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Outline

• EIC physics and machine requirements for 
Interaction Region  

• Interaction Region integration  

- focusing on eRHIC case

• (far-)forward nucleon detection

•  Requirement and considerations for the 
measurements
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Two concepts for an EIC in the US
• eRHIC at BNL

• RHIC + new electron machine
• JLEIC at JLab

• CEBAF + new hadron machine

• Maximum utilization of past and current investment

• US Nuclear Science Advisory Committee recommendation (2015):  “highest 
priority for new facility construction” 

• US National Academies of Science EIC science assessment (2018) “the science 
that can be addressed by an EIC is compelling, fundamental and timely”
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eRHIC realization

• Hadron Beam
• entirely re-uses injection chain and 

one of RHIC rings (Yellow ring)
• partially re-uses components of 

other ion RHIC ring
• Electron Accelerator added 

inside the existing RHIC tunnel:
• 5-18 GeV Storage Ring
• On-energy injector:18 GeV Rapid 

Cycling Synchrotron
• Polarized electron source and 400 

MeV injector linac
• Hadron cooling system 

 Required for L= 1034cm-2s-1

Without cooling the peak luminosity
reaches 4.4 1033cm-2s-1

Interaction region
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Interaction Region at RHIC (STAR at 6 o’clock)

16 m



EIC Collaboration Meeting 2017

EIC physics and measurements

E.C. Aschenauer

inclusive DIS
measure scattered 
electron with high 
precision

semi-inclusive DIS
detect the scattered 
lepton and final state
(jets, hadrons, 
correlations in final state)

exclusive processes
all particles in the 
event identified
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EIC Collaboration Meeting 2017

Hadron PID:
-1<η<1: proximity focusing 
          RICH + TPC: dE/dx
1<η<3: Dual-radiator RICH
-1>η>-3: Aerogel RICH  

Lepton PID: 
-3 <η< 3: e/p  
         1<|η|<3: in addition HCal response 
                    & γ suppression via tracking
|η|>3:  ECal+Hcal response & 
                γ suppression via tracking

9.0m

hadrons

electrons

eRHIC main detector 

hadronic calorimeters

TPC

e/m calorimeters          

RICH detectors

silicon trackers GEM trackers 3T solenoid coils

-4<η<4: Tracking 
(TPC+GEM+MAPS)
& E/M Calorimetry 
(hermetic coverage) 

MAPS: CMOS Monolithic Active Pixel Sensors  7



EIC Collaboration Meeting 2017 E.C. Aschenauer

Physics with forward tagging

• Defining exclusive reactions in ep/eA:
•ep: reconstruction of all particles in (diffractive) event 

          including scattered proton with wide kinematics coverage 
•eA: identify with rapidity gap. need wide rapidity coverage 
 [ HCal for 1<η<4]

• Identifying coherence of nucleus in diffractive eA:                                                                       
with neutrons from nucleus break-up 

• Sampling target in e+3He,d with spectator tagging
• Accessing event geometry in semi-inclusive eA with evaporated nucleons

scattered 
proton

scattered 
electron

γ, ρ, Φ, J/Ψ, Jets

γ, ρ, Φ, J/Ψ, Jet
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Forward protons in diffraction

• Scattered with ~O(mrad): Need a detector 
close to the beam - Roman Pot to detect

• Large angle (high-t) acceptance mainly 
limited by beam aperture [t~pT2~p2θ2]

• Small angle (low-t) acceptance limited by 
beam envelop (~<10σbeam)

• Reconstruction resolution limited by 
– beam angular divergence (~O(100μrad)), 

emittance
– uncertainties in beam offset, crossing, 

transport, detector alignment,  vertex 
reconstruction resolution

– at RHIC 

•  δp/p ~ 0.005

•  δt/t ~ 0.03/√t 

– in addition, effect of crab crossing (expected 
to be << beam divergence) need to be 
simulated 

Roman Pots set up at STAR / RHIC

15, 17m from IP
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Introduction Event selection Preliminary STAR results Summary Back-up

Forward proton detectors in the STAR experiment - Roman Pot Phase II* (since 2015)

