Towards generalization of low x evolution equations

Krzysztof Kutak IFJ PAN

Based on papers:

M. Hentschinski, A. Kusina, K.K, M. Serino; Eur.Phys.J. C78 (2018) no.3, 174

M. Hentschinski, A. Kusina, K.K; Phys. Rev. D 94, 114013 (2016)

O. Gituliar, M. Hentschinski, K.K; JHEP 1601 (2016) 181

Hard coefficient functions in kt factorization:

One consider embedding off-shell amplitude in on-shell and introduces eikonal lines

Kotko, KK, van Hameren 2013, KK, Salwa, van Hameren 2013

Hard coefficient functions in HEF:

Kotko, KK, van Hameren 2013, KK, Salwa, van Hameren 2013

Evolution- in HEF, CGC

USE higher order corrections to BFKL/BK/JIMWLK but:

What about evolution of quarks? Can one get in some limit complete DGLAP at least an LO?

Use CCFM includes "1/z" and "1/(1-z)" terms of splitting function, depends on hard scale but:

does not allow to account for finite terms like "z(1-z)". Jumps from low z to large z. Framework limited only to gluons. Limited description of data.

Framework by Balitsky and Tarasov: large "z", small "z", moderate "z", Sudakov, nonlinearity, spin dependence. The same kinematics in the kernel as in our approach. but:

limited so far to gluons only. Not clear how to deal with it numerically

Kimber,Martin, Ryskin, Watt or "Parton Branching" Jung at. al 1804.11152 provides full set of TMD pdfs.

but:

DGLAP based only integral version fully consistent. They should be at least refitted.

Ciafaloni,Colferai,Staśto,Salam JHEP 0708:046,2007 → anzatz for system of equations unifying DGLAP and BFKL. but quark splitting functions are kt independent.

Example- dijets- azimuthal angle correlations – central region

M. Bury, A. van Hameren, H. Jung, KK, S. Sapeta, M. Serino '17

Example- dijets- azimuthal angle correlations – central region

M. Bury, A. van Hameren, H. Jung, KK, S. Sapeta, M. Serino '17

Simulation in KaTie+ CASCADE

KMR pdfs used unintegrated DGLAP based

Together with off-shell ME

as obtained from KaTie ME generator

Example- Z+jet- pT of Z

van Hameren, Deak, Jung, Kusina, Kutak, M. Serino '18

Example- Z+jet- pT of Z

van Hameren, Deak, Jung, Kusina, Kutak, M. Serino '18

POWHEG

Example- Z+jet- decorelations

van Hameren, Deak, Jung, Kusina, Kutak, M. Serino '18

Simulation in KaTie+ CASCADE + Parton Branching pdfs used unintegrated DGLAP based Together with off-shell ME as obtained from KaTie ME generator

The goal

- *go beyond DGLAP and BFKL by generalized splitting kernel*
- *coverage of all "z" regions*
- *extend evolution towards large x*
- *reproduce collinear limit (DGLAP)*
- *reproduce BFKL in low "z" limit*
- *kT-dependent splitting functions*
- *in longer term goal: to describe large class of exclusive processes*

We aim at will achieving this goals by using Curci-Furmanski-Petronzio (CFP) and Catani-Hautmann (CH) formalisms.

Curci, Furmanski, Petronzio Nucl. Phys. B175 (1980) 27

Catani, Hautmann NPB427 (1994) 475524

Curci-Furmanski-Petronzio method

Factorization based on generalized ladder expansion (in terms of Two Particle Irreducible (2PI) kernels)

Co hard scattering coefficient function

Ko 2PI kernels connected only by convolution in x this is achieved by introducing appropriate projector operators

How does it work….

