soft recoil
- Non-global logarithms

Earlier work see: Ellis, Kunszt, Soper `92 Seymour `98 Li, Li, Yuan `11 Chien, Vitev `14

Identified hadrons inside jets

- Constrain fragmentation functions
- Tagging

$$\frac{d\sigma^{pp\to(jet\,h)X}}{dp_T d\eta dz_h} = \sum_{abc} f_a \otimes f_b \otimes H^c_{ab} \otimes \mathcal{G}_c(z_h)$$

Arleo, Fontannaz, Guillet, Nguyen `14 Kaufmann, Mukherjee, Vogelsang `15 Kang, FR, Vitev `16

Outline

- Introduction
- Inclusive jets at the EIC
- Jet substructure
- Jet correlations
- Conclusions

Lepton-jet correlations

Liu, FR, Vogelsang, Yuan - in preparation

- Measure imbalance between lepton and jet
- Spin asymmetries and eA collisions
- Analogous to e.g. $pp \rightarrow di$ -jets + X Sun, Yuan, Yuan `15
- cms or laboratory frame; close analogy to pp collisions

Transverse plane

• Consider

Requires TMD resummation for $q_{\perp} \ll k_{\ell' \perp}$ for the back-to-back configuration, and jet radius resummation for $R \ll 1$

Factorization

Liu, FR, Vogelsang, Yuan - in preparation

Hard (virtual) Jet function

$$\frac{d\sigma}{dy_{\ell'}d^2k_{\perp\ell'}d^2q_{\perp}} = H_q(k_{\ell'\perp},\mu) J_q(k_{\ell'\perp}R,\mu)$$

$$\int d^2k_{\perp}d^2\lambda_{1\perp}d^2\lambda_{2\perp} x f_q(x,k_{\perp},\mu,\nu) S_{gl}(\lambda_{1\perp},\mu,\nu) S_{sc}(\lambda_{2\perp}R,\mu) \delta^{(2)}(q_{\perp}-k_{\perp}-\lambda_{1\perp}-\lambda_{2\perp})$$
Global soft Soft-collinear (in the jet direction)

Azimuthal lepton-jet correlation

Liu, FR, Vogelsang, Yuan - in preparation

Outline

- Introduction
- Inclusive jets at the EIC
- Jet substructure
- Jet correlations
- Conclusions

Conclusions

- Jets can be a unique tool at the future EIC
- Requires further theoretical efforts
- Extract collinear and TMD PDFs
- Jet substructure
- NP effects important
- Probe of nuclear matter

