MECHANICAL PROPERTIES OF THE NUCLEON FROM EXCLUSIVE REACTIONS

INSTITUTE OF NUCLEAR PHYSICS, U. OF WASHINGTON **PROBING NUCLEONS AND NUCLEI, OCTOBER 2019**

Simonetta Liuti University of Virginia

Diversion on tensor charge and the Strumia effect…

PHYSICAL REVIEW LETTERS

Highlights

Recent Accepted Collections

Authors

Referees

Search

Press

Beyond-Standard-Model Tensor Interaction and Hadron Phenomenology

<u> Aurore Courtov. Stefan Baeßler, Martín González–Alense, and Simonetta Liuti</u> Phys. Rev. Lett. 115, 162001 - Published 15 October 2015

First evaluation of the impact of the experimental tensor charge (g^T) on the extraction of BSM type elementary tensor <mark>(ε_τ)</mark> interactions **Setting the record straight:**

It should have been quoted in INT talk on Week 2!!

A. Courtoy, S.Baessler, M. Gonzalez-Alonso, S.L, arXiv:1503.06814

Outline

Physics goals

quarks and gluons **imaging**, **origin of mass, spin**, **nuclear structure**

Theory

Energy Momentum Tensor (EMT) and Generalized Parton Distributions (GPDs): probing the mechanical properties of the proton

Method

Femtography. Fourier transforms, merging information from lattice, models/parametrizations

Disentangling quark and gluon OAM

twist-3 GPDs (Brandon Kriesten, Thursday), k_T dependence (GTMDs) from lattice (Abha Rajan, Friday)

A concerted effort Center for Nuclear Femtography at Jefferson Lab

- organizing a variety of approaches /setting benchmarks
- extraction from experiments at EIC *beyond standard analyses/computational methods/phen. approaches*
- **Conclusions and Outlook**

1. PHYSICS GOALS

GPDs and Deeply Virtual Exclusive Experiments

A new paradigm that will allow us to both penetrate and visualize the deep structure of visible matter … to answer questions that we couldn't even afford asking before

what is the origin of mass and spin?

what is the distribution of forces/pressure inside the nucleon?

M. Burkardt Ph. Haegler, M. Diehl C.Carlson, M.Vanderheaghen

GPDs connect to complex phase space distributions (Wigner)

…To observe, evaluate and interpret Wigner distributions requires stepping up data analyses from the standard methods → developing new numerical/analytic/quantum computing methods

2. THEORY: EMT AND GPDS

How does the proton get its mass and spin?

$$
\mathcal{L}_{QCD} = \overline{\psi} \left(i \gamma_\mu D^\mu - m \right) \psi - \frac{1}{4} F_{a,\mu\nu} F_a^{\mu\nu} \Big[
$$

Invariance of L_{QCD} under translations and rotations

Energy Momentum Tensor

from **translation** inv.

$$
T^{\mu\nu}_{QCD}=\frac{1}{4}\;\overline{\psi}\,\gamma^{(\mu}D^{\nu)}\psi+Tr\left\{F^{\mu\alpha}F^{\nu}_{\alpha}-\frac{1}{2}g^{\mu\nu}F^2\right\}
$$

Angular Momentum Tensor

from **rotation** inv.

$$
M_{QCD}^{\mu\nu\lambda}=x^\nu T_{QCD}^{\mu\lambda}-x^\lambda T_{QCD}^{\mu\nu}
$$

QCD Energy Momentum Tensor and Angular Momentum

Conserved quantities

Momentum

$$
P^\mu = \int d^3\mathbf{x} \, T^{o\mu}
$$

Angular Momentum

$$
M^{\mu\nu} = \int d^3 \mathbf{x} M^{\sigma\mu\nu}
$$

$$
= \int d^3 \mathbf{x} \left[x^{\mu} T^{\sigma\nu} - x^{\nu} T^{\sigma\mu} \right]
$$

Angular Momentum density

 M mn $=$ x^nT m x l *T* mn

EMT matrix elements

$t = (p - p')^2$ $= D²$ $S=0$ $\langle p' \mid T^{\mu\nu} \mid p \rangle = 2 \left[A(t) P^{\mu\nu} + C(t) (\Delta^2 g^{\mu\nu} - \Delta^{\mu\nu}) \right] + \widetilde{C}(t) g^{\mu\nu}$