Curci-Furmanski-Petronzio - factorization $\begin{array}{c}\n\begin{pmatrix}\n\mathbf{y} \\
\mathbf{y} \\
\mathbf{y}\n\end{pmatrix} = \n\begin{pmatrix}\n\mathbf{y} \\
\mathbf{y} \\
\mathbf{y} \\
\mathbf{y}\n\end{pmatrix} + \$ *notation from CFP paper they studied Pqq* $k_{\mu} = x_{\mu} + \alpha n_{\mu} + k_{\perp \mu}$ *finite (M – pole part is* $M = \frac{1}{2} C_0 K_0 \not{p} = \frac{1}{2} C_0 \mathbb{P} K_0 \not{p} + \frac{1}{2} C_0 (1 - \mathbb{P}) K_0 \not{p}$ *finite)* $\frac{1}{2}C_0\mathbb{P} K_0\rlap{\,/}p = \frac{1}{2}C_0\mathbb{P}_\epsilon\mathbb{P}_s K_0\rlap{\,/}p$ *the projector performs integral over phase space of "k" and extracts poles* $\frac{1}{2}C_0\mathbb{P}_{\epsilon}\mathbb{P}_{out}K_0\mathbb{P}_{in}$ *Co hard scattering coefficient function factorization Ko 2PI kernels convolution only in "x"* Γ*Γ pole part spin part*

Curci-Furmanski-Petronzio - factorization $\frac{1}{2}$ $\frac{1}{2}$ *notation from CFP paper they studied Pqq* $k_{\mu} = x_{\mu} + \alpha n_{\mu} + k_{\perp \mu}$ *finite (M – pole part is* $M = \frac{1}{2} C_0 K_0 \not{p} = \frac{1}{2} C_0 \mathbb{P} K_0 \not{p} + \frac{1}{2} C_0 (1 - \mathbb{P}) K_0 \not{p}$ *finite)* $\frac{1}{2}C_0\mathbb{P} K_0\rlap{\,/}p = \frac{1}{2}C_0\mathbb{P}_\epsilon\mathbb{P}_s K_0\rlap{\,/}p$ *the projector performs integral over phase space of "k" and extracts poles* $\mathcal{C}_0\mathbb{P}_{\epsilon} \mathbb{P}_{out} K_0\mathbb{P}_{in}$ *Co hard scattering coefficient function factorization Ko 2PI kernels convolution only in "x"* Γ*Γ pole part spin part*

Curci-Furmanski-Petronzio - splitting function

- *incoming propagators amputated*
- *contains propagator of outgoing parton + incoming on-shell*

The CFP method applied to construct splitting functions

$$
\Gamma \sim \hat{K}_{ij} \left(z, \frac{\mathbf{k}^2}{\mu^2}, \epsilon, \alpha_s \right) = z \int \frac{dq^2 d^{2+2\epsilon} \mathbf{q}}{2(2\pi)^{4+2\epsilon}} \Theta(\mu_F^2 + q^2) \mathbb{P}_{j, \text{ in }} \otimes \hat{K}_{ij}^{(0)}(q, k) \otimes \mathbb{P}_{i, \text{ out }}
$$

$$
= \frac{\alpha_S}{2\pi \Gamma(1+\epsilon)} z \int_0^{\mu_F^2} \frac{dq^2}{q^2} \left(\frac{e^{-\gamma_E} \mathbf{q}^2}{\mu^2} \right)^{\epsilon} P_{ij}^{(0)}(z; \epsilon)
$$

The method can be used to prove factorization and to derive evolution equations

Generalization to HEF kinematics

 $q^{\mu} = xp^{\mu} + q_{\perp}^{\mu} + \frac{q^2 + \boldsymbol{q}^2}{2xp \cdot n}n^{\mu}$ $=yp^{\mu}+k_{\perp}^{\mu}\quad$ ordering in "-" components *Catani, Hautmann NPB427 (1994) 475524*

> *F. Hautmann, M. Hentschinski, H. Jung Nucl.Phys. B865 (2012) 54-66*

We will define and constrain splitting functions by requiring:

- gauge invariance/current conservation of vertices
- appropriate projector operators (can be obtained form Lipatov effective action or *equivalently by spin helicity method)*
- *HEF limit, collinear limit*

Generalization to HEF kinematics

O. Gituliar, M. Hentschinski, K.K; JHEP 1601 (2016) 181

We will define and constrain splitting functions by requiring:

- *gauge invariance/current conservation of vertices*
- appropriate projector operators (can be obtained form Lipatov effective action or *equivalently by spin helicity method)*
- *HEF limit, collinear limit*

CH kernel

Application of the method to Pqg

Usage of axial gauge. The outgoing projector is the same for quark as in the original CFP

