Diffractive scattering from CGC

Heikki Mäntysaari

University of Jyväskylä, Finland

Probing Nucleons and Nuclei in High Energy Collisions, October 31, 2018 Exclusive production of vector meson/dijet/diffracive system

$$\begin{split} \gamma + A &\to V + A \\ \gamma + A &\to \mathsf{jet}_1 + \mathsf{jet}_2 + A \\ \gamma + A &\to M_X + A \end{split}$$

Pocket formula for VM production (2-gluon exchange)

$$\frac{\mathrm{d}\sigma^{\gamma^*H\to VH}}{\mathrm{d}t} = \frac{16\pi^3 \alpha_s^2 \Gamma_{ee}}{3\alpha_{em} M_V^5} \left[\mathsf{xg}(\mathsf{x}, \mathsf{Q}^2) \right]^2$$

- Diffraction is very sensitive to (small-x) gluons!
- Measure t (conjugate to impact parameter) \Rightarrow access to geometry

QCD at high energy: Color Glass Condensate

- CGC = QCD at high energies
- x (energy) dependence: BK/JIMWLK (perturbative)
- Saturation of gluon density at small x at scale Q_s^2

Natural framework to describe high energy scattering, which probes QCD in the non-linear regime

Deep inelastic scattering at high energy: dipole picture

Optical theorem: $\sigma^{\gamma^* p} \sim \text{dipole amplitude}$

 $\sigma^{\gamma^* p \rightarrow V p} \sim |\text{dipole amplitude}|^2$

Univesal dipole amplitude

Same universal QCD evolved dipole amplitude N appears in calculations of

- DIS
- Diffraction
- Particle spectra in pp/pA

• . . .

Non-perturbative input from a fit to HERA F_2 data.

Probe of the geometry: exclusive J/Ψ production

High energy factorization:

- $\ \, \bullet \ \, \gamma^* \rightarrow q\bar{q}: \ \, \Psi^{\gamma}(r,Q^2,z)$
- qq̄ dipole scatters elastically Amplitude N
- $\ \, {\it Q} \ \, q \ \, \bar{q} \rightarrow J/\Psi: \ \, \Psi^V(r, Q^2, z)$

Diffractive scattering amplitude

$$\mathcal{A}^{\gamma^* p \to V p} \sim \int \mathrm{d}^2 b \mathrm{d} z \mathrm{d}^2 r \Psi^{\gamma *} \Psi^V(r, z, Q^2) \mathbf{e}^{-\mathbf{i} \mathbf{b} \cdot \mathbf{\Delta}} \mathcal{N}(r, x, \mathbf{b})$$

- Impact parameter is the Fourier conjugate of the momentum transfer \rightarrow Access to the spatial structure
- Total F_2 : forward elastic scattering amplitude ($\Delta = 0$) for $V = \gamma$

Average over target configurations

Coherent diffraction:

Target remains in the same quantum state Probes average density

$$\frac{\mathrm{d}\sigma^{\gamma^*A \to V\!A}}{\mathrm{d}t} \sim |\langle \mathcal{A}^{\gamma^*A \to V\!A} \rangle|^2$$

Good, Walker, PRD 120, 1960 Miettinen, Pumplin, PRD 18, 1978 Kovchegov, McLerran, PRD 60, 1999 Kovner, Wiedemann, PRD 64, 2001

Variance, measures the amount of fluctuations ("*lumpiness*")! $\langle \rangle$: average over target configurations [N(r, b)]

Coherent diffraction:

Target remains in the same quantum state Probes average density

$$\frac{\mathrm{d}\sigma^{\gamma^*A \to V\!A}}{\mathrm{d}t} \sim |\langle \mathcal{A}^{\gamma^*A \to V\!A} \rangle|^2$$

Incoherent/target dissociation:

Total diffractive – coherent cross section Target breaks up Good, Walker, PRD 120, 1960 Miettinen, Pumplin, PRD 18, 1978 Kovchegov, McLerran, PRD 60, 1999 Kovner, Wiedemann, PRD 64, 2001

$$\frac{\mathrm{d}\sigma^{\gamma^*A \to V\!A^*}}{\mathrm{d}t} \sim \langle |\mathcal{A}^{\gamma^*A \to V\!A}|^2 \rangle - |\langle \mathcal{A}^{\gamma^*A \to V\!A} \rangle|^2$$

