NLO calculations for dilute-dense processes in the CGC picture

T. Lappi

University of Jyväskylä, Finland

Probing Nucleons and Nuclei in High Energy Collisions program, INT Seattle, Nov 2018

European Research Council **Established by the European Commission**

KED KARD KED KED EE DAA

Outline

Outline of this talk

- Dilute-dense processes, power counting
- \triangleright NLO DIS: with massless quarks Balitsky & Chirilli 2010, Beuf 2017, Hänninen, T.L., Paatelainen 2017 + 1st numerical implementation Ducloué, Hänninen, T.L., Zhu 2017
- ▶ Loops in LCPT with massive quarks Beuf, T.L. Paatelainen, in progress

Trinity of dilute-dense CGC calculations

- \blacktriangleright Evolution equation (BK)
- \blacktriangleright Total DIS cross section
- \triangleright Single inclusive hadron production in pA-collisions
- + essential question: doing the three consistently.

Outline

Outline of this talk

- Dilute-dense processes, power counting
- \triangleright NLO DIS: with massless quarks Balitsky & Chirilli 2010, Beuf 2017, Hänninen, T.L., Paatelainen 2017 + 1st numerical implementation Ducloué, Hänninen, T.L., Zhu 2017
- ▶ Loops in LCPT with massive quarks Beuf, T.L. Paatelainen, in progress

Trinity of dilute-dense CGC calculations

- \blacktriangleright Evolution equation (BK)
- \triangleright Total DIS cross section \leftharpoonup this talk
- \triangleright Sinale inclusive hadron production in pA-collisions
- + essential question: doing the three consistently.

Dilute-dense processes

Eikonal scattering off target of glue

How to measure small-*x* glue?

- \triangleright Dilute probe through target color field
- \triangleright At high energy interaction is eikonal

Eikonal scattering amplitude: Wilson line *V*

$$
V = \mathbb{P} \exp\left\{-ig\int^{\mathsf{x}^+}\!\!\!\!\!\!dy^+A^-(y^+,x^-,\bm{x})\right\}_{\mathsf{x}^+\to\infty} V(\bm{x}) \in SU(N_c)
$$

 \blacktriangleright Amplitude for color dipole

$$
\mathcal{N}\left(\mathbf{r} = \left|\mathbf{x} - \mathbf{y}\right|\right) = 1 - \left\langle \frac{1}{N_{\mathrm{C}}} \operatorname{Tr} V^{\dagger}(\mathbf{x}) V(\mathbf{y}) \right\rangle
$$

from color transparency to saturation \blacktriangleright 1/ Q_s is Wilson line **correlation length**

Dilute-dense process at LO

Physical picture at small *x*

Forward hadrons

- \blacktriangleright *q*/*g* from probe: collinear pdf
- \blacktriangleright $|\textsf{amplitude}|^2 \sim \textsf{dipole}$
- \blacktriangleright Indep. fragmentation

"Hybrid formalism";

Dumitru, Jalilian-Marian 2002

Both involve same dipole amplitude $\mathcal{N} = 1 - S$

Dilute-dense process at LL

Add one soft gluon: large logarithm of energy/*x*

Forward hadrons $\overline{\mathcal{R}}$ ²
 Q </sup> \blacktriangleright Soft gluon $k^+ \to 0$: same large log \blacktriangleright Collinear gluon $k_T \to 0$: DGLAP evolution of pdf, FF Dumitru et al 2005

Absorb large log into renormalization of target:

BK equation Balitsky 1995, Kovchegov 1999

Dilute-dense process at NLO

Add one gluon, but **not** necessarily soft

- \blacktriangleright Leading small- k^+ gluon already in BK-evolved target
- \triangleright Need to **subtract** leading log from cross section:

$$
\sigma_{NLO} = \int dz \left[\overbrace{\sigma(z) - \sigma(z=0)}^{\sigma_{\text{sub}}} + \overbrace{\sigma(z=0)}^{\text{absorb in BK}} \right] \quad z = \frac{k_g^+}{P_{\text{tot}}^+}
$$

