NLO calculations for dilute-dense processes in the CGC picture

T. Lappi

University of Jyväskylä, Finland

Probing Nucleons and Nuclei in High Energy Collisions program, INT Seattle, Nov 2018

European Research Council Established by the European Commission

Outline

Outline of this talk

- Dilute-dense processes, power counting
- NLO DIS: with massless quarks
 Balitsky & Chirilli 2010, Beuf 2017, Hänninen, T.L., Paatelainen 2017
 + 1st numerical implementation Ducloué, Hänninen, T.L., Zhu 2017
- Loops in LCPT with massive quarks Beuf, T.L. Paatelainen, in progress

Trinity of dilute-dense CGC calculations

- Evolution equation (BK)
- Total DIS cross section
- Single inclusive hadron production in pA-collisions
- + essential question: doing the three consistently.

Outline

Outline of this talk

- Dilute-dense processes, power counting
- NLO DIS: with massless quarks
 Balitsky & Chirilli 2010, Beuf 2017, Hänninen, T.L., Paatelainen 2017
 + 1st numerical implementation Ducloué, Hänninen, T.L., Zhu 2017
- Loops in LCPT with massive quarks Beuf, T.L. Paatelainen, in progress

Trinity of dilute-dense CGC calculations

- Evolution equation (BK)
- Single inclusive hadron production in pA-collisions
- + essential question: doing the three consistently.

Dilute-dense processes

Eikonal scattering off target of glue

How to measure small-x glue?

- Dilute probe through target color field
- At high energy interaction is eikonal

Eikonal scattering amplitude: Wilson line V

$$V = \mathbb{P} \exp\left\{-ig \int^{x^+} dy^+ A^-(y^+, x^-, \mathbf{x})\right\} \underset{x^+ \to \infty}{\approx} V(\mathbf{x}) \in \mathrm{SU}(N_{\mathrm{c}})$$

Amplitude for color dipole

$$\mathcal{N}(r = |\mathbf{x} - \mathbf{y}|) = 1 - \left\langle \frac{1}{N_{c}} \operatorname{Tr} V^{\dagger}(\mathbf{x}) V(\mathbf{y}) \right\rangle$$

from color transparency to saturation ► 1/Q_s is Wilson line correlation length

Dilute-dense process at LO

Physical picture at small x

Forward hadrons

- q/g from probe:
 collinear pdf
- $|amplitude|^2 \sim dipole$
- Indep. fragmentation

"Hybrid formalism";

Dumitru, Jalilian-Marian 2002

Both involve same dipole amplitude $\mathcal{N}=1-\mathcal{S}$

Dilute-dense process at LL

Add one **soft** gluon: large logarithm of energy/x

Forward hadrons

- Soft gluon $k^+ \rightarrow 0$: same large log
- ► Collinear gluon $k_T \rightarrow 0$: DGLAP evolution of pdf, FF Dumitru et al 2005

Absorb large log into renormalization of target:

BK equation Balitsky 1995, Kovchegov 1999

Dilute-dense process at NLO

Add one gluon, but not necessarily soft

- Leading small-k⁺ gluon already in BK-evolved target
- Need to subtract leading log from cross section:

$$\sigma_{NLO} = \int dz \left[\overbrace{\sigma(z) - \sigma(z=0)}^{\sigma_{sub}} + \overbrace{\sigma(z=0)}^{absorb \text{ in BK}} \right] \quad z = \frac{k_g^+}{P_{tot}^+}$$

NLO to NLL

NLO evolution equation:

- Consider NNLO DIS
- Extract leading soft logarithm
- Lengthy calculation: Balitsky & Chirilli 2007
- But additional resummations needed for practical phenomenology

(+ many diagrams at same order)

- α_s² ln²(1/x): two iterations of LO BK
- $\alpha_s^2 \ln 1/x$: NLO BK
- α_s²: part of NNLO impact factor (not calculated)

Summary: power counting

- Current phenomenology LL
- Theory recently becoming understood at NLO & NLL
- Moving to phenomenology, numerical implementations:
 - Fit to DIS data with (approx) NLL evolution (but not NLO) : Albacete 2015, lancu et al 2015
 - Single inclusive hadrons at NLO (but not NLL) : Stasto et al 2013, Ducloué et al 2015
 - Full NLL evolution (Not yet NLO) Mäntysaari 2015
 - NLO DIS cross section (Not yet NLL) Ducloué et al 2017