 $\langle p',\Lambda \mid T^{\mu\nu} \mid p,\Lambda \rangle = A(t) \bar{U}(p',\Lambda') [\gamma^{\mu} P^{\nu} + \gamma^{\nu} P^{\mu}] U(p,\Lambda) + B(t) \bar{U}(p',\Lambda') i \, \frac{\sigma^{\mu(\nu} \Delta^{\nu})}{2M} U(p,\Lambda) \nonumber \ + C(t) [\Delta^2 g^{\mu\nu} - \Delta^{\mu\nu}] \bar{U}(p',\Lambda') U(p,\Lambda) + \widetilde{C}(t) g^{\mu\nu} \bar{U}(p',\Lambda') U(p,\Lambda)$ forward forward off-forward $\frac{1}{2}$ and g not separately conserved

Energy Momentum Tensor in a spin 1 system

Angular momentum sum rule for spin one hadronic systems

Swadhin K. Taneja,^{1,*} Kunal Kathuria,^{2,†} Simonetta Liuti,^{2,‡} and Gary R. Goldstein^{3, §} PRD86(2012)

$$
S=1 \qquad \left\langle p',\Lambda'|T^{\mu\nu}|p,\Lambda\rangle = -\frac{1}{2}P^{\mu}P^{\nu}(\epsilon'^{*}\epsilon)\mathcal{G}_{1}(t) - \frac{1}{4}P^{\mu}P^{\nu}\frac{(\epsilon P)(\epsilon'^{*}P)}{M^{2}}\mathcal{G}_{2}(t)\right. \\ \left. - \frac{1}{2}\left[\Delta^{\mu}\Delta^{\nu} - g^{\mu\nu}\Delta^{2}\right](\epsilon'^{*}\epsilon)\mathcal{G}_{3}(t) - \frac{1}{4}\left[\Delta^{\mu}\Delta^{\nu} - g^{\mu\nu}\Delta^{2}\right]\frac{(\epsilon P)(\epsilon'^{*}P)}{M^{2}}\mathcal{G}_{4}(t)\right. \\ \left. + \frac{1}{4}\left[(\epsilon'^{*}{}^{\mu}(\epsilon P) + \epsilon^{\mu}(\epsilon'^{*}P) + \epsilon^{\mu}(\epsilon'^{*}P)\right)P^{\nu} + \mu \leftrightarrow \nu\right]\mathcal{G}_{5}(t)\right. \\ \left. + \frac{1}{2}\left[\epsilon'^{*}{}^{\mu}(\epsilon P) - \epsilon^{\mu}(\epsilon'^{*}P)\right]\Delta^{\nu} + \mu \leftrightarrow \nu + 2g_{\mu\nu}(\epsilon P)(\epsilon'^{*}P) - (\epsilon'^{*}{}^{\mu}\epsilon^{\nu} + \epsilon'^{*}{}^{\nu}\epsilon^{\mu})\Delta^{2}\right]\mathcal{G}_{6}(t)\right.
$$

Energy Momentum Tensor relations (spin ½)

Momentum

$$
\langle p'|\int d^3x \overline{T_{q,g}^{0i}}|\,|p\rangle = p^i \langle p'|\,p\rangle = A^{q,g}p^i \int d^3x \, 2p^0 \qquad \qquad \boxed{A^q + A^g = 1}
$$

Angular Momentum

$$
\left\langle p' \Big| \int d^3x \left(x_1 T^{02}_{q,g} - x_2 T^{01}_{q,g} \right) \Big| p \right\rangle = (A + B)^{q,g} \int d^3x \ p^0 \qquad \qquad \frac{1}{2} (A^{q,g} + B^{q,g}) = J_z^{q,g}
$$

Stress Tensor (Donoghue et al., PLB 2001, Polyakov Shuvaev (2002) 0207153) Goeke, Polyakov and Schweitzer(2002), Polyakov Schweitzer (2018)
 $T_{ij}(\vec{r}) = \frac{1}{M} \int \frac{d^3 \Delta}{(2\pi)^3} e^{i \vec{q} \cdot \vec{r}} \left(\Delta_i \Delta_j - \Delta^2 \delta_{ij} \right) C(t)$

