Status and prospects of GPD extraction from DVCS

Krešimir Kumerički

University of Zagreb, Croatia

Probing Nucleons and Nuclei in High Energy Collisions

October 1 - November 16, 2018, INT, Seattle

Outline

Uncertainties?

Neural net fits

Summary

1 Introduction and status of fits to DVCS data

2 Uncertainties?

3 Neural net fits

4 Summary

Intro and status of fits	Uncertainties?	Neural net fits	
0000000	0000	0000000000	

Access to GPDs via DVCS

- Deeply virtual Compton scattering (DVCS) "gold plated" process of exclusive physics
- DVCS is measured via leptoproduction of a photon

• Interference with Bethe-Heitler process gives unique access to both real and imaginary part of DVCS amplitude.

Summary

Uncertainties?

Neural net fits

Summary

DVCS cross section

$$d\sigma \propto |\mathcal{T}|^2 = |\mathcal{T}_{\rm BH}|^2 + |\mathcal{T}_{\rm DVCS}|^2 + \mathcal{I} \; .$$

• where *e. g.* interference term is

$$\mathcal{I} \propto \frac{-e_{\ell}}{\mathcal{P}_{1}(\phi)\mathcal{P}_{2}(\phi)}\left\{c_{0}^{\mathcal{I}}+\sum_{n=1}^{3}\left[c_{n}^{\mathcal{I}}\cos(n\phi)+s_{n}^{\mathcal{I}}\sin(n\phi)\right]\right\},\$$

• where *e. g.* $c_1^{\mathcal{I}}$ harmonic for unpolarized target is

$$c_{1, ext{unpol.}}^\mathcal{I} \propto \left[F_1 \, \mathfrak{Re} \, \mathcal{H} - rac{t}{4 M_p^2} F_2 \, \mathfrak{Re} \, \mathcal{E} + rac{x_{ ext{B}}}{2 - x_{ ext{B}}} (F_1 + F_2) \, \mathfrak{Re} \, \widetilde{\mathcal{H}}
ight]$$

• and at leading order everything depends on four complex

$$\begin{array}{l} \textbf{Compton form factors (CFFs)} \\ \mathcal{H}(\xi,t,Q^2), \quad \mathcal{E}(\xi,t,Q^2), \quad \widetilde{\mathcal{H}}(\xi,t,Q^2), \quad \widetilde{\mathcal{E}}(\xi,t,Q^2) \end{array}$$

Uncertainties?

Neural net fits

Summary

Factorization of DVCS \longrightarrow GPDs

• CFFs are convolution:

$${}^{a}\mathcal{H}(\xi,t,Q^{2}) = \int \mathrm{d}x \ C^{a}(x,\xi,\frac{Q^{2}}{Q_{0}^{2}}) \ H^{a}(x,\xi,t,Q_{0}^{2})$$

• $H^{a}(x, \eta, t, Q_{0}^{2})$ — Generalized parton distribution (GPD)

Uncertainties?

Neural net fits

Summary

Hybrid GPD models for global fits

- [K.K., Müller '09-'15]
- Sea quarks and gluons modelled using SO(3) partial wave expansion in conformal GPD moment space + Q^2 evolution.
- Valence quarks model CFFs directly (ignoring Q^2 evolution):

$$\Im \mathfrak{M} \mathcal{H}(\xi, t) = \pi \left[\frac{4}{9} H^{u_{\text{val}}}(\xi, \xi, t) + \frac{1}{9} H^{d_{\text{val}}}(\xi, \xi, t) + \frac{2}{9} H^{\text{sea}}(\xi, \xi, t) \right]$$
$$H(x, x, t) = n r 2^{\alpha} \left(\frac{2x}{1+x} \right)^{-\alpha(t)} \left(\frac{1-x}{1+x} \right)^{b} \frac{1}{\left(1 - \frac{1-x}{1+x} \frac{t}{M^{2}} \right)^{p}}.$$

- $\mathfrak{Re}\,\mathcal{H}$ determined by dispersion relations
- 15 free parameters in total for H, \tilde{H} , E, \tilde{E} .