DIS at NLO, massless quarks

DIS at NLO: Fock state expansion

Balitsky & Chirilli 2010, Beuf 2016, 2017, H. Hänninen, T.L., Paatelainen 2017

To be specific: want total γ^* -target cross section

$$\sigma_{\lambda}^{\gamma^*} = 2 \operatorname{\mathsf{Re}}\left[(-i) \mathcal{M}^{\mathsf{fwd}}_{\gamma^*_{\lambda} \to \gamma^*_{\lambda}}\right],$$

using the optical theorem, with the total elastic amplitude

$$_{i}\langle\gamma_{\lambda}(\vec{q}', \mathbf{Q}^{2})|(\hat{\mathcal{S}}_{E}-\mathbf{1})|\gamma_{\lambda}(\vec{q}, \mathbf{Q}^{2})\rangle_{i} = 2q^{+}(2\pi)\delta(q'^{+}-q^{+})i\mathcal{M}_{\gamma_{\lambda}^{+}\rightarrow\gamma_{\lambda}^{+}}^{\mathsf{fwd}}$$

 $\hat{\mathcal{S}}_{F}$: eikonal scattering \implies Wilson line in coordinate space. At NLO need Fock state decomposition of $|\gamma_{\lambda}(\vec{q}, Q^2)\rangle_i$ up to q^2 :

$$\begin{split} |\gamma_{\lambda}(\vec{q}, Q^{2})\rangle_{i} &= \sqrt{Z_{\gamma^{*}}} \bigg| |\gamma_{\lambda}(\vec{q}, Q^{2})\rangle + \sum_{q\bar{q}} \Psi^{\gamma^{*} \to q\bar{q}} |q(\vec{k}_{0}, h_{0})\bar{q}(\vec{k}_{1}, h_{1})\rangle \\ &+ \sum_{q\bar{q}g} \Psi^{\gamma^{*} \to q\bar{q}g} |q(\vec{k}_{0}, h_{0})\bar{q}(\vec{k}_{1}, h_{1})g(\vec{k}_{2}, \sigma)\rangle + \cdots \bigg] \end{split}$$

with Light Cone Wave Functions $\Psi^{\gamma^* \to q\bar{q}}$ and $\Psi^{\gamma^* \to q\bar{q}g}$

DIS at NLO: procedure

Beuf 2016, 2017, H. Hänninen, T.L., Paatelainen 2017

- 1. Evaluate LCPT diagrams
 - $\Psi^{\gamma^* \to q\bar{q}}$ to 1 loop
 - $\Psi^{\gamma^* \to q \bar{q} g}$ at tree level
- 2. Fourier-transform to transverse coordinate space
- 3. Square to get $_i\langle\gamma_\lambda(\vec{q}',Q^2)|(\hat{\mathcal{S}}_E-1)|\gamma_\lambda(\vec{q},Q^2)\rangle_i$

(This is in d = 4, generalize for d < 4) Note 2 index structures for massless quarks.

DIS at NLO: real and virtual corrections

These UV-divergences cancel because

 $\mathcal{N}(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2 \rightarrow \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2 \rightarrow \mathbf{x}_1) = \mathcal{N}(\mathbf{x}_0, \mathbf{x}_1)$

11/22 미 > 《윤 > 《 문 > 《 문 > 문 또 ' 의 약 이 약 야

DIS at NLO: subtraction of BK

Evaluate cross section as $\sigma_{L,T}^{NLO} = \sigma_{L,T}^{LO} + \sigma_{L,T}^{dip} + \sigma_{L,T,sub.}^{qg}$

- * UV-divergence
- \blacktriangleright LL: subtract leading log, already in BK-evolved ${\cal N}$

DIS at NLO: subtraction of BK

Evaluate cross section as $\sigma_{L,T}^{\text{NLO}} = \sigma_{L,T}^{\text{LO}} + \sigma_{L,T}^{\text{dip}} + \sigma_{L,T,\text{sub.}}^{qg}$

- * UV-divergence
- \blacktriangleright LL: subtract leading log, already in BK-evolved ${\cal N}$
- ► Parametrically $X(z_2) \sim x_{Bj}$, but $X(z_2) \sim 1/z_2$ essential! ($X(z_2)$ =momentum fraction to which the target is evolved)

Numerical implementation

Ducloué, Hänninen, T.L., Zhu 2017

$$\sigma_{L,T}^{\text{qg,sub.}} \sim \alpha_s C_F \int_{z_1, \mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2} \int_{x_{BJ}/x_0}^1 \frac{\mathrm{d}z_2}{z_2} \bigg[\mathcal{K}_{L,T}^{\text{NLO}}\left(z_2, \mathbf{X}(z_2)\right) - \mathcal{K}_{L,T}^{\text{NLO}}\left(0, \mathbf{X}(z_2)\right) \bigg].$$

