IR design and impact on measurements at an EIC

J.H. Lee BNL

INT, Nov 2018

Outline

- EIC physics and machine requirements for Interaction Region
 - Interaction Region integration
 - focusing on eRHIC case
- (far-)forward nucleon detection
 - Requirement and considerations for the measurements

Two concepts for an EIC in the US

• **eRHIC** at BNL

• RHIC + new electron machine

- **JLEIC** at JLab
- CEBAF + new hadron machine

- Maximum utilization of past and current investment
- US Nuclear Science Advisory Committee recommendation (2015): "highest priority for new facility construction"
- US National Academies of Science EIC science assessment (2018) "the science that can be addressed by an EIC is compelling, fundamental and timely"

eRHIC realization

Hadron Beam

- entirely re-uses injection chain and one of RHIC rings (Yellow ring)
- partially re-uses components of other ion RHIC ring

Electron Accelerator added inside the existing RHIC tunnel:

- 5-18 GeV Storage Ring
- On-energy injector:18 GeV Rapid Cycling Synchrotron
- Polarized electron source and 400 MeV injector linac

Hadron cooling system

Required for L= 10³⁴cm⁻²s⁻¹ Without cooling the peak luminosity reaches 4.4 10³³cm⁻²s⁻¹

Interaction Region at RHIC (STAR at 6 o'clock)

EIC physics and measurements

target nucleon 'String Breakin

measure scattered electron with high precision

semi-inclusive DIS

detect the scattered lepton and final state (jets, hadrons, correlations in final state)

exclusive processes

all particles in the event identified

eRHIC main detector

-4<η<4:Tracking (TPC+GEM+MAPS)
& E/M Calorimetry (hermetic coverage)

Hadron PID:

-I<η<I: proximity focusing RICH + TPC: dE/dx I<η<3: Dual-radiator RICH -I>η>-3: Aerogel RICH

Lepton PID:

-3 <η< 3: e/p I<|η|<3: in addition HCal response & γ suppression via tracking |η|>3: ECal+Hcal response & γ suppression via tracking

Physics with forward tagging

- Defining exclusive reactions in ep/eA:
 - •ep: reconstruction of all particles in (diffractive) event including scattered proton with wide kinematics coverage
 - •eA: identify with rapidity gap. need wide rapidity coverage [HCal for I<η<4]
- Identifying coherence of nucleus in diffractive eA: with neutrons from nucleus break-up
- Sampling target in e+3He,d with spectator tagging
- Accessing event geometry in semi-inclusive eA with evaporated nucleons

Forward protons in diffraction

- Scattered with ~O(mrad): Need a detector close to the beam - Roman Pot to detect
- Large angle (high-t) acceptance mainly limited by beam aperture [t~p²~p²θ²]
- Small angle (low-t) acceptance limited by beam envelop (~<10σ_{beam})
- Reconstruction resolution limited by
 - beam angular divergence (~O(100µrad)), emittance
 - uncertainties in beam offset, crossing, transport, detector alignment, vertex reconstruction resolution
 - at RHIC
 - $\delta p/p \sim 0.005$
 - $\delta t/t \sim 0.03/\sqrt{t}$
 - in addition, effect of crab crossing (expected to be << beam divergence) need to be simulated

Roman Pots set up at STAR / RHIC

Roman Pot system at RHIC

Exclusive diffraction tagging with RP at RHIC

EIC: Impact of proton acceptance in RP

Forward neutrons from nucleus break-up

Diffractive physics in eA

- Measure spatial gluon distribution in nuclei
- Reaction: $e + Au \rightarrow e' + Au' + J/\psi, \phi, \rho$

- Physics requires forward scattered nucleus needs to stay intact
 - Veto incoherent diffraction with break-up (evaporated) neutron detection
 - discussions on additional requirements: M Baker's talk

Requirements

- Need at +/- 4 mrad beam element free region before the zero degree calorimeter for 100% acceptance to detect the breakup neutrons at 100 GeV
- Evaporated neutrons can be utilized to reconstruct collisions geometry → precision neutron energy with good reconstruction resolution with complete coverage