Variance, measures the amount of fluctuations ("*lumpiness*")! $\langle \rangle$: average over target configurations [N(r, b)]

Lessons from HERA

Dipole model fits to DIS data

Succesfull fits to precise σ_r data, different forms for the dipole N

• IPsat: parametrized x dependence and geometry, matching to DGLAP

Kowalski, Teaney 2003, Rezaeian et al, 2012, Mäntysaari, Zurita 2018,...

 Perturbative small-x evolution equations (BK, JIMWLK), usually without impact parameter profile (no diffraction)

Albacete et al 2009, Albacete et al 2010, Berger, Stasto, 2012, Lappi, Mantysaari 2013, Mantysaari, Schenke 2018

Simultaneous description of exclusive scattering

IPsat parametrization fitted to structure function data:

• Good description of the exclusive $J/\Psi, \rho, \phi, \gamma$ production data

Beyond the round proton

Recall: coherent cross section \sim average, incoherent \sim variance \Rightarrow need event-by-event fluctuating $N(\mathbf{r}, \mathbf{b})$

Constituent quark inspired picture

- Sample hot spot substructure
- Geometry and density fluctuations see also Mark's talk on Tue
- Use constraints from coherent and incoherent cross sections (average profile and amount of fluctuations)

Mantysaari, Schenke 2016, 2017, Cepila, Contreras, Takaki 2017, 2018

$$T_{\text{proton}}(\mathbf{b}) = \sum_{i=1}^{3} T_{a}(\mathbf{b} - \mathbf{b}_{i}) \qquad T_{a}(\mathbf{b}) \sim e^{-\mathbf{b}^{2}/(2B_{q})}$$

HERA data for $\gamma + p \rightarrow J/\Psi + p$

Lumpy:
$$B_{qc} = 3.3, B_q = 0.7$$

 $I_{H} = 0$
 $I_{H} =$

x[fm]

x[fm] Units: GeV⁻² Wed, Oct 31, 2018 10 / 31

Beyond IPsat

Include color charge fluctuation, solve Yang-Mills equations \Rightarrow Wilson lines

- MV model with b dependence, similarly as in "IP-Glasma"
- Initial condition for pA hydro, good description of v_2 and v_3 data!

H.M, Schenke, Chun, Tribedy, 1705.03177

Energy evolution from CGC (round proton)

Heikki Mäntysaari (JYU)

Energy evolution from CGC \rightarrow smoother proton

Take proton configurations at $W=75\,{
m GeV}$ and evolve by solving perturbative JIMWMLK evolution equation H.M, B. Schenke, 1806.06783

Heikki Mäntysaari (JYU)

Compatible with ALICE data

ALICE measurement in $\gamma + p \rightarrow J/\Psi + p(p^*)$ collisions (UPC, more later)

 $x \sim 10^{-2} \rightarrow 2 \cdot 10^{-5}$

- Incoherent cross section not observed at small x
- Signature of smoothening at small x?
 - Smooth transition at intermediate *W*

ALICE, QM2018

• Proton grows, diffractive slope $B_p: 4 \,\mathrm{GeV}^{-2} \rightarrow \sim 6.7 \,\mathrm{GeV}^{-2}$

ALICE arXiv:1406.7819

So far so good

Excellent description of a large variety of HERA data. But still large theory uncertainties

- Significant contribution from dipoles $r\gtrsim 1/\Lambda_{\sf QCD}$ (more soon)
- $\bullet\,$ Vector meson wave function $\Rightarrow \sim 50\%$ uncertainty
- Skewedness ($x_1 \ll x_2$) $\Rightarrow \sim 50\%$ phenomenological correction
- Higher order corrections (Boussarie, Wed Nov 7)