 ► Target fields at scale X(z₂):
 ► X(z₂) = x_{Bj}: unstable (like single inclusive)

 $X(z_2) = x_{Bj}$

$$\sim$$
 (kg \sim Z₂

Numerical implementation

Ducloué, Hänninen, T.L., Zhu 2017

$$\sigma_{L,T}^{\text{qg,sub.}} \sim \alpha_s C_F \int_{z_1, \mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2} \int_{x_{BJ}/x_0}^1 \frac{\text{d}z_2}{z_2} \bigg[\mathcal{K}_{L,T}^{\text{NLO}}\left(z_2, \mathbf{X}(z_2)\right) - \mathcal{K}_{L,T}^{\text{NLO}}\left(0, \mathbf{X}(z_2)\right) \bigg].$$

- Target fields at scale $X(z_2)$:
 - ► X(z₂) = x_{Bj}: unstable (like single inclusive)

•
$$X(z_2) = x_{Bj}/z_2$$
 OK

 $X(z_2) = x_{Bj}/z_2$

$$\sim$$
 kg \sim Z₂

Numerical implementation

Ducloué, Hänninen, T.L., Zhu 2017

$$\sigma_{L,T}^{\text{qg,sub.}} \sim \alpha_s C_{\text{F}} \int_{z_1, \mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2} \int_{x_{\text{BJ}}/x_0}^1 \frac{\text{d}z_2}{z_2} \bigg[\mathcal{K}_{L,T}^{\text{NLO}}\left(z_2, X(z_2)\right) - \mathcal{K}_{L,T}^{\text{NLO}}\left(0, X(z_2)\right) \bigg].$$

- Target fields at scale $X(z_2)$:
 - $X(z_2) = x_{Bj}$: unstable (like single inclusive)

•
$$X(z_2) = x_{Bj}/z_2$$
 OK

- Lower limit of z₂
 - ► $Z_2 > \frac{x_{Bj}}{x_0}$ from target k^- (assuming $k_T^2 \sim Q^2$)
 - Strict k^+ factorization: $Z_2 > \frac{x_{Bj}}{x_0} \frac{M_p^2}{\Omega^2}$
 - → would require kinematical constraint
 - For "dipole" term integrate to $z_2 = 0$

 $X(z_2) = x_{Bj}/z_2$

 $k_a^+ \sim Z_2$

Ducloué, Hänninen, T.L., Zhu 2017

 Major cancellation between different NLO terms

14/22 ロ > 《 문 > 《 토 > 《 토 > 토 비 = 이 () ()

Ducloué, Hänninen, T.L., Zhu 2017

 Major cancellation between different NLO terms (similar for F_L)

14/22 (ロ > 4 伊 > 4 豆 > 4 豆 > 毛目 シ ク へ の

Ducloué, Hänninen, T.L., Zhu 2017

- Major cancellation between different NLO terms (similar for F_L)
- qg-term explicitly zero at $x_{Bj} = x_0 \implies$ transient effect

Ducloué, Hänninen, T.L., Zhu 2017

- Major cancellation between different NLO terms (similar for F_L)
- qg-term explicitly zero at $x_{Bj} = x_0 \implies$ transient effect
- Running coupling (parent dipole)
 - Transient effect larger

NLO/LO ratio

14/22 < ロ > < 個 > < 主 > < 主 > 三目 のへの

Ducloué, Hänninen, T.L., Zhu 2017

- Major cancellation between different NLO terms (similar for F_L)
- qg-term explicitly zero at $x_{Bj} = x_0 \implies$ transient effect
- Running coupling (parent dipole)
 - Transient effect larger
 - But Q²-dependence stable

NLO/LO ratio

Overall conclusions

- NLO corrections of expected relative magnitude
- Need to think about $X(z_2)$, z_2 limits for actually fitting data

DIS at NLO, massive quarks

Motivation, issues

- There is data! F₂^c from HERA, charm will be measured at EIC, both inclusive and exclusive
- LO F^c₂ problematic. Dirty little secret: heavy quarks in rcBK fits do not actually work!
 - AAMQS fit has separate proton area σ_0 for q and Q:

good χ^2 but clearly unphysical

Fit by T.L., Mäntysaari 2013 : only light quarks:

straightforward generalization does not work

Collinear resummed fit by Iancu et al 2015 better, but

only uses old HERA data with large errors

► b-dependent JIMWLK Mäntysaari, Schenke 2018 : F₂ and F_{2c} not described simultaneously

LCPT loops with massive quarks are also fun!