The projector for incoming gluons obtained from

$$
\mathcal{M}^{g^*g^* \to q\bar{q}}(k_1, k_2; p_3, p_4) = \frac{2 y_1 y_2 p_1^{\mu_1} p_2^{\mu_2}}{\sqrt{k_1^2 + k_2^2 + 1}} d_{\mu_1 \nu_1}(k_1) d_{\mu_2 \nu_2}(k_2) \hat{\mathcal{M}}^{g^*g^* \to q\bar{q}}_{\mu_1, \mu_2}(k_1, k_2; p_3, p_4)
$$

q

$$
y_1 p_1^{\mu_1} d_{\mu_1 \nu_1}(k_1) = k_1 \pm \nu_1 \qquad y_2 p_2^{\mu_2} d_{\mu_2 \nu_2}(k_2) = k_2 \pm \nu_2
$$

$$
\mathbb{P}_{g,in}^{s\,\mu\nu} = -\frac{k' \perp k' \perp}{k^2 \perp} \qquad \mathbb{P}_{q,out}^{s} = \frac{\psi}{2q \cdot n}
$$
\n
$$
\tilde{\mathbf{q}} = \mathbf{q} - z\mathbf{k} \qquad \mathbb{k}
$$

$$
\bar{P}_{qg}^{(0)} = T_R \left(\frac{\tilde{q}^2}{\tilde{q}^2 + z(1-z)\boldsymbol{k}^2} \right)^2 \left[z^2 + (1-z)^2 + 4z^2(1-z)^2 \frac{\boldsymbol{k}^2}{\tilde{q}^2} \right]
$$

Vertices – example derivation auxiliary quarks M. Hentschinski, A. Kusina, K.K, M. Serino; Eur.Phys.J. C78 (2018) no.3, 174 q **_00000** oooo $000³$ *k* q_B $\mathcal{A}(q,k,p') = (\sqrt{2}) \frac{p_{\mu_1} n_{\mu_2} \epsilon_{\mu_3}(p')}{a^2 k^2} \left\{ \mathcal{V}^{\lambda \kappa \mu_3}(q,k,p') d^{\mu_1} \chi(q) d^{\mu_2} \kappa(k) \right\}$ $+\frac{d^{\mu_1\mu_2}(k)}{n\cdot n'}\frac{q^2n^{\mu_3}}{n\cdot n'}-\frac{d^{\mu_1\mu_2}(q)}{n\cdot n'}\left.\frac{k^2p^{\mu_3}}{n\cdot n'}\right\}$ *q p'* $\equiv (\sqrt{2}) \, \frac{p_{\mu_1} \, n_{\mu_2} \, \epsilon_{\mu_3}(p')}{a^2 \, k^2} \, \Gamma^{\mu_1 \mu_2 \mu_3}(q, k, p')$ *k*

current conservation w.r.t outgoing gluon q → general kinematics k →HEF

Full set of projectors

Constrained by Ward identities and appropriate limits the splitting functions should have correct DGLAP and BFKL limits we have the following projectors

Full set of vertices

M. Hentschinski, A. Kusina, K.K, M. Serino; Eur.Phys.J. C78 (2018) no.3, 174

$$
\Gamma_{q^*g^*q}^{\mu}(q, k, p') = ig t^a d^{\mu}{}_{\nu}(k) \left(\gamma^{\nu} - \frac{n^{\nu}}{k \cdot n} \phi \right)
$$

\n
$$
\Gamma_{g^*q^*q}^{\mu}(q, k, p') = ig t^a d^{\mu}{}_{\nu}(q) \left(\gamma^{\nu} - \frac{p^{\nu}}{p \cdot q} \phi \right)
$$

\n
$$
\Gamma_{q^*q^*g}^{\mu}(q, k, p') = ig t^a \left(\gamma^{\mu} - \frac{p^{\mu}}{p \cdot p'} \phi + \frac{n^{\mu}}{n \cdot p'} \phi \right)
$$