6/22 K ロ X K F X R X R X R X R X R X R X R X

NLO to NIL

NLO evolution equation:

- \triangleright Consider NNLO DIS
- \blacktriangleright Extract leading soft logarithm
- **Lengthy calculation:** Balitsky & Chirilli 2007
- \blacktriangleright But additional resummations needed for practical phenomenology (+ many diagrams at same order)

- \triangleright $\alpha_s^2 \ln^2(1/x)$: two iterations of $I \cap BK$
- \triangleright α_s^2 ln 1/*x*: NLO BK
- \blacktriangleright α_s^2 : part of NNLO impact factor (not calculated)

Summary: power counting

- \triangleright Current phenomenology LL
- ► Theory recently becoming understood at NLO & NLL
- \triangleright Moving to phenomenology, numerical implementations:
	- Fit to DIS data with (approx) NLL evolution (but not NLO) : Albacete 2015, Iancu et al 2015
	- \triangleright Single inclusive hadrons at NLO (but not NLL) : Stasto et al 2013, Ducloué et al 2015
	- ► Full NLL evolution (Not yet NLO) Mäntysaari 2015
	- INLO DIS cross section (Not yet NLL) Ducloué et al 2017

DIS at NLO, massless quarks

DIS at NLO: Fock state expansion

Balitsky & Chirilli 2010, Beuf 2016, 2017, H. Hanninen, T.L., Paatelainen 2017 ¨

To be specific: want total γ^* -target cross section

$$
\sigma_{\lambda}^{\gamma^*} = 2\text{Re}\left[(-i)\mathcal{M}^{\text{fwd}}_{\gamma^*_{\lambda} \to \gamma^*_{\lambda}}\right],
$$

using the optical theorem, with the total elastic amplitude

$$
i\langle \gamma_{\lambda}(\vec{q}',\Theta^2)|(\hat{\mathcal{S}}_E-1)|\gamma_{\lambda}(\vec{q},\Theta^2)\rangle_i=2q^+(2\pi)\delta(q'^+-q^+)i\mathcal{M}^{\text{fwd}}_{\gamma_{\lambda}^* \to \gamma_{\lambda}^*}.
$$

 \hat{S}_{E} : eikonal scattering \Longrightarrow Wilson line in coordinate space. At NLO need Fock state decomposition of $|\gamma_{\lambda}(\vec{q}, \mathcal{Q}^2)\rangle_i$ up to g^2 :

$$
|\gamma_{\lambda}(\vec{q},\Theta^2)\rangle_i = \sqrt{Z_{\gamma^*}} \Bigg[|\gamma_{\lambda}(\vec{q},\Theta^2)\rangle + \sum_{q\bar{q}} \Psi^{\gamma^* \to q\bar{q}} |q(\vec{k}_0,h_0)\bar{q}(\vec{k}_1,h_1)\rangle + \sum_{q\bar{q}g} \Psi^{\gamma^* \to q\bar{q}g} |q(\vec{k}_0,h_0)\bar{q}(\vec{k}_1,h_1)g(\vec{k}_2,\sigma)\rangle + \cdots \Bigg]
$$

withLight Cone Wave Functions $\Psi^{\gamma^* \to q \bar{q}}$ an[d](#page-10-0) $\Psi^{\gamma^* \to q \bar{q} g}$ and $\frac{9/22}{\sqrt{q}}$

DIS at NLO: procedure

Beuf 2016, 2017, H. Hänninen, T.L., Paatelainen 2017

- 1. Evaluate LCPT diagrams
	- $\blacktriangleright \Psi^{\gamma^* \to q \bar{q}}$ to 1 loop
	- $\blacktriangleright \psi^{\gamma^* \rightarrow q \bar{q} g}$ at tree level
- 2. Fourier-transform to transverse coordinate space
- 3. Square to get $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{2}{5}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