- New Lorentz structures: rotational invariance constraints
- Approach in this talk: start with same regularization (cutoff in k⁺ + ⊥ dim. reg.) that was used for massless case

- New 3rd spin-flip structure (light cone helicity flip if you wish)
- Note: no \perp momentum in spin-flip vertex

What are new UV-divergent and finite contributions?

- 1. "Vertex correction" diagrams: calculation more complicated, but conceptually simpler
- 2. "Propagator correction" diagrams: calculation simple, interpretation not!

Vertex corrections to spin flip vertex

► 1 spin-flip vertex: $h_1 \neq h$, $h_2 \neq h_1$ or $h_2 \neq h$ \implies log-divergent $\sim m_q \frac{1}{\varepsilon}$ (2 ED's $\sim \mathbf{k}^2$ each, 2 vertices \mathbf{k} each) \implies absorb into vertex mass counterterm δm_v , same as δm_q in conventional perturbation theory

▶ 3 spin-flip vertices:
$$h_1 \neq h$$
, $h_2 \neq h_1$ and $h_2 \neq h$
⇒ finite NLO contribution

Vertex corrections to non-spin flip vertex

- ► no spin-flip vertex: h₁ = h, h₂ = h₁ and h₂ ≠ -h mass only modifies ED's ⇒ not new contribution
- ► 2 spin-flip + 1 non-flip $h_1 = h$ or $h_2 = h_1$ or $h_2 = -h$ ⇒ again finite NLO contribution (2 ED's ~ \mathbf{k}^2 each, 1 vertex ~ \mathbf{k} , finite integral ~ $\int d^2 \mathbf{k} \frac{\mathbf{k}}{((\mathbf{k}-...)^2+...)((\mathbf{k}-...)^2+...)}$)

Quark propagator corrections

- Can absorb into a renormalization of m_q in ED of LO LCWF
- But problem: this kinetic mass counterterm δm_k is not same as the previous δm_v
- In fact δm_v is same as in covariant theory, δm_k different
- This has been known for a long time e.g. Haridranath, Zhang, also Burkardt in Yukawa th.

Mass renormalization

- 2 conceptually different masses:
 - Kinetic mass: relates energy and momentum
 - Vertex mass: amplitude of spin-flip in gauge boson vertex
- 1 parameter in Lagrangian, but 2 parameters in LCPT Hamiltonian — and thus in quantization
- Lorentz-invariance requires they stay the same
- In practical LCPT calculations so far used k⁺-cutoff and ⊥ dim. reg. violates rot. inv. ⇒ m_v ≠ m_k at loop level.

There are 3 options to deal with this

- 1. Regularize as before, but use additional renormalization condition to set separately m_v and $m_k \implies$ discuss next
- 2. Use some other regularization \implies finite parts hard!
- 3. Smartly combine with instantaneous "normal ordering" diagrams before integrating \implies can explicitly keep $m_k = m_v$; also doable. For details see Beuf @ Hard Probes 2018

Two mass renormalization conditions

> One condition: pole mass scheme, require mass term in

• For γ_L this is the only mass renormalization needed

Two mass renormalization conditions

• One condition: pole mass scheme, require mass term in

Two mass renormalization conditions

One condition: pole mass scheme, require mass term in

Not happy?

Fiddling around with normal ordering diagrams gives same result + gauge invariance, $m_g = 0 \dots$, but that's another talk

In stead of conclusions: to do for NLO DIS

- Next: fit to HERA data with NLO impact factor (with LL or NLL evolution)
- Needs implementation (both DIS and single inclusive) : match NLL evolution with NLO cross section:
 - Evolution variable k^+ vs k^-
 - Kinematical constraint vs
 - rapidity local resummation of double logs
 - Corresponding different subtractions from cross sections
- Loop calculation ongoing: quark masses
- Other:
 - Exclusive processes
 - Dihadron correlations

Backups: single inclusive

Negative cross sections

Analytical calculation Chirilli, Xiao, Yuan 2012

- ► Numerics: Stasto, Xiao, Zaslavsky 2013 ⇒ cross section negative (large N_c; mix C_F and N_c terms)
- Kinematics? Large K_T logs?? Beuf et al 2014, Watanabe, Xiao & Zaslavsky 2015

