GPDs from meson electroproduction and applications

P. Kroll

Univiversitaet Wuppertal and Universitaet Regensburg INT Seattle, October 2018

Outline:

- Introduction: handbag approach, subprocess amplitudes Extraction of GPDs from meson electroproduction
- GPDs in transverse position space
- Predictions for DVCS, *E* and parton angular momentum
- Universality: Lepton pair production in exclusive processes Predictions for other mesons (ω, K, η) Meson neutrino production
- Summary

Leading-twist calculations of meson electroproduction fail

 $W = 75 \,\mathrm{GeV}$ HERA, ZEUS

Pion production: contributions from γ_T^* are large

Hall A collaboration π^0 production Defurne et al (1608.01003)

(predictions from Goloskokov-K. (1106.4897))

$$d\sigma_T \gg d\sigma_L$$
 $(d\sigma \simeq d\sigma_T)$
like expectation for $Q^2 \rightarrow 0$

to be contrasted with

QCD expectation for $Q^2 \to \infty$: $d\sigma_T \ll d\sigma_L$ ($d\sigma \simeq d\sigma_L$)

leading twist does not dominate (much larger Q^2 required for it)

Further evidence for contribution from transverse photons: $A_{UT}^{\sin \phi_S}(\pi^+)$ HERMES(09); $d\sigma_{TT}/dt(\pi^0)$ CLAS(12)

The subprocess amplitude for DVMP

mod. pert. approach - quark trans. momenta in subprocess (emission and absorption of partons from proton collinear to proton momenta) transverse separation of color sources \implies gluon radiation

LO pQCD

+ quark trans. mom.

+ Sudakov supp.

Sterman et al(93) Sudakov factor $S(\tau, \mathbf{b}, Q^2) \propto \ln \frac{\ln \left(\tau Q / \sqrt{2} \Lambda_{\rm QCD}\right)}{-\ln \left(b \Lambda_{\rm QCD}\right)} + \mathsf{NLL}$ resummed gluon radiation to NLL $\Rightarrow \exp[-S]$ provides sharp cut-off at $b=1/\Lambda_{
m QCD}$

$$\mathcal{H}^{M}_{0\lambda,0\lambda} = \int d\tau d^{2}b \,\hat{\Psi}_{M}(\tau, -\mathbf{b}) \, e^{-S} \hat{\mathcal{F}}_{0\lambda,0\lambda}(\bar{x}, \xi, \tau, Q^{2}, \mathbf{b})$$

 $\hat{\Psi}_M \sim \exp[\tau \bar{\tau} b^2 / 4 a_M^2]$ LC wave fct of meson \Rightarrow asymp. fact. formula $\hat{\mathcal{F}}$ FT of hard scattering kernel (lead. twist) for $Q^2 \to \infty$ e.g. $\propto 1/[k_{\perp}^2 + \tau(\bar{x} + \xi)Q^2/(2\xi)] \Rightarrow$ Bessel fct Sudakov factor generates series of power corr. $\sim (\Lambda_{\rm QCD}^2/Q^2)^n$

(from soft regions $\tau, \bar{\tau} \to 0$) and suppresses higher order Gegenbauer terms strongly for HERA kinematics: similar to leading-log appr., color dipole model

> Frankfurt et al (96), Nemcik et al (97),... unintegrated gluon GPD Martin et al (99)

Transverse photons in the handbag approach

need subprocess amplitude for $\gamma_T^* \to \pi$, non-vanishing for $t \to 0$ there is only one $\mathcal{H}_{0-,++}$ (angular momentum conservation:

$$\mathcal{H}_{\nu'\mu'\nu\mu} \sim \sqrt{-t}^{|\nu-\mu-\nu'+\mu'|} \text{ for } t \to 0 \big)$$