LCPT rules:

- \blacktriangleright Intermediate (\ni "final") state $k⁻$ denominators
- \triangleright On-shell vertices, most importantly *qqq*

$$
\vec{k}, \lambda; \quad k^+ = zp^+
$$

$$
\left[\bar{u}_{h'}(p')\dot{\epsilon}_{\lambda}^*(k)u_h(p)\right] = \frac{-2}{z\sqrt{1-z}}\left[\left(1-\frac{z}{2}\right)\delta_{h',h}\delta^{ij} + \frac{z}{2}ih\delta_{h',h}\epsilon^{ij}\right]\mathbf{q}^i\epsilon_{\lambda}^{*j},
$$

 \vec{p}, h $\vec{p}' \equiv \vec{p} - \vec{k}, h'$

 $\mathsf{q} \equiv \mathsf{k} - z\mathsf{p}$

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ ヨ ヨ H A 9 Q Q

(This is in $d = 4$, generalize for $d < 4$) Note 2 index structures for massless quarks.

DIS at NLO: real and virtual corrections

These UV-divergences cancel because

 $\mathcal{N}(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2 \rightarrow \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2 \rightarrow \mathbf{x}_1) = \mathcal{N}(\mathbf{x}_0, \mathbf{x}_1)$

11/22 K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ ヨ ヨ H A 9 Q Q

DIS at NLO: subtraction of BK

Evaluate cross section as $\sigma_{L,T}^{\text{NLO}} = \sigma_{L,T}^{\text{LO}} + \sigma_{L,T}^{\text{dip}} + \sigma_{L,T,\text{sub}}^{\text{qg}}$

$$
\begin{array}{lcl} \displaystyle\sqrt{\left(\begin{matrix} \phi & \phi & \phi \\ \phi & \phi & \phi \end{matrix}\right)}_0 & \mathrm{d} z_1 \int_{\mathbf{x}_0,\mathbf{x}_1} |\psi_{\gamma^* \to q\bar{q}}^{\text{LO}}(z_1,\mathbf{x}_0,\mathbf{x}_1)|^2 \mathcal{N}_{01}(x_{Bj}) \\ \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_0 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_0 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_0 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left
$$

- * UV-divergence
- \blacktriangleright LL: subtract leading log, already in BK-evolved $\cal N$

DIS at NLO: subtraction of BK

Evaluate cross section as $\sigma_{L,T}^{\text{NLO}} = \sigma_{L,T}^{\text{LO}} + \sigma_{L,T}^{\text{dip}} + \sigma_{L,T,\text{sub}}^{\text{qg}}$

$$
\begin{array}{lcl} \displaystyle\sqrt{\left(\begin{matrix} \phi & \phi & \phi \\ \phi & \phi & \phi \end{matrix}\right)}_0 & \mathrm{d} z_1 \int_{\mathbf{x}_0,\mathbf{x}_1} |\psi_{\gamma^* \to q\bar{q}}^{\text{LO}}(z_1,\mathbf{x}_0,\mathbf{x}_1)|^2 \mathcal{N}_{01}(x_{Bj}) \\ \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_0 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_0 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_0 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left(\begin{matrix} \phi & \phi \\ \phi & \phi \end{matrix}\right)}_1 & \sqrt{\left
$$

- * UV-divergence
- \blacktriangleright LL: subtract leading log, already in BK-evolved $\cal N$
- **Parametrically** $X(z_2) \sim x_{B_i}$, but $X(z_2) \sim 1/z_2$ essential! $(X(z_2)$ =momentum fraction to which the target is evolved) $(2/22)$
 $(2/22)$