Spectator protons in ³He, d

- Crucial for identifying processes with a neutron "target" [e(p)+n] in light ions - d, ³He
- Spectator neutron can be identified by a calorimeter at beam rapidity (zero degree calorimeter)
- Tagging spectator protons from d, ³He
 - Relying on separation from magnetic rigidity (B_r) changes
 ³He: p = 3/2:1 d:p = 2:1
 - Momentum spread mainly due to Fermi motion + Lorentz boost

Tagging spectator protons with Roman Pots

- Unambiguously identified e+p event vs e+n event in e+³He 1p +1n vs 2p = 30% vs 22% (DPMJetIII)
- Common detector RP be utilized for tagging forward proton from diffraction and the spectator protons from ³He, d?
- measurement can be done with RPs + forward detectors + ZDC
- Shown distribution at fixed RP locations at eRHIC IR
- Detectors (location, size) can be configured to optimize the acceptance
- Acceptance for spectators with p_T kick needs to be considered/simulated

Controlling collision geometry in e-A?

collision geometry selected by forward neutrons

EPJA 50 189 (2014) L.Zheng, JHL, E. Aschenauer

- Forward neutrons dominantly correlated with collision geometry
- Zero Degree Calorimeter ($\theta < 4$ mrad) can be used to count the forward neutrons
- More detailed study including nuclear shadowing effect in progress [BeAGLE]

EIC Interaction Region Requirements

• Large detector acceptance

- No accelerator magnets +/-4.5 m
- Forward detector component
- Large aperture of forward hadron
- Limited beam divergence
- Hadron dipole spectrometer magnet
- Small (flat) beams, small β^* for high luminosity
 - $\beta x^*/\beta y^*$: 90cm/4cm for p, 42cm/5cm for e
- Fast beam separation using 22 mrad crossing angle
 - Minimize parasitic collisions, clearance for forward neutrons
- Managing synchrotron radiation
 - no electron bends on the forward (hadron) side
 - large aperture electron magnets on rear side to absorb SR far from IP
- Electron chicane on electron side
 - luminosity measurement and electron tagging

Interaction region at eRHIC

IR design at eRHIC

- Integrating requirements for hadron beam direction
 - Forward Detector (6 20 mrad)
 - Neutron detector ZDC (0 to 4 mrad)
 - Roman Pots (sensitive I to 5 mrad)

Proton acceptance with eRHIC

p_{T} acceptance for forward scattered protons from exclusive reactions

• Plots: HD (high divergence) mode

 Acceptance gap between RP and B0 will be further optimized

 Accept 0.3 < p_T< 1.3 GeV and higher
 → Low p_T-part can be filled in with HA (high acceptance, smaller beam divergence) running mode

Simulation: A. Kiselev

Proton acceptance with JLEIC

Two forward charged hadron detector regions:

- Region 1: Small dipole covering scattering angles from 0.5 up to a few degrees (before quads)
- Region 2: Far forward, up to one degree, for particles passing through (large aperture) accelerator quads. Use second dipole for precision measurement. (Hi Res)

R.Yoshida Polarized Light lons at EIC 2018

t (GeV²) 55 0.9 **Region1** 2 0.8 0.7 1.5 0.6 0.5 0.4 0.3 0.5 0.2 **Region2** 0.1 0 0.994 0.995 0.997 0.998 0.999 x_L (P_{final}/P_{initial}/ 0.996

acceptance proton at 100 GeV

Roman Pots at EIC: considerations

- Integral part of IR design
 - beam divergence, aperture limit, multiple running mode/beam parameters
 - optimized location for optimal performance and acceptance
- Coverage
 - \bullet need to measure diffractive protons in beam envelop aperture limit with full ϕ acceptance
 - need wide coverage in momentum for tagging spectator protons from light ions
 - "grey" area in acceptance: between RP+forward spectrometer and main tracker (20 ~50 mrad)
- Operation
 - operation no disturbance to the beam, routine operation
 - run simultaneously with normal operation for high luminosity sampling (ref: RHIC, LHC)
- Detector technology
 - tracking silicon/pixel + timing/triggering counter (ref: latest development at LHC)
 - potential space constraint for full ϕ coverage in horizontal: 2d-move
 - geometrical configuration/size for maximal coverage for various energies