Ducloué, T.L., Zhu 2016: q channel at finite $N_{\rm c}$

also Kang et al 2014

- Problem is in the rapidity divergence
- Most easily identified by color factor

Unsubtracted cross section, N_c-term

Discussion here following lancu et al 2016 leave out C_F/DGLAP-terms

$$\frac{\mathrm{d}N^{\mathrm{LO}+N_{\mathrm{c}}}}{\mathrm{d}^{2}\mathbf{k}\,\mathrm{d}y}\sim\mathcal{S}_{0}(k_{\mathrm{T}})+\alpha_{\mathrm{s}}\int_{0}^{1-x_{\mathrm{g}}/x_{0}}\frac{\mathrm{d}\xi}{1-\xi}\mathcal{K}(k_{\mathrm{T}},\boldsymbol{\xi},X(\xi))$$

- Dipole operator S₀ is "bare"
- Rapidity at which dipoles are evaluated $X(\xi)$
- x_g: the target momentum fraction for LO kinematics
- Multi-Regge-kinematics: $X(\xi) = x_g/(1-\xi)$
- Only target $X(\xi) < x_0 \implies$ phase sp. limit $\xi < 1 x_g/x_0$:

BK:
$$\mathcal{S}(k_T, x_g) = \mathcal{S}(k_T, x_0) + \alpha_s \int_{0}^{1-x_g/x_0} \frac{d\xi}{1-\xi} \mathcal{K}(k_T, \mathbf{1}, X(\xi))$$

Combine these, taking $S(k_T, x_0) \equiv S_0(k_T) \dots$

Subtracted form for cross section

Unsubtracted form

$$S_{0}(k_{T}) + \alpha_{s} \int_{0}^{1-x_{g}/x_{0}} \frac{\mathrm{d}\xi}{1-\xi} \mathcal{K}(k_{T},\xi,X(\xi))$$
$$= S(k_{T},\mathbf{x}_{g}) + \alpha_{s} \int_{0}^{1-x_{g}/x_{0}} \frac{\mathrm{d}\xi}{1-\xi} \left[\mathcal{K}(k_{T},\xi,X(\xi)) - \mathcal{K}(k_{T},1,X(\xi))\right]$$
subtracted form

(Recall: dipoles evaluated at rapidity $X(\xi)$)

- These are strictly equivalent, perfectly positive at all k_T
- Subtracted form is a true perturbative series unsubtracted has α_s ln 1/x and α_s together

Origin of negativity in CXY

$$\frac{\mathrm{d}N^{\mathrm{LO}+N_{\mathrm{C}}}}{\mathrm{d}^{2}\mathbf{k}\,\mathrm{d}y} \sim \mathcal{S}(k_{\mathrm{T}}, x_{g}) + \alpha_{\mathrm{S}} \int_{0}^{1-X_{g}/X_{0}} \frac{\mathrm{d}\xi}{1-\xi} \left[\mathcal{K}(k_{\mathrm{T}}, \xi, X(\xi)) - \mathcal{K}(k_{\mathrm{T}}, 1, X(\xi))\right]$$

How do CXY get a negative cross section?

- $\mathcal{K}(k_T, \xi, X(\xi)) \mathcal{K}(k_T, 1, X(\xi))$ dominated by $\xi \ll 1$
- Replace $X(\xi) \rightarrow X(\xi = 0) = x_g$
- Change ξ integration limit to 1 (+ distribution!)

This gives CXY subtraction scheme

$$\frac{\mathrm{d}N^{\mathrm{LO}+N_{\mathrm{c}}}}{\mathrm{d}^{2}\mathbf{k}\,\mathrm{d}y}\sim\mathcal{S}(k_{\mathrm{T}},x_{g})+\alpha_{\mathrm{s}}\int_{0}^{1}\frac{\mathrm{d}\xi}{1-\xi}\Big[\underbrace{\overset{\sim\xi/k_{\mathrm{T}}^{4}\,\mathrm{for}\,k_{\mathrm{T}}\ggQ_{\mathrm{s}}}{\mathcal{K}(k_{\mathrm{T}},\xi,x_{g})}-\mathcal{K}(k_{\mathrm{T}},1,x_{g})\Big]$$

- Formally ok in α_s expansion
- Nice factorized form: only dipoles at x_q , like LO
- But subtraction no longer integral form of BK

Comparing subtraction procedures

First: must also make choice for $X(\xi)$ in the $C_{\rm F}$ -term: scheme dependence Take same $X(\xi)$ & limits as $N_{\rm C}$ -term

Comparing subtraction procedures

Two forms for NLO cross section

- Explicitly equivalent
- ▶ Positive, although ≪ LO

コン 4回 > 4 □ > 4 □