Numerical implementation

Ducloué, Hänninen, T.L., Zhu 2017

$$
\sigma_{L,T}^{qg,sub.}\sim \alpha_s C_F \int\limits_{z_1,\textbf{x}_0,\textbf{x}_1,\textbf{x}_2} \int_{x_{BJ}/x_0}^{1} \frac{dz_2}{z_2}\bigg[\mathcal{K}_{L,T}^{NLO}\left(z_2,X(z_2)\right)-\mathcal{K}_{L,T}^{NLO}\left(0,X(z_2)\right)\bigg].
$$

 \blacktriangleright Target fields at scale $X(z_2)$: \blacktriangleright *X*(*z*₂) = *x*_{Bj}: unstable (like single inclusive)

 $X(z_2) = x_{Bj}$

$$
\sim \sqrt{\epsilon_{\text{max}}} \cdot k_g^+ \sim z_2
$$

Numerical implementation

Ducloué, Hänninen, T.L., Zhu 2017

$$
\sigma_{L,T}^{gg,sub.}\sim \alpha_s C_F \int\limits_{z_1,\textbf{x}_0,\textbf{x}_1,\textbf{x}_2} \int_{x_{BJ}/x_0}^{1} \frac{dz_2}{z_2} \bigg[\mathcal{K}_{L,T}^{NLO}\left(z_2,X(z_2)\right)-\mathcal{K}_{L,T}^{NLO}\left(0,X(z_2)\right)\bigg].
$$

 \blacktriangleright Target fields at scale $X(z_2)$:

 \blacktriangleright *X*(*z*₂) = *x*_{Bj}: unstable (like single inclusive)

$$
\triangleright \; X(z_2) = x_{Bj}/z_2 \; \text{OK}
$$

 $X(z_2) = x_{\text{Bi}}/z_2$

$$
\sim \sqrt{\epsilon_{\text{max}}} \cdot k_g^+ \sim z_2
$$

Numerical implementation

Ducloué, Hänninen, T.L., Zhu 2017

$$
\sigma_{L,T}^{gg,sub.}\sim \alpha_s C_F \int\limits_{z_1,\textbf{x}_0,\textbf{x}_1,\textbf{x}_2} \int_{x_{BJ}/x_0}^{1} \frac{dz_2}{z_2}\bigg[\mathcal{K}_{L,T}^{NLO}\left(z_2,X(z_2)\right)-\mathcal{K}_{L,T}^{NLO}\left(0,X(z_2)\right)\bigg].
$$

- \blacktriangleright Target fields at scale $X(z_2)$:
	- \blacktriangleright $X(z_2) = x_{\text{Bi}}$: unstable (like single inclusive)

$$
\triangleright \; X(z_2) = x_{Bj}/z_2 \; \text{OK}
$$

- \blacktriangleright Lower limit of z_2
	- \blacktriangleright $z_2 > \frac{x_{Bj}}{x_0}$ from target k^- (assuming $k_T^2 \sim Q^2$)
	- \triangleright Strict k^+ factorization: $z_2 > \frac{x_{Bj}}{x_0}$ *M*² *p Q*2
		- \Longrightarrow would require kinematical constraint
	- ► For "dipole" term integrate to $z_2 = 0$

$$
X(z_2)=x_{Bj}/z_2
$$

$$
\sim\!\!\sqrt{\epsilon_{\text{max}}}\,\epsilon_{\text{max}}^{+}\sim z_{2}
$$

Ducloué, Hänninen, T.L., Zhu 2017

 \blacktriangleright Major cancellation between different NLO terms

14/22 K ロ ▶ K 伊 ▶ K ヨ ▶ K ヨ ▶ ヨ ヨ ヨ めぬね

Ducloué, Hänninen, T.L., Zhu 2017

 \blacktriangleright Major cancellation between different NLO terms (similar for *F_L*)