C defines the stresses (forces) inside the nucleon

10/17/2018 **14**

GPDs and the Energy Momentum Tensor

Local operators: OPE&Mellin Moments (X. Ji, 1998)

$$
n_{\mu_1} \ldots n_{\mu_n} \langle P' | O_q^{\mu_1 \ldots \mu_n} | P \rangle = \overline{U}(P') \# U(P) H_{qn}(\xi, t) + \overline{U}(P') \frac{\sigma^{\mu \alpha} n_{\mu} i \Delta_{\alpha}}{2M} U(P) E_{qn}(\xi, t)
$$
helicity conserving helicity flip
helicity conserving helicity flip

$$
\int_{-1}^{1} dx \, x^{n-1} H_q(x, x, t) = H_{qn}
$$

2nd Mellin moments

GPDs are the key to interpret the mechanical properties of the proton

Connecting with observables: work in progress with W. Cosyn and A. Freese

Momentum/energy, angular momentum and pressure

Jlab Hall B, Burkert Elouadrhiri, Girod, Nature (2018)

Neutron stars as a laboratory for testing QCD…

- \triangleright Comparing the QCD EMT with the Equation of State of neutron stars, after event GW178017 (see W. Van de Brandt's talk at SPIN 2018)
- GW178017 is the observation of GWs and EM waves (gamma burst) from a binary neutron star merger
- *Candidate nuclear matter Equations Of State (EOS) must now also satisfy the GW170817 constraints on the Tidal Deformation of compact stars* V.Paschalidis et al., PRD, arXiv:1712.00451

In GR, EMT is the source of the gravitational field

Mass - Radius

10/17/2018 **22**

Constraints from the Equation of State of Meleran Stars on High Energy Deeply Virtual Exclusive Experiments

APR=Ahmed Pandharipande Ravenall

SL, A. Rajan, K. Yagi, in preparation

 \mathcal{F} $[A_{10}(t)] = \rho(r)$ \mathcal{F} $[A_{20}(t)] = \varepsilon(r)$ \mathcal{F} $[tC_{20}(t)] = p(r)$

Gluons

Consistency checks: causality, 1st law of thermodynamics (energy conservation)

GW/neutron stars data have us raising questions on some outstanding problems in a new perspective

Is the GR EMT the QCD EMT?

For internal consistency of the theory GR EMT is symmetric, how do we deal with anti-symmetric terms Bakker, Leader &Trueman (2004), Lorce (2017)

 \triangleright Mass energy density in QCD X.Ji (1995), K.F. Liu χQCD (2014), Lorce (2017), Hatta (2018)

 \triangleright Role of gluons W. Detmold and P.Shanahan (2018), M. Constantinou (2018)

 \triangleright Interpretation of forces M. Burkardt

The nucleon mass in Lattice QCD

Y. Yang et al., χQCD Coll

A closer look at mass $H_{QCD} = \langle T^{00} \rangle = H_q + H_g + H_m + H_a$

$$
H_q = \langle \bar{\psi}(-i\,\mathbf{D} \cdot \gamma)\psi \rangle \quad \text{quark energy}
$$
\n
$$
H_g = \left\langle \frac{1}{2} (E^2 + B^2) \right\rangle \quad \text{gluon field energy}
$$
\n
$$
H_m = \left\langle m \,\bar{\psi} \left(1 + \frac{1}{4} \gamma_m \right) \psi \right\rangle
$$
\n
$$
H_a = \left\langle \frac{1}{4} \beta(g)(E^2 - B^2) \right\rangle
$$
\n
$$
\text{trace anomaly}
$$
\nX. Ji (1995)

Deuteron

Ratio of Gluons/Quarks

experimentally… an open field…

3. FEMTOGRAPHY

Facing the next challenge….images at the femtoscale five orders of magnitude below

The Proton Relativistic Wave Function: Poincaré Invariance

Center of P⁺

- P⁺ plays the role of mass
- > "The subgroup of the Poincaré group that leaves the surface z+=const invariant, is isomorphic to the Galilean group in 2D"
- \triangleright We can disentangle the transverse components from the longitudinal components in boosts

Implication

We can map out faithfully the spatial quark distributions in the transverse plane (no modeling/approximation)

$$
q(x,\vec{b}) = \frac{dn}{dx d^2 \vec{b}}
$$

Soper (1977), Burkardt (2001)