Summary

- IR is crucial part of machine and physics performance and needs
- Stringent requirements are (being) integrated in the EIC IR design
 - The IR with the forward detector system can cover physics needs for wide ranges of nucleon energies in ep and eA (50 275 GeV/nucleon)
- More detailed physics simulations and detector design studies with further optimization underway

backup

Interaction Region Requirements

	Hadron	Lepton			
Machine element free region	± 4.5 m main detector				
	beam elements $< 1.5^{\circ}$ in main detector volume				
Beam Pipe	Low mass material, i.e. Beryllium				
Integration of detectors	Local Polarimeter				
Zero Degree Calorimeter	$40 \mathrm{cm} \times 40 \mathrm{cm} \times 1 \mathrm{m}$ @s = 30 m				
scattered proton/neutron acc.	Proton: $0.18 \text{GeV/c} < p_T < 1.3 \text{GeV/c}$				
all energies for $e + p$	Neutron: $p_T < 1.3 \text{GeV/c}$				
scattered proton/neutron acc.	Proton and Neutron:				
all energies for $e + A$	$\theta < 6 \mathrm{mrad}$ (for $\sqrt{s} = 50 \mathrm{GeV}$)				
	$\theta < 4 \mathrm{mrad}$ (for $\sqrt{s} = 100 \mathrm{GeV}$)				
	Relative Luminosity: $R = L^{++/2}$	$^{}/L^{+-/-+} < 10^{-4}$			
Luminosity		γ acceptance: ± 1 mrad			
		$ ightarrow \delta L/L < 1\%$			
Low Q ² -Tagger		Acceptance: $Q^2 < 0.1 \text{GeV}$			

Interaction Region Requirements

	Nominal Design (with cooling)			Risk Mitigation (no cooling)	
Species	р	e		р	E
Bunch frequency [MHz]	112.6			56.3	
Bunch intensity [10^11]	0.6	1.5		1.05	3.0
Number of bunches	1320			660	
Beam current [A]	1	2.5		0.87	2.5
Rms norm. emit. h/v [um]	2.7/0.38	391/20		4.1/2.5	391/95
Rms emittance h/v [nm]	9.2/1.3	20/1		13.9/8.5	20/4.9
β* h/v [cm]	90/4	42/5		90/5.9	63/10.4
IP rms beam size h/v [um]	91/7.2			112/22.5	
IR rms angular spread h/v [urad]	101/179	219/143		124/380	179/216
b-b parameter (/IP) h/v	0.013/0.007	0.064/0.099		0.015/0.005	0.1/0.083
Rms bunch length [cm]	5	1.9		7	1.9
Rms energy spread, 10^-4	4.6	5.5		6.6	5.5
Max space charge parameter	0.004	neglig.		0.001	neglig.
IBS growth time tr/long, h	2.1/2.0			9.2/10.1	
Polarization, %	80	70		80	70
Hourglass and crab crossing factor	0.87			0.85	
Peak luminosity [10^33 cm-2s-1]	10.1			4.4	
Integrated luminosity/week, fb ⁻¹	4.51			1.12	

275 GeV (p) x10 GeV (e)

Hadron cooling provides ~factor 4 integrated luminosity increase at E_{CM} =105 GeV. But larger increase, by factor 7-10, is expected in low range of E_{CM} (29-70 GeV).

Nucleon spatial imaging: Deeply Virtual Compton Scattering

Current data: Limited and mainly unpolarized data at low-x

- exclusive process with forward proton measured
- evolution of impact parameter transformed from measured t

P_t resolution for recoil protons (eRHIC)

- <u>B0 magnet</u> [100 GeV/c beam energy @ p_t ~ 1.3 GeV/c (worst case)]
 (~1.3T field, ~1.2m long; 4 Si stations with ~20µm resolution; Kalman filter)
 - ~30 MeV/c without IP vertex constraint
 - ~I5 MeV/c with reasonable assumptions about beam envelope size at the IP

Roman Pots [275 GeV/c beam energy]

(2 stations ~30m from IP, 20cm apart, ~20µm resolution; matrix transport)

- ~20 MeV/c at ϕ ~ 0 degrees (recoil in horizontal plane)
- ~10 MeV/c at φ ~ 90 degrees (recoil in vertical plane)

NB: these estimates do not include beam divergence at the IP