14/22 K ロ ▶ K 伊 ▶ K ヨ ▶ K ヨ ▶ ヨ ヨ ヨ めぬね

Ducloué, Hänninen, T.L., Zhu 2017

- \blacktriangleright Major cancellation between different NLO terms (similar for *F_L*)
- ► *qg*-term explicitly zero at $x_{\text{Bi}} = x_0 \implies$ transient effect

Ducloué, Hänninen, T.L., Zhu 2017

- \blacktriangleright Major cancellation between different NLO terms (similar for *F_L*)
- ► *qg*-term explicitly zero at $x_{Bj} = x_0 \implies$ transient effect
- \blacktriangleright Running coupling (parent dipole)
	- **Firansient effect larger**

NLO/LO ratio

$$
\frac{14}{22}
$$

Ducloué, Hänninen, T.L., Zhu 2017

- Major cancellation between different NLO terms (similar for *F_L*)
- ► *qg*-term explicitly zero at $x_{Bj} = x_0 \implies$ transient effect
- \blacktriangleright Running coupling (parent dipole)
	- **Firansient effect larger**
	- \blacktriangleright But Q^2 -dependence stable

NLO/LO ratio

Overall conclusions

- \triangleright NLO corrections of expected relative magnitude
- \triangleright Need to think about $X(z_2)$, z_2 limits for actually fitting data

DIS at NLO, massive quarks

Motivation, issues

- \blacktriangleright There is data! F_2^c from HERA, charm will be measured at EIC, both inclusive and exclusive
- ► LO *F^c* problematic. Dirty little secret: heavy quarks in rcBK fits do not actually work!
	- AAMQS fit has separate proton area σ_0 for *q* and *Q*:

good χ^2 but clearly unphysical

 \blacktriangleright Fit by T.L., Mäntysaari 2013 : only light quarks:

straightforward generalization does not work

Collinear resummed fit by Iancu et al 2015 better, but

only uses old HERA data with large errors

 \triangleright *b*-dependent JIMWLK Mäntysaari, Schenke 2018 : F_2 and F_{2c} not described simultaneously

LCPT loops with massive quarks are also fun!

- \blacktriangleright New Lorentz structures: rotational invariance constraints
- \blacktriangleright Approach in this talk: start with same regularization (cutoff in $k^+ + \perp$ dim. reg.) that was used for massless case

- \blacktriangleright New 3rd spin-flip structure (light cone helicity flip if you wish)
- \blacktriangleright Note: no \perp momentum in spin-flip vertex

What are new *UV*-divergent and finite contributions?

- 1. "Vertex correction" diagrams: calculation more complicated, but conceptually simpler
- 2. "Propagator correction" diagrams: calculation simple, interpretation not!K ロ ▶ K 伊 ▶ K ヨ ▶ K ヨ ▶ ヨ ヨ ヨ めぬね

Vertex corrections to spin flip vertex

Look at spin flip part *h h* $\sim m_{\text{q}}$ Corrections from *h h h*1 $-h_2$, 2 options

I spin-flip vertex: $h_1 \neq h$, $h_2 \neq h_1$ or $h_2 \neq h_1$ \Longrightarrow log-divergent $\sim m_q \frac{1}{\varepsilon}$ (2 ED's \sim k² each, 2 vertices k each) \implies absorb into **vertex mass** counterterm δm_v , same as δm_q in conventional perturbation theory

▶ 3 spin-flip vertices:
$$
h_1 \neq h
$$
, $h_2 \neq h_1$ and $h_2 \neq h$
\n \implies finite NLO contribution

Vertex corrections to non-spin flip vertex

- **If** no spin-flip vertex: $h_1 = h$, $h_2 = h_1$ and $h_2 \neq -h_1$ mass only modifies $ED's \implies not new contribution$
- ▶ 2 spin-flip + 1 non-flip $h_1 = h$ or $h_2 = h_1$ or $h_2 = -h_1$ \implies again finite NLO contribution (2 ED's \sim k² each, 1 vertex \sim k, finite integral $\sim \int d^2 \mathbf{k} \frac{\mathbf{k}}{((\mathbf{k}-...)^2+...)((\mathbf{k}-...)^2+...)}$

18/22

K ロ X K F X R X R X R X R X R X R X R X

Quark propagator corrections

- \triangleright Can absorb into a renormalization of m_q in ED of LO LCWF
- But problem: this **kinetic mass** counterterm δm_k is **not** same as the previous δm_{ν}
- In fact δm_V is same as in covariant theory, δm_V different
- \triangleright This has been known for a long time e.g. Haridranath, Zhang, also Burkardt in Yukawa th.