\n
$$
\Gamma_{g^*g^*g}^{\mu_1 \mu_2 \mu_3}(q, k, p') = ig f^{abc} \left\{ \mathcal{V}^{\lambda \kappa \mu_3}(q, k, p') d^{\mu_1}{}_{\lambda}(q) d^{\mu_2}{}_{\kappa}(k) + d^{\mu_1 \mu_2}(k) \frac{q^2 n^{\mu_3}}{n \cdot p'} - d^{\mu_1 \mu_2}(q) \frac{k^2 p^{\mu_3}}{p \cdot p'} \right\}
$$

\nObtained using spinor helicity methods

Van Hameren, Kotko, Kutak, JHEP 1301 (2013) 078

remark: can be obtained from Lipatov effective action

Example calculation of splitting function: Pgg case

M. Hentschinski, A. Kusina, K.K, M. Serino; Eur.Phys.J. C78 (2018) no.3, 174

$$
\mathbb{P}_{g,\,\text{in}}\otimes\hat{K}_{gg}^{(0)}(q,k)\otimes\mathbb{P}_{g,\,\text{out}}=
$$

$$
\mathbb{P}_{g,\text{in}}^{\beta\beta'}(k)\,\mathbb{P}_{g,\text{out}}^{\mu'\nu'}(q)(\Gamma_{g^*g^*g}^{\beta\mu\alpha})^{\dagger}\Gamma_{g^*g^*g}^{\nu\beta'\alpha'}\,\frac{-id^{\mu\mu'}(q)}{q^2-i\epsilon}\,\frac{id^{\nu\nu'}(q)}{q^2+i\epsilon}\,d^{\alpha\alpha'}(k-q)
$$

$$
\tilde{P}_{gg}^{(0)}(z, \tilde{\boldsymbol{q}}, \boldsymbol{k}) = 2C_A \left\{ \frac{\tilde{\boldsymbol{q}}^4}{(\tilde{\boldsymbol{q}} - (1 - z)\boldsymbol{k})^2 [\tilde{\boldsymbol{q}}^2 + z(1 - z)\boldsymbol{k}^2]} \left[\frac{z}{1 - z} + \frac{1 - z}{z} + \frac{1 - z}{z}
$$

 $\tilde{q} = q - zk$

Results

M. Hentschinski, A. Kusina, K.K, M. Serino; Eur.Phys.J. C78 (2018) no.3, 174

For sake of presentation: only angular averaged kernels

$$
\begin{split}\n\bar{P}_{qg}^{(0)} &= T_R \left(\frac{\tilde{q}^2}{\tilde{q}^2 + z(1-z)\tilde{k}^2} \right)^2 \left[z^2 + (1-z)^2 + 4z^2(1-z)^2 \frac{\tilde{k}^2}{\tilde{q}^2} \right] \\
\bar{P}_{gq}^{(0)} &= C_F \left[\frac{2\tilde{q}^2}{z|\tilde{q}^2 - (1-z)^2\tilde{k}^2|} - \frac{(2-z)\tilde{q}^4 + z(1-z^2)\tilde{k}^2\tilde{q}^2}{(\tilde{q}^2 + z(1-z)\tilde{k}^2)^2} \right] \\
\bar{P}_{qg}^{(0)} &= C_F \frac{\tilde{q}^2}{\tilde{q}^2 + z(1-z)\tilde{k}^2} \\
&= \left[\frac{\tilde{q}^2 + (1-z^2)\tilde{k}^2}{(1-z)|\tilde{q}^2 - (1-z)^2\tilde{k}^2|} + \frac{z^2\tilde{q}^2 - z(1-z)(1-3z+z^2)\tilde{k}^2}{(1-z)(\tilde{q}^2 + z(1-z)\tilde{k}^2)} \right] \\
\bar{P}_{gg}^{(0)} &= C_A \frac{\tilde{q}^2}{\tilde{q}^2 + z(1-z)\tilde{k}^2} \left[\frac{(2-z)\tilde{q}^2 + (z^3 - 4z^2 + 3z)\tilde{k}^2}{z(1-z)|\tilde{q}^2 - (1-z)^2\tilde{k}^2|} + \frac{(2z^3 - 4z^2 + 6z - 3)\tilde{q}^2 + z(4z^4 - 12z^3 + 9z^2 + z - 2)\tilde{k}^2}{(1-z)(\tilde{q}^2 + z(1-z)\tilde{k}^2)} \right]\n\end{split}
$$