Already a surprise: re-evaluation of nucleon charge distribution

z

 \pmb{p}

 $p-p'=\Delta$

 $\overline{\mathbf{b}_{out}}$

 p^{\prime}

 $\label{eq:1} \begin{array}{c} \updownarrow \ \mathbf{b} = \frac{\mathbf{b}_{in} + \mathbf{b}_{out}}{2} \end{array}$

Two distinct distance scales

GPDs involve two types of distance

$$
H^q(x,0,\Delta)=\int\frac{dz^-}{2\pi}\,e^{ixP^+z^-}\langle P-\Delta,\Lambda'\mid \bar q(0)\gamma^+q(z^-)\mid P,\Lambda\rangle_{\mathbf{z}_T=0}
$$

x distribution **P**> Fourier transform of non-diagonal density distribution in z⁻ ∆ distribution **Depay of the Set of Set of A** distribution in b

$$
\overline{q}_{+}^{\dagger}(0,b)q_{+}(z^{-},b) \rightarrow \rho(0,b;z^{-},b)
$$
\n

3. OAM AND OTHER GENERALIZED WANDZURA WILCZEK RELATIONS

Abha Rajan, Friday

Definition: Wigner Distributions

$$
L_q^{\mathcal{U}} = \int dx \int d^2 \mathbf{k}_T \int d^2 \mathbf{b} \left(\mathbf{b} \times \mathbf{k}_T \right)_z \mathcal{W}^{\mathcal{U}}(x, \mathbf{k}_T, \mathbf{b}) \underbrace{\begin{array}{c} \text{Hatta Burkardt} \\ \text{Lorce, Pasquini, Xiong, Yuan} \\ \text{Mukherjee, County, Engelhardt, Rajan, SL} \end{array}}_{\text{Supoptelhardt, Rajan, Shometta Liuti}} \mathbf{b}
$$

Possible Observable for L_q

$$
\frac{1}{M} \int d^{2}k_{T} k_{T}^{2} F_{14}(x, 0, k_{T}^{2}, 0, 0) = (b_{T} \times k_{T})_{3}(x) \qquad \mathsf{L}_{q}(x)
$$
\n
$$
\mathsf{k}_{\mathsf{T}} \text{ moment of a GTMD} \quad \mathsf{k}_{\mathsf{T}} \cdot \Delta_{\mathsf{T}} = 0
$$
\n(Lorce and Pasquini)\n
$$
\Delta_{\mathsf{T}}^{2} = 0
$$
\n**SURED?**\nCAN

Is there any observable that we can identify OAM with?

A New Relation

A. Rajan, A. Courtoy, M. Engelhardt, S.L., PRD (2016) arXiv:1601.06117 A. Rajan, M. Engelhardt, S.L., PRD (2018) arXiv:1709.05770

$$
\frac{1}{M} \int d^{2}k_{T} k_{T}^{2} F_{14}(x, 0, k_{T}^{2}, 0, 0) = -\int_{x}^{1} dy \left[\widetilde{E}_{2T} + H + E \right]
$$
\ntwist-3 GPD
\nOAM: twist 2 GTMD
\n**Generalized Lorentz Invariance Relation (LIR)**

M. Engelhardt, PRD (2017)

10/17/2018 Simonetta Liuti **43**

Quark sector :

EIC \rightarrow Adding gluons: Present data consistent with L_q <0

$$
\left| \frac{1}{2} - (\Delta G + L_g^{JM}) \right| = L_q^{JM} + \frac{1}{2} \Delta \Sigma_q
$$

Other correlations: quark and gluon spin-orbit A. Rajan et al, arXiv:1709.05770, PRD

Beam Target Spin Correlation: longitudinally polarized quark density in an unpolarized proton

Interpretation of gauge link

 $M_2(v)$

$$
\int dx \int d^2k_T \mathcal{M}^{i,S}_{\Lambda'\Lambda} = i\epsilon^{ij}gv^{-} \frac{1}{2P^+} \int_0^1 ds \langle p', \Lambda' | \bar{\psi}(0) \gamma^+ U(0,sv) \overline{F^{+j}(sv)} U(sv,0) \psi(0) | p, \Lambda \rangle
$$

$$
\int dx \int d^2k_T \mathcal{M}^{i,A}_{\Lambda'\Lambda} = -gv^{-} \frac{1}{2P^+} \int_0^1 ds \langle p', \Lambda' | \bar{\psi}(0) \gamma^+ \gamma^5 U(0,sv) \overline{F^{+i}(sv)} U(sv,0) \psi(0) | p, \Lambda \rangle
$$