Mass renormalization

- ▶ 2 conceptually different masses:
	- \blacktriangleright Kinetic mass: relates energy and momentum
	- **In Vertex mass: amplitude of spin-flip in gauge boson vertex**
- ▶ 1 parameter in Lagrangian, but 2 parameters in LCPT Hamiltonian — and thus in quantization
- \blacktriangleright Lorentz-invariance requires they stay the same
- In practical LCPT calculations so far used k^+ -cutoff and \perp dim. reg. violates rot. inv. $\implies m_v \neq m_k$ at loop level.

There are 3 options to deal with this

- 1. Regularize as before, but use additional renormalization condition to set separately m_v and $m_k \implies$ discuss next
- 2. Use some other regularization \implies finite parts hard!
- 3. Smartly combine with instantaneous "normal ordering" diagrams before integrating \implies can explicitly keep $m_k = m_k$; also doable. For details see Beuf @ Hard Probes 2018

20/22 K ロ X K F X R X R X R X R X R X R X R X

Two mass renormalization conditions

 \triangleright One condition: pole mass scheme, require mass term in

Two mass renormalization conditions

 \triangleright One condition: pole mass scheme, require mass term in

21/22 K ロ ▶ K 伊 ▶ K ヨ ▶ K ヨ ▶ ヨ ヨ ヨ めぬね

Two mass renormalization conditions

 \triangleright One condition: pole mass scheme, require mass term in

Not happy?

Fiddling around with normal ordering diagrams gives same result + gauge invariance, $m_q = 0 \ldots$, but that's another talk

In stead of conclusions: to do for NLO DIS

$$
\sigma \sim \overbrace{ \mathcal{O}(1) + \mathcal{O}(\alpha_s \ln 1/x) }^{LO} + \overbrace{ \mathcal{O}(\alpha_s) + \mathcal{O}(\alpha_s^2 \ln 1/x) }^{NLO}.
$$

- \triangleright Next: fit to HERA data with NLO impact factor (with LL or NLL evolution)
- **I** Needs implementation (both DIS and single inclusive) : match NLL evolution with NLO cross section:
	- \triangleright Fyolution variable k^+ vs k^-
	- \triangleright Kinematical constraint vs
		- rapidity local resummation of double logs

22/22

K ロ ▶ K 伊 ▶ K ヨ ▶ K ヨ ▶ ヨ ヨ ヨ めぬね

- \triangleright Corresponding different subtractions from cross sections
- ▶ Loop calculation ongoing: quark masses
- \triangleright Other:
	- \triangleright Exclusive processes
	- \triangleright Dihadron correlations

Backups: single inclusive

Negative cross sections

Analytical calculation

Chirilli, Xiao, Yuan 2012

- I Numerics: Stasto, Xiao, Zaslavsky 2013 \Longrightarrow cross section negative (large N_c ; mix C_F and N_c terms)
- \blacktriangleright Kinematics? Large k_T logs?? Beuf et all 2014, Watanabe, Xiao & Zaslavsky 2015

Ducloué, T.L., Zhu 2016: a channel at finite N_c

also Kang et al 2014

- \blacktriangleright Problem is in the rapidity divergence
- \blacktriangleright Most easily identified by color factor