8 Silicon Strip Detector (SSD)
packages (active area ⇡
79 mm ⇥ 49 mm) in Roman Pots

4 SSDs/package (2 x-type + 2
y -type), spatial resolution ⇡ 30 µm

4 detector stations (2 stations/side of
central detector) 15.8 m and 17.6 m
from IP, downstream the DX dipoles

station = 2 vertically-oriented Roman
Pots (above and below the beamline)

Roman Pot vessel: Silicon Strip Detector packages:
Dedicated runs/optics are not required
! continuous data-taking is enabled

Routine operation during regular high-
-lumi runs (1032cm�2s�1) at beam-
-detector distance of 8�beam ⇠ 25 mm

Acceptance (at
p
s = 200 GeV):

0.03 . �t . 0.3 GeV2,
1

4
⇡ . |�| . 3

4
⇡

Full reconstrucion of proton momentum

Rafa l Sikora (AGH UST, Kraków, PL) CEP at STAR, Di↵raction and Low-x 2018 28 August 2018 5 / 13

Roman Pot system at RHIC

55, 58m from IP
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Introduction Event selection Preliminary STAR results Summary Back-up

Event selection - momentum balance a key to ensure exclusivity
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Exclusive diffraction tagging with RP at RHICIntroduction Event selection Preliminary STAR results Summary Back-up

Event selection - momentum balance a key to ensure exclusivity
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EIC: Impact of proton acceptance in RP

Fourier
transform

Plots from 
EIC White Paper: Requirement:
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Forward neutrons from nucleus break-up
Diffractive physics in eA

• Measure spatial gluon distribution in nuclei
• Reaction: e + Au → eʹ + Auʹ + J/ψ, φ, ρ

suppress 
by detecting 

break-up
neutrons

• Physics requires forward scattered 
nucleus needs to stay intact
• Veto incoherent diffraction  

with break-up (evaporated) 
neutron detection

• discussions on  additional 
requirements: M Baker’s talk 

Requirements
• Need at +/- 4 mrad beam element free region before the zero 

degree calorimeter for 100% acceptance to detect the break-
up neutrons at 100 GeV

• Evaporated neutrons can be utilized to reconstruct collisions 
geometry ➔ precision neutron energy with good        
   reconstruction resolution with complete coverage

Au
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l Crucial for identifying processes 
with a neutron “target” [e(p)+n] in 
light ions - d, 3He

l Spectator neutron can be 
identified by a calorimeter at 
beam rapidity (zero degree 
calorimeter)

l Tagging spectator protons from d, 
3He

l Relying on separation from 
magnetic rigidity (Br) changes   
3He: p = 3/2:1  d:p = 2:1

l Momentum spread mainly due 
to Fermi motion + Lorentz 
boost

 Spectator protons in 3He, d

Deuteron spectator protons

3He spectator protons
10 GeV x 166 GeV10 GeV x 42 GeV

10 GeV x 42 GeV 10 GeV x 100 GeV
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Tagging spectator protons with Roman Pots

• Unambiguously identified e+p event vs 
e+n event in e+3He                                                                  
1p +1n vs 2p = 30% vs 22% 
(DPMJetIII)

• Common detector RP be utilized for 
tagging forward proton from 
diffraction and the spectator protons 
from 3He, d? 

• measurement can be done with RPs + 
forward detectors + ZDC

• Shown distribution at fixed RP 
locations at eRHIC IR 

• Detectors (location, size) can be 
configured to optimize the acceptance

• Acceptance for spectators with pT kick 
needs to be considered/simulated 

spectators in e+3He
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Controlling collision geometry in e-A?
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d	:		in	medium	traveling	length	
R	:		distance	from	involved	nucleon	to	the	

center	of	nucleus	
b	:		impact	parameter	
Nn:	number	of	neutrons	in	forward	region

d Nsecondary Nevaporated	neutron



• Forward neutrons dominantly correlated with collision geometry 

• Zero Degree Calorimeter (θ<~4 mrad) can be used to count the forward neutrons 

• More detailed study including nuclear shadowing effect in progress [BeAGLE]  
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EPJA 50  189 (2014) L.Zheng, JHL, E. Aschenauer 