Kinematic limits Pgg – DGLAP BFKL

with this variable one can disentangle singularities

q

p'=k-q

$$
\widetilde{p} = \tfrac{k-q}{1-z}
$$

DGLAP limit:

$$
\lim_{k^2 \to 0} \int_0^{2\pi} d\phi P(z, k^2, \tilde{\boldsymbol{p}}^2) = 2C_A \left[\frac{z}{1-z} + \frac{1-z}{z} + z (1-z) \right]
$$

BFKL limit:

$$
\lim_{z \to 0} \hat{K}_{gg} \left(z, \frac{\mathbf{k}^2}{\mu^2}, \epsilon, \alpha_s \right) = \frac{\alpha_s C_A}{\pi (e^{\gamma_E} \mu^2)^{\epsilon}} \int \frac{d^{2+2\epsilon} \tilde{\mathbf{p}}}{\pi^{1+\epsilon}} \Theta \left(\mu_F^2 - (\mathbf{k} - \tilde{\mathbf{p}})^2 \right) \frac{1}{\tilde{\mathbf{p}}^2} \n= \int \frac{d^{2+2\epsilon} \mathbf{q}}{\pi^{1+\epsilon}} \Theta \left(\mu_F^2 - \mathbf{q}^2 \right) \frac{\alpha_s C_A}{\pi (e^{\gamma_E} \mu^2)^{\epsilon}} \frac{1}{(\mathbf{q} - \mathbf{k})^2},
$$

Kinematic limits Pgg - CCFM

$$
p' \equiv k - q = yp(1 - z) + k - q + \frac{q^2 + q^2}{2xp \cdot n}n
$$

\n
$$
\frac{p'}{1 - z} = yp + \frac{k - q}{1 - z} + \frac{q^2 + q^2}{2(1 - z)xp \cdot n}n
$$

\n
$$
\tilde{p} = \frac{k - q}{1 - z}
$$
 related to angle
\nCCFM limit:
\n
$$
\lim_{\tilde{p} \to 0} \hat{K}_{gg} \left(z, \frac{k^2}{\mu^2}, 0, \alpha_s\right) = z \int_{\tilde{p}_{min}^2}^{\tilde{p}_{max}^2} \frac{d\tilde{p}^2}{\tilde{p}^2} \frac{\alpha_s C_a}{\pi} \left[\frac{1}{z} + \frac{1}{1 - z} + \mathcal{O}\left(\frac{\tilde{p}^2}{k^2}\right)\right]
$$

Towards evolution equation

- For now we have real part emissions of the splitting functions.
- *The non diagonal splitting functions do not have virtual contribution at the LO.*
- *They are divergent when* $p' \rightarrow 0$ *. The diagonal once have virtual contributions.*
- However, the distribution of gluons gets contribution from quarks....
- *We can consider the following model*

Towards evolution equation

Real part of Pqq to be complemented by virtual corrections → can expect cancellations of singularities but Pgq is divergent

For gluonic part we use low z limit part of Pgg i.e. LO BFKL equation

$$
\mathcal{F}(x, \mathbf{q}^2) = \mathcal{F}^0(x, \mathbf{q}^2) + \overline{\alpha}_s \int_x^{\infty} \frac{dz}{z} \int \frac{d^2 \mathbf{p}}{\pi \mathbf{p}^2} \left[\mathcal{F}\left(\frac{x}{z}, |\mathbf{q} + \mathbf{p}|^2\right) - \theta(\mathbf{q}^2 - \mathbf{p}^2) \mathcal{F}\left(\frac{x}{z}, \mathbf{q}^2\right) \right]
$$

add quark induced contribution

$$
+\frac{\alpha_s}{2\pi}\int\limits_x^{1}\frac{dz}{z}\int\frac{d^2\bm{p}}{\pi\bm{p}^2}P_{gq}(z,\bm{p},\bm{q})\mathcal{Q}\left(\frac{x}{z},|\bm{p}+\bm{q}|^2\right)
$$