Force acting on quark

Non zero only for staple link Force acting on quark $\frac{1}{2}$

$$
\mathsf{M}_{3}(\mathsf{V=0})\n\int dx\,x\int d^{2}k_{T}\,\mathcal{M}_{\Lambda^{\prime}\Lambda}^{i,S} = \frac{ig}{4(P^{+})^{2}}\langle p^{\prime},\Lambda^{\prime}|\bar{\psi}(0)\gamma^{+}\gamma^{5}F^{+i}(0)\psi(0)|p,\Lambda\rangle
$$
\n
$$
\int dx\,x\int d^{2}k_{T}\,\mathcal{M}_{\Lambda^{\prime}\Lambda}^{i,A} = \frac{g}{4(P^{+})^{2}}\epsilon^{ij}\langle p^{\prime},\Lambda^{\prime}|\bar{\psi}(0)\gamma^{+}F^{+j}(0)\psi(0)|p,\Lambda\rangle
$$

47 A more profound understanding of quark-gluon-quark correlations

- Two types
- Difference between JM and Ji (LIR violating term)

$$
L^{JM}(x)-L^{Ji}(x)=\mathscr{M}_{F_{14}}-\mathscr{M}_{F_{14}}|_{\nu=0}=-\int_x^1 dy\mathscr{A}_{F_{14}}(y).
$$

• Genuine twist 3 term (Generalized Qiu Sterman)

$$
\int d^2k_T \frac{k_T^2}{M^2} F_{14}^{JM} - \int d^2k_T \frac{k_T^2}{M^2} F_{14}^{Ji} = T_F(x, x, \Delta)
$$

An experimental measurement of twist 3 GPDs is sensitive to OAM but it cannot disentangle the difference between JM and Ji decompositions

Relations between gauge links derivatives

$$
\frac{d}{dv^-} \mathcal{M}^{i, S(n=2)}_{\Lambda\Lambda'} \Big|_{v^- = 0} = i(2P^+) \mathcal{M}^{i, A(n=3)}_{\Lambda\Lambda'} \frac{d}{dv^-} \mathcal{M}^{i, A(n=2)}_{\Lambda\Lambda'} \Big|_{v^- = 0} = -i(2P^+) \mathcal{M}^{i, S(n=3)}_{\Lambda}
$$

Proton transverse spin configuration

Work in progress: W. Armstrong, F. Aslan, M. Burkardt, M. Engelhardt, SL

4. A NEW EFFORT

Brandon Kriesten, Thursday

Multi-process, multi-variable analysis

- Deeply Virtual Compton Scattering
- Deeply Virtual Meson Production
- Timelike Compton Scattering
- **V** Double DVCS
- DVCS, TCS with Recoil Polarization
- \checkmark Exclusive DY

TW...NEED EIC TO CARRY OUT THIS PROGRAM)

Smiles Seling

All the channels

Exclusive pion induced DY **(EDY)**, T. Sawada et al., PRD93 (2016) accessible at LHC SPIN **P. Di Nezza's talk**

Because we are able to describe it as a GPD, OAM can be disentangled from data

A. Rajan et al, PRD (2016) arXiv:1601.06117 A. Rajan et al, arXiv:1709.05770

How do we detect all this?

- \triangleright Need to handle unprecedentedly large and varied volumes of data from different sources
- \triangleright The analyses requirements call for an evolution of the standard physics methodologies.
- \triangleright Infusion of Data Science methods into the physics analysis workflow provides that evolution.
- **No centralized hub!**
- \triangleright White paper with benchmarks is needed!

Announcing Uva Symposium on Imaging and Visualization December 10-11, 2018

Venue: Center for Femtography at Jefferson Lab

Femtography 2018

Symposium on Imaging and Visualization in Science

December 10-11, 2018 University of Virginia

> This symposium will bring together scholars and researchers from Virginia universities and research institutes to discuss recent developments and future opportunities in the imaging and visualization of scientific data.

https://pages.shanti.virginia.edu/femtography/