Uncertainties?

Neural net fits

Summary

Fit examples (1/2): H1/ZEUS

Intro and status of fitsUncertainties?Neural net fitsSummary0000000000000000000000000000Fit examples (2/2): JLab's Hall A (2015)

• KM15 global fit is fine. $\chi^2/n_{\rm d.o.f.}=240./275$ 🗸

Uncertainties?

Neural net fits

Summary

Global fit χ^2 values: KM and PARTONS

[K.K., Müller '09-'15]

Collaboration	Obcervable Ref			KMM12		KMI	15
Collaboration	Observable	Kel.	npts	$\chi^2/n_{\rm pts}$	pull	$\chi^2/n_{\rm pts}$	pull
ZEUS	σ _{DVCS}	19 20	11	0.49	-1.76	0.51	-1.74
ZEUS,H1	$d\sigma_{\rm DVCS}/dt$	19 21 22	24	0.97	0.85	1.04	1.37
HERMES	$A_C^{\cos 0\phi}$	23	6	1.31	0.49	1.24	0.29
HERMES	$A_{C}^{\cos \phi}$	23	6	0.24	-0.56	0.07	-0.20
HERMES	$A_{LUJ}^{\sin\phi}$	23	6	2.08	-2.52	1.34	-1.28
CLAS	$A_{LU}^{\sin \phi}$	24	4	1.28	2.09		
CLAS	$A_{LU}^{\sin\phi}$	4 25	13			1.24	0.63
CLAS	$\Delta \sigma^{\sin \phi, w}$	[7]	48			0.41	-1.66
CLAS	$d\sigma^{\cos 0\phi,w}$	7	48			0.16	-0.21
CLAS	$d\sigma^{\cos\phi,w}$	7	48			1.16	6.36
Hall A	$\Delta \sigma^{\sin \phi, w}$	5	12	1.06	-2.55		
Hall A	$d\sigma^{\cos 0\phi,w}$	5	4	1.21	2.14		
Hall A	$d\sigma^{\cos\phi,w}$	5	4	3.49	-0.26		
Hall A	$\Delta \sigma^{\sin \phi, w}$	6	15			0.81	-2.84
Hall A	$d\sigma^{\cos 0\phi,w}$	6	10			0.40	0.92
Hall A	$d\sigma^{\cos\phi,w}$	6	10			2.52	-2.42
HERMES,CLAS	$A_{UL}^{\sin\phi}$	18 26	10	1.90	-1.89	1.10	-1.94
HERMES	$A_{LL}^{\cos 0\phi}$	26	4	3.44	2.17	3.19	1.99
HERMES	$A_{UT,I}^{\sin(\phi-\phi_S)\cos\phi}$	27	4	0.90	0.61	0.90	0.71
CLAS	$A_{UL}^{\sin\phi}$	4	10			0.76	0.38
CLAS	$A_{LL}^{\cos 0\phi}$	4	10			0.50	-0.22
CLAS	$A_{LL}^{\cos \phi}$	4	10			1.54	2.40

[Moutarde, Sznajder, Wagner, '18]

No.	Collab.	Year	Ref.	χ^2	n	χ^2/n
1	HERMES	2001	13	9.8	10	0.98
2		2006	114	2.9	4	0.72
3		2008	115	24.2	18	1.35
4		2009	116	40.1	35	1.15
5		2010	117	40.3	18	2.24
6		2011	118	14.5	24	0.60
7		2012	119	25.4	35	0.73
8	CLAS	2001	14	_	0	
9		2006	120	0.9	2	0.47
10		2008	121	371.1	283	1.31
11		2009	122	36.4	22	1.66
12		2015	123	351.4	311	1.13
13		2015	124	937.9	1333	0.70
14	Hall A	2015	112	220.2	228	0.97
15		2017	113	258.8	276	0.94
16	COMPASS	2018	55	10.7	1	10.67

Intro and status of fits		Uncertai	nties?		Neural	net fits		Sum	mary
Including	Hall A	2017	data	in	global	world	fit:	fail	X

Global world DVCS data fit

before 2017	including 2017 Hall A	
$\chi^2/n_{ m d.o.f} = 240./275$ 🗸	$\chi^2/n_{ m d.o.f} =$ 545./337 🗡	

Intro and status of fits	Uncertainties?	Neural net fits	Summary
0000000	•000	0000000000	00

Uncertainties?