collision geometry selected by forward neutrons 



EIC Interaction Region Requirements

• Large detector acceptance

• No accelerator magnets +/-4.5 m

• Forward detector component

• Large aperture of forward hadron

• Limited beam divergence 

• Hadron dipole spectrometer magnet

• Small (flat) beams, small β* for high luminosity

• βx*/βy*: 90cm/4cm for p, 42cm/5cm for e

• Fast beam separation using 22 mrad crossing angle

• Minimize parasitic collisions, clearance for forward neutrons 

• Managing synchrotron radiation

• no electron bends on the forward (hadron) side

• large aperture electron magnets on rear side to absorb SR far from IP   

• Electron chicane on electron side

• luminosity measurement and electron tagging

 18
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Interaction region at eRHIC



IR design at eRHIC

• Integrating requirements for hadron beam direction

• Forward Detector (6 - 20 mrad)

• Neutron detector ZDC (0 to 4 mrad)

• Roman Pots (sensitive 1 to 5 mrad)
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• Plots: HD (high divergence) mode
• Acceptance gap between RP and B0 

will be further optimized
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RP

B0

275 x 18 GeV

 41 x  5 GeV

100 x 10 GeV

~10σ away from beam line

first quad aperture & 
beam pipe

vacuum system 
~20mrad cone

pT acceptance for forward scattered protons from 
exclusive reactions

Accept 0.3 < pT< 1.3 GeV and higher 
à Low pT-part can be filled in with 

HA (high acceptance, smaller beam 
divergence) running mode

Proton acceptance with eRHIC

Simulation: A. Kiselev
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IP electron

ions

forward e 
detection

Compton 
polarimetry 

spectrometers

forward ion detection

IR Layout

Proton acceptance with JLEIC

R.Yoshida  Polarized Light Ions at EIC 2018

 

Region1

Region2

proton at 100 GeV

 



l Integral part of IR design 

l beam divergence, aperture limit, multiple running mode/beam parameters

l optimized location for optimal performance and acceptance

l Coverage

l need to measure diffractive protons in beam envelop - aperture limit with full φ acceptance

l need wide coverage in momentum for tagging spectator protons from light ions

l “grey” area in acceptance: between RP+forward spectrometer and main tracker (20 - ~50 mrad)

l Operation

l operation no disturbance to the beam,  routine operation  

l run simultaneously with normal operation for high luminosity sampling (ref: RHIC, LHC)

l Detector technology 

l tracking silicon/pixel + timing/triggering counter (ref: latest development at LHC) 

l potential space constraint for full φ coverage in horizontal: 2d-move

l geometrical configuration/size for maximal coverage for various energies  

Roman Pots at EIC: considerations
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Summary

• IR is crucial part of machine and physics performance 
and needs 

• Stringent requirements are (being) integrated in the EIC 
IR design

• The IR with the forward detector system can cover 
physics needs for wide ranges of nucleon energies in 
ep and eA (50 - 275 GeV/nucleon)

• More detailed physics simulations and detector design 
studies with further optimization underway
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backup

 25



Interaction Region Requirements
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Interaction Region Requirements
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275 GeV (p) x10 GeV (e)



Nucleon spatial imaging:              
Deeply Virtual Compton Scattering

Current data: Limited and mainly 
unpolarized data at low-x
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proton measured 

• evolution of impact parameter 
transformed from measured t



Pt resolution for recoil protons
(eRHIC)

▪ B0 magnet   [100 GeV/c beam energy @ pt ~ 1.3 GeV/c (worst case)]

        (~1.3T field, ~1.2m long; 4 Si stations with ~20μm resolution; Kalman filter)
▪ ~30 MeV/c without IP vertex constraint

▪ ~15 MeV/c with reasonable assumptions about beam envelope size at the IP

▪ Roman Pots   [275 GeV/c beam energy] 

        (2 stations ~30m from IP, 20cm apart, ~20μm resolution; matrix transport) 
▪ ~20 MeV/c at φ ~ 0 degrees (recoil in horizontal plane)

▪ ~10 MeV/c at φ ~ 90 degrees (recoil in vertical plane)

NB: these estimates do not include beam divergence at the IP