Unsubtracted cross section, *N_c*-term

Discussion here following lancu et al 2016 leave out *C_F*/DGLAP-terms

$$
\frac{dN^{LO+N_c}}{d^2\mathbf{k} \, d\mathbf{y}} \sim S_0(k_T) + \alpha_s \int_0^{1-x_g/x_0} \frac{d\xi}{1-\xi} \mathcal{K}(k_T, \xi, X(\xi))
$$

- \blacktriangleright Dipole operator S_0 is "bare"
- **P** Rapidity at which dipoles are evaluated $X(\xi)$
- \triangleright x_a : the target momentum fraction for LO kinematics
- \blacktriangleright Multi-Regge-kinematics: $X(\xi) = x_{\alpha}/(1 \xi)$
- \triangleright Only target $X(\xi) < x_0 \implies$ phase sp. limit $\xi < 1 x_0/x_0$:

$$
\text{BK:} \quad \mathcal{S}(k_T, x_g) = \mathcal{S}(k_T, x_0) + \alpha_s \int\limits_{0}^{1-x_g/x_0} \frac{d\xi}{1-\xi} \mathcal{K}(k_T, 1, X(\xi))
$$

Combine these, taking $S(k_T, x_0) \equiv S_0(k_T) \ldots$

K ロ ▶ K 伊 ▶ K ヨ ▶ K ヨ ▶ ヨ ヨ ヨ めぬね

Subtracted form for cross section

Unsubtracted form

$$
S_0(k_T) + \alpha_s \int_0^{1-x_g/x_0} \frac{d\xi}{1-\xi} \mathcal{K}(k_T, \xi, X(\xi))
$$

= $\mathcal{S}(k_T, x_g) + \alpha_s \int_0^{1-x_g/x_0} \frac{d\xi}{1-\xi} [\mathcal{K}(k_T, \xi, X(\xi)) - \mathcal{K}(k_T, 1, X(\xi))]$
subtracted form

(Recall: dipoles evaluated at rapidity $X(\xi)$)

- \blacktriangleright These are strictly equivalent, perfectly positive at all k_T
- \triangleright Subtracted form is a true perturbative series unsubtracted has α_s ln $1/x$ and α_s together

Origin of negativity in CXY

$$
\frac{dN^{LO+N_C}}{d^2\mathbf{k} \, \mathrm{d}y} \sim \mathcal{S}(k_T, x_g) + \alpha_s \int\limits_{0}^{1-x_g/x_0} \frac{\mathrm{d}\xi}{1-\xi} \left[\mathcal{K}(k_T,\xi,X(\xi)) - \mathcal{K}(k_T,1,X(\xi)) \right]
$$

0 How do CXY get a negative cross section?

- \triangleright $\mathcal{K}(k_{\tau}, \xi, X(\xi)) = \mathcal{K}(k_{\tau}, 1, X(\xi))$ dominated by $\xi \ll 1$
- **P** Replace $X(\xi) \to X(\xi = 0) = x_{\alpha}$
- \triangleright Change ξ integration limit to 1 (+ distribution!)

This gives CXY subtraction scheme

$$
\frac{dN^{LO+N_c}}{d^2\mathbf{k} dy} \sim S(k_T, x_g) + \alpha_s \int\limits_0^1 \frac{d\xi}{1-\xi} \left[\int\limits_{-\infty}^{\infty} \frac{\zeta(k_T)^4 \text{ for } k_T \gg Q_s}{\mathcal{K}(k_T, \xi, x_g)} - \mathcal{K}(k_T, 1, x_g) \right]
$$

- Formally ok in α_s expansion
- \triangleright Nice factorized form: only dipoles at x_{α} , like LO
- \triangleright But subtraction no longer integral form of BK

Comparing subtraction procedures

Comparing subtraction procedures

Two forms for NLO cross section

- \blacktriangleright Explicitly equivalent
- \blacktriangleright Positive, although \ll LO

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ ヨ ヨ H A 9 Q Q