Description of large dipoles

Even at high Q^2 significant fraction of F_2 comes from dipoles $r \gtrsim 1.5 \, {\rm fm}$ Diffractive J/Ψ production: need to include up to $\sim 0.7 \, {\rm fm}$

• Note that $R_{
m proton} \sim 0.5\,{
m fm}$

In IP-sat they scatter with probability 1, not the case with JIWMLK

H.M, P. Zurita 1804.05311 , H.M, B. Schenke 1806.06783

Small-x evolution and impact parameter dependence

• Total σ_r underestimated (and diffractive cross sections)

More about large dipole contributions: H.M, P. Zurita, 1804.05311

Small-x evolution and impact parameter dependence

Initial condition for JIMWLK from charm F_2 data (not sensitive to large r)

- Total σ_r underestimated (and diffractive cross sections)
- Here: add non-perturbative contribution: $N(r > R_p) = 1$ Berger, Stasto, 1106.5740
- Comparison to IPsat: differences when $r \gtrsim R_{\text{proton}}$

Heikki Mäntysaari (JYU)

Higher densities with nuclear targets

Searching for saturation effects

Saturation models describe precise HERA data accurately Same quality can be obtained with linearized models (here "IPnonsat")

Diffraction off nuclei

- Enhance saturation effects: $Q_{s,A}^2 \sim A^{1/3} x^{-\lambda}$ (increasing A is cheaper than decreasing x)
- Varying A at the EIC \Rightarrow probe different Q_s^2 ranges

Clear nuclear effects: impulse approximation is scaled $\gamma + p$

Coherent diffraction, model comparison

ALICE, 1305.1467

Shadowing/saturation needed, compare e.g. AB-MSTW08 and AB-EPS09 (nuclear pdf) / LM-fIPsat (saturation)

Large nuclear suppression in vector meson production

 $W = 100, 1000 \, \text{GeV}$

- Especially for heavy mesons expect large nuclear effects
- No suppression with linear IPnonsat parametrization
- Q^2 and A scan at the EIC!

Heikki Mäntysaari (JYU)

Q^2 lever arm: dilute \leftrightarrow transition

High Q^2 = dilute region, saturation effects become visible when $Q^2 \lesssim Q_s^2$

But need high energy (Q^2 lever arm) to see the transition

Heikki Mäntysaari (JYU)

Extract nuclear geometry

Full EIC simulation with expected uncertainties in $\gamma + A \rightarrow J/\Psi + A$

Extract transverse density profile of small-x gluons

T. Toll, T. Ullrich, 1211.3048

Small nuclei: where are the small-x gluons located

Nucleon positions from Hulthen wave function IP-Glasma: add color charge fluctuations and (regulated) Coulomb tails

Preliminary

H.M, B. Schenke, in preparation

Fluctuations at different length scales

- Small |t|: long length scale, fluctuating nucleon positions
- Large |t|: short length scale, fluctuating nucleon substructure

Wed, Oct 31, 2018 27 / 31

Incoherent diffraction: largish p_T kick on small area

- Nucleon scatters off other nucleons on its way out
- More "ballistic nucleons" in central events
- Also nucleons when nucleus decays from excited state But with different p_T spectra (thermal in TRF)

"Ballistic protons": end up in the roman pot \Rightarrow centrality estimator

Centrality in diffraction

Larger saturation scale in central events

- Expect to see larger suppression for lighter mesons
- Centrality dependence of Q_s^2

 $\gamma + A \rightarrow V_1/V_2 + A^*, x_{\mathbb{P}} = 0.005$

Vector meson ratio in central / minbias events

• Light mesons more suppressed at $Q^2 \lesssim Q_s^2$

H.M, T. Lappi, R. Venugopalan, Phys.Rev.Lett. 114 (2015), 082301

Heikki Mäntysaari (JYU)

More differential: diffractive dijets

- Two transverse momenta (sum and difference)
 ⇒ more detailed probe
- $\bullet~$ Cross section \sim Wigner distribution $_{Hatta,~et~al,~1601.01585}$
- Dependence on dipole orientation (compute from MV)

Momentum sum-difference angle: $v_2 \neq 0$ IPsat: $v_2 = 0$, no dependence on θ_{rel}