Intro and status of fits		Uncertainties?		Neural net fits		Summary	
_					000000000	00	00

Example: Uncertainty of D-term

- D-term is a part of GPD that has nice physical interpretation (related to pressure distribution inside nucleon [M. Polyakov '03]), see talk by [P. Schweitzer] tomorrow
- within some approximations and up to a charge-related prefactor of order one it is equal to subtraction constant in dispersion relation for CFFs H and E [O. Teryaev '05]:

$$D(t) \sim \Delta(t) = \mathfrak{Re} \mathcal{H}(\xi, t) - \frac{1}{\pi} \mathrm{P.V.} \int_0^1 dx \frac{2x}{\xi^2 - x^2} \, \mathfrak{Im} \, \mathcal{H}(x, t)$$

• In KM fits [K.K., D. Müller], $D(t) = D/(1 - t/M_D^2)^2$ and is extracted directly by fits (where $\Re e \mathcal{H}$ is then determined by dispersion relations)

Intro and status of fits	Uncertainties?	Neural net fits	Summary
Eutroptions of D			

- Fit parameter uncertainties of D(t) are ~ 20%, but systematic uncertainty due to model selection is unknown and presumably much larger!
- [V. D. Burkert, F.-X. Girod and L. Elouadrhiri '18] use just CLAS $d\sigma$ and $\Delta\sigma$ DVCS data to extract very precise value of D-term

Intro and status of fits	Uncertainties?	Neural net fits	Summary
Eutroptions of D			

- Fit parameter uncertainties of D(t) are ~ 20%, but systematic uncertainty due to model selection is unknown and presumably much larger!
- [V. D. Burkert, F.-X. Girod and L. Elouadrhiri '18] use just CLAS $d\sigma$ and $\Delta\sigma$ DVCS data to extract very precise value of D-term
- Data science: total error = bias + variance

Krešimir Kumerički

INT 18-3, Week 1

14 / 27

Status of GPD extraction

Intro and status of fits	Uncertainties?	Neural net fits	Summary
0000000	0000	●000000000	00

Neural net fits

• Essentially a least-square fit of a complicated many-parameter function. $f(x) = \tanh(\sum w_i \tanh(\sum w_j \cdots)) \Rightarrow$ no theory bias

Uncertainties?

Neural net fits

Summary

Study A: NN fit to CLAS 2015 data

- We start by fitting just to the CLAS 2015 $d\sigma$ and $\Delta\sigma$ measurements [Jo et al. '15], and just ${\cal H}$
- We utilize dispersion relations (one NNet represents Im H, another represents D(t))
- Uncertainty is estimated by averaging over ensemble of neural nets:

17 / 27

Intro and status of fits	Uncertainties?	Neural net fits	Summary
Comparison t	O [Burkert et al. '18]		

Intro and status of fits	Uncertainties?	Neural net fits ○○○●○○○○○○○	Summary
Comparison t	O [Burkert et al. '18]		

- But what is the effect of using the limited set of data, and assumption of ${\cal H}$ dominance?
- $\chi^2/n_{\rm pts} = 1725/2028$ (this NNet), 1912/2028 (KM15), 2322/2028 (GK)

Intro and stat	tus of fits	Uncertainties?	Neural net fits	Summary 00
More	flexible mod	el: $\mathcal{H} + \widetilde{\mathcal{H}}$		
10.0 7.5 5.0 2.5 0.0 -2.5 -5.2	74 - 62 (62) 22 MGR(15) 22 MGR(154			
0- -2+ H=3& -6- -8- -10-				
10.0 - 7.5 - بر 2.5 - الا 2.5 - الا 2.5 - الا 2.5 - الا 2.5 -			10	0
-500 7.5- 7.5- 7.5- 7.5- 7.5- 7.5- 7.5- 8 0.0- -2.5- -5.0-		10 ⁻² 10 ⁻¹ 10 ⁰	Proc	