Towards evolution equation-BFKL with Regge form factor

t.
ni *Use simplified Pgg kernel i.e. BFKL limit. Introduce phase space slicing parameter to separate resolved and unresolved emissions*

$$
\mathcal{F}(x, \mathbf{q}^2) = \mathcal{F}^0(x, \mathbf{q}^2) + \overline{\alpha}_s \int_x^1 \frac{dz}{z} \left[\int_{\mu^2} \frac{d^2 \mathbf{p}}{\pi \mathbf{p}^2} \mathcal{F}\left(\frac{x}{z}, |\mathbf{q} + \mathbf{p}|^2\right) - \ln \frac{\mathbf{q}^2}{\mu^2} \mathcal{F}\left(\frac{x}{z}, \mathbf{q}^2\right) \right]
$$

Using Mellin transforms and some algebra we get

$$
\mathcal{F}(x, \boldsymbol{q}^2) = \underbrace{\tilde{\mathcal{F}}^0(x, \boldsymbol{q}^2)}_{\text{modified}} + \overline{\alpha}_s \int_x^1 \frac{dz}{z} \underbrace{\Delta_R(z, \boldsymbol{q}^2, \mu^2)}_{\exp(-\overline{\alpha}_s \ln 1/z \ln \boldsymbol{q}^2/\mu^2)} \int_{\mu^2} \frac{d^2 \boldsymbol{p}}{\pi \boldsymbol{p}^2} \mathcal{F}\left(\frac{x}{z}, |\boldsymbol{q} + \boldsymbol{p}|^2\right)
$$

Stable in μ → 0

Towards evolution equation

M. Hentschinski, A. Kusina, K.K; Phys. Rev. D 94, 114013 (2016)

For quark part the crucial difference: no virtual corrections

$$
\int \frac{d{\bm p}^2}{\bm p^2} \rightarrow \int_{\mu^2} \frac{d{\bm p}^2}{\bm p^2}
$$

$$
\text{`BFKL'} + \frac{\alpha_s}{2\pi} \int\limits_x^1 \frac{dz}{z} \int_{\mu^2} \frac{d^2p}{\pi p^2} P_{gq}(z, p, q) \mathcal{Q}\left(\frac{x}{z}, |\mathbf{p} + \mathbf{q}|^2\right)
$$

The equation for gluon reads:

$$
\mathcal{F}(x, \mathbf{q}^2) = \tilde{\mathcal{F}}^0(x, \mathbf{q}^2) + \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} \int \frac{d^2 \mathbf{p}}{\pi \mathbf{p}^2} \theta(\mathbf{p}^2 - \mu^2) \left[\Delta_R(z, \mathbf{q}^2, \mu^2) \right]
$$

$$
\left(2C_A \mathcal{F} \left(\frac{x}{z}, |\mathbf{q} + \mathbf{p}|^2 \right) + C_F \mathcal{Q} \left(\frac{x}{z}, |\mathbf{q} + \mathbf{p}|^2 \right) \right)
$$

$$
- \int_z^1 \frac{dz_1}{z_1} \Delta_R(z_1, \mathbf{q}^2, \mu^2) \left[\tilde{P}_{gq} \left(\frac{z}{z_1}, \mathbf{p}, \mathbf{q} \right) \frac{z}{z_1} \right] \mathcal{Q} \left(\frac{x}{z}, |\mathbf{q} + \mathbf{p}|^2 \right) \right]
$$

where

 $P_{aa} = \tilde{P}_{aa}/z$

Towards evolution equation stability

Resummation of $\ln q^2/\mu^2$ in $\Delta_R = \left(\frac{\mu^2}{q^2}\right)^{\overline{\alpha}_s \ln 1/z}$ *cuts of* $\mu \to \text{region}$

Conclusions and outlook

- We have applied CFP and CH technique to calculate real emissions splitting functions
- We used the splitting functions to construct model equation for gluon density *receiving contributions from quarks*
- *We found that found that resummation of virtual contributions to Pgg at low x helps with treatment of singularity of Pgq splitting function*
- *Virtual contributions to Pgg and Pqq should be computed using the same formalism*
- *Evolution variable: will come after getting full kernels*
- *The full set of evolution equations*
- *Relation to operator definition of TMD, address nonlinearities*
- *Solution*
- *Monte Carlo implementation*

REF 2018