 $\sphericalangle(\vec{r}, \vec{b})$: v_2 in IP-Glasma IPsat: no dependence on θ_{rel}

H.M, N. Mueller, B. Schenke, in progress

Complementarity of very high-energy $\gamma-p$ and $\gamma-Pb$ UPC \ldots and EIC with Q^2 and A lever arm

Possiblitities

- See clean saturation phenomena
- Precision studies of saturation effects in nuclei at NLO
- Map vector meson wave functions (Q^2 and Q_s^2 [A] lever arm helps)
- Extract Wigner distributions
- Understand confinement (large dipoles, evolution of p or d to small x)
- Inclusive diffraction, large diffractive/total cross section ratio
- Can we do centrality (inclusive or diffractive)

Interesting fundamental physics on its own

+ necessary input to LHC heavy ion physics program

BACKUPS

Inclusive diffraction

Higher Fock states are suppressed in the black disk limit

E. Aschenauer et al, 1708.01527, based on Kowalski, Lappi, Marquet, Venugopalan 0805.4071

Heikki Mäntysaari (JYU)

Diffraction and CGC

This is becoming precision physics (linear scale!)

T. Lappi, H.M., 1301.4095

 Model uncertainties mainly affect normalization, not rapidity (Bjorken-x) dependence.(?) "Theory uncertainties" are still large

- Dipole-nucleus amplitude
 - No nuclear DIS data to fit
 - But other data, e.g. R_{pA}
- Vector meson wave function (thin-thick lines)
 - Constrained mainly by the leptonic decay width = wave function at origin!
- Large phenomenological corrections
 - Especially skewedness
 (2 gluons, x ≪ x')
 - is large, $\sim 50\%$
- NLO???

 $b\gtrsim 2R_A$: strong interactions are suppressed

J. Nystrand et al, nucl-ex/0502005

- Nucleus creates a (real) photon flux n(ω)
- Photon-nucleus scattering

$$\sigma^{AA \to AA+V} \sim \mathbf{n}(\omega) \sigma^{\gamma A \to VA}(\omega)$$

Interesting QCD part: high-energy γ -nucleus or γ -proton scattering.

Hydro calculations with proton fluctuations from HERA

Large v_2 and v_3 at largest centrality bins reproduced well.

H.M, B. Schenke, C. Shen, P. Tribedy, 1705.03177

- Obtain saturation scale $Q_s(x_T)$ from IPsat (with fluctuations)
- MV-model: Sample color charges, density $\sim Q_s(x_T)$
- Solve Yang-Mills equations to obtain the Wilson lines

$$V(x_T) = P \exp\left(-ig \int dx^{-} \frac{\rho(x^{-}, x_T)}{\nabla^2 + m^2}\right)$$

- Dipole amplitude: $N(x_T, y_T) = 1 \operatorname{Tr} V(x_T) V^{\dagger}(y_T) / N_c$
- Fix parameters B_{qc} , B_q and m with HERA data

Lumpiness matters, not details of the density profile

3 valence quarks that are connected by "color flux tubes" (Gaussian density profile, width B_q). Also good description of the data

 $\label{eq:H.M.B.Schenke, PRD94 034042} Flux tubes implementation following results from hep-lat/0606016, used also e.g. in 1307.5911$

Vector meson wave functions

 $\gamma^* \rightarrow q\bar{q}$ can be computed from QED, but $q\bar{q} \rightarrow$ vector meson requires some modelling, parameters fit to reproduce decay width.

Excited states: $\Psi(2S)$ wave function has a node (orthogonal to J/Ψ). Cross section $\sim \int d^2r \Rightarrow$ large suppression compared to J/Ψ

S matrix ~ probability not to scatter [recall: S = 1 - N]:

$$S_A(r,b,x) = \prod_{i=1}^A S_p(r,b-b_i,x)$$

Average over nucleon configurations

$$\langle \mathcal{O}(\{b_i\})\rangle_N = \int \prod_{i=1}^A \left[\mathrm{d}^2 b_i T_A(b_i)\right] \mathcal{O}(\{b_i\})$$