Krešimir Kumerički

Status of GPD extraction

INT 18-3, Week 1

19 / 27

Intro and status of fits	Uncertainties?	Neural net fits ○○○○○●○○○○○	Summary 00
Adding more dat	a points		

• Adding HERMES $A_{LU,I}$ data. (Model now includes \mathcal{H} and \mathcal{E})

• Adding HERMES $A_{LU,I}$ data. (Model now includes \mathcal{H} and \mathcal{E})

• CLAS15 data alone is still consistent with zero D-term.

Intro and status of fits	Uncertainties?	Neural net fits oooooo●oooo	Summar 00
Propagating	uncertainties	back to $d\sigma$ and $\Delta\sigma$	

• Small propagated error is due to small sensitivity of these observables to CFFs (and D-term).

Intro and status of fits	Uncertainties?	Neural net fits	Summary 00
Independent	simple way to	the same conclusion	on

• KM09a model with subtraction constant C
ightarrow 0 describes CLAS 2015 $d\sigma$ and $\Delta\sigma$ data correctly

•
$$\chi^2/n_{\rm pts} = 1746/2023$$
 🗸

 $Q^2 = 1.63$ $x_0 = 0.18$ $Q^2 = 1.64$ $x_g = 0.21$ $Q^2 = 1.88$ $x_0 = 0.21$ $Q^2 = 1.79$ $x_0 = 0.24$ $Q^2 = 2.12$ $x_3 = 0.24$ ģ 0.20 °0°... 0.10 Net 0.05 NA de. $Q^2 = 2.35$ $x_0 = 0.28$ $Q^2 = 2.58$ $x_B = 0.30$ $Q^2 = 2.78$ $x_0 = 0.34$ $Q^2 = 2.97$ $x_0 = 0.36$ $Q^2 = 3.18$ ĝ KM09a(C->0) 0.03 °°0 20°≊ 0.01 +----t[GeV²]

 Summary

Study B: NN fit to world fixed target data

• Representative subset of world DVCS fixed target data:

npt	5 2	c obs	collab	harm.	ref.
6	x	ALUI	HERMES	-1.0	arXiv:1203.6287
12	x	AUTDV	CS HERMES	5 0	arXiv:0802.2499
12	x	AUTI	HERMES	1.0	arXiv:0802.2499
6	x	BCA	HERMES	0.0	arXiv:1203.6287
6	x	BCA	HERMES	1.0	arXiv:1203.6287
12	x	BSDw	CLAS	-1	arXiv:1504.02009
15	x	BSDw	HALLA	-1	arXiv:1504.05453
12	x	BSSw	CLAS	0.0	arXiv:1504.02009
12	x	BSSw	CLAS	1.0	arXiv:1504.02009
10	x	BSSw	HALLA	0.0	arXiv:1504.05453
10	x	BSSw	HALLA	1.0	arXiv:1504.05453
6	x	BTSA	HERMES	0.0	arXiv:1004.0177v1
3	x	TSA	CLAS	-1	arXiv:hep-ex/0605012
6	x	TSA	HERMES	-1.0	arXiv:1004.0177v1

TOTAL = 128

 We now use completely unconstrained neural nets representing Im H, Re H, Im E, Re E, ... (do not assume dispersion relations)

Intro and status of fits	Uncertainties?	Neural net fits ○○○○○○○○●○	Summary 00
Results (1/2)			

Only Jm H, Jm H
 and Me E consistently extracted as different from zero, and, with somewhat smaller significance, Me H and Jm E:

Intro and status of fits	Uncertainties?	Neural net fits ○○○○○○○○○●	Summary 00
Results (2/2)			

Uncertainties?

Neural net fits

Summary • O

• Neural network method has a unique capability of extraction of Compton form factors (and, later, GPDs) with reliable uncertainties

Uncertainties?

Neural net fits

Summary O

GPD/CFF server

• Plots of all CFFs available; numerical values soon to come