 $\Rightarrow \text{ parton helicity flip transv. GPDs } H_T, E_T, H_T, E_T \text{ are required} \\ \text{go along with twist-3 pion wf. } (q \text{ and } \bar{q} \text{ forming the pion, have same helicity}) \\ \text{twist-3 DAs } \Phi_P \equiv 1, \ \Phi_\sigma = 6\tau(1-\tau) \qquad \text{in WW approx.} \\ \mathcal{H}_{0-++} \neq 0 \text{ for } t \rightarrow 0 \text{ (from } \Phi_P, \text{ contr. from } \Phi_\sigma \propto t/Q^2 \text{ neglected}) \\ \mathcal{H}_{0-++} \propto \mu_\pi/Q \qquad \mu_\pi = m_\pi^2/(m_u + m_d) \simeq 2 \text{ GeV at scale 2 GeV} \\ \end{aligned}$

$$\mathcal{M}_{0-++} = e_0 \sqrt{1-\xi^2} \int dx \mathcal{H}_{0-++}^{\text{twist}-3} H_T \qquad \mathcal{M}_{0+\pm+} = -e_0 \frac{\sqrt{-t'}}{4m} \int dx \mathcal{H}_{0-++}^{\text{twist}-3} \bar{E}_T$$
(suppr. by μ_{π}/Q as compared to $L \to L$) $\qquad \mathcal{M}_{0--+} = 0$

prominent role of transversity GPDs also claimed by Ahmad et al (09) analysis and results different

Parametrizing the GPDs

double distribution representation

Mueller et al (94), Radyushkin (99)

$$K^{i}(x,\xi,t) = \int_{-1}^{1} d\rho \int_{-1+|\rho|}^{1-|\rho|} d\eta \,\delta(\rho + \xi\eta - x) \,K^{i}(\rho,\xi=0,t) w_{i}(\rho,\eta) + D_{i} \,\Theta(\xi^{2} - \bar{x}^{2})$$

weight fct $w_i(\rho,\eta) \sim [(1-|\rho|)^2 - \eta^2]^{n_i}$ $(n_g = n_{\text{sea}} = 2, n_{\text{val}} = 1, \text{ generates } \xi \text{ dep.})$ zero-skewness GPD $K^i(\rho, \xi = 0, t) = k^i(\rho) \exp [(B_{ki} - \alpha'_{ki} \ln (\rho))t]$ $k = q, \Delta q, \delta^q$ for H, \widetilde{H}, H_T or $N_{ki}\rho^{-\alpha_{ki}(0)}(1-\rho)^{\beta_{ki}}$ for $E, \widetilde{E}, \overline{E}_T$

Regge-like t dep. (for small -t reasonable appr.), D-term neglected

advantage: polynomiality and reduction formulas automatically satisfied positivity bounds respected (checked numerically)

What has been done?

- analysis of FF with help of sum rules (DFJK(04), update: Diehl-K 1302.4604) using CTEQ6 (ABM11, DSSV11) PDFs, fixes H, E, \widetilde{H} for valence quarks
- analysis of $d\sigma_L/dt$ for ρ^0 and ϕ production Goloskokov-K, hep-ph/0611290 data from H1, ZEUS, E665, HERMES for $Q^2 \gtrsim 3 \,\text{GeV}^2$ and $W \gtrsim 4 \,\text{GeV}$ ($\xi \lesssim 0.1$, $-t \lesssim 0.5 \,\text{GeV}^2$) fixes H for sea quarks and gluons for given H^{val} (E negligible, others don't contr.) (only free parameters a_V)
- analysis of π^+ production, Goloskokov-K, 0906.0460 $d\sigma/dt$ and A_{UT} data from HERMES ($W \simeq 4 \,\text{GeV}$, $Q^2 \simeq 2 - 5 \,\text{GeV}^2$) evidence for strong contr. from γ_T^* (H_T) fixes pion pole and $H_T^{(3)}$ (no clear signal for \widetilde{E})
- π^0 cross section and η/π^0 cross section ratio from CLAS (large skewness!), SDME and A_{UT} for ρ^0 prod. HERMES, Goloskokov-K, 1106.4897, 1310.1472 fixes H_T and $\bar{E}_T = 2\tilde{H}_T + E_T$ for valence quarks
- $H, E, H_T, \overline{E}_T$ for gluons and sea quarks unknown as yet, E_{sea} see below E_T, \widetilde{E}_T unknown

FT to transverse position space

$$k^{a}(x, \mathbf{b}) = \int \frac{d^{2} \mathbf{\Delta}_{\perp}}{(2\pi)^{2}} e^{-i\mathbf{b}\mathbf{\Delta}_{\perp}} K^{a}(x, \xi = 0, t = -\mathbf{\Delta}_{\perp}^{2})$$
$$K^{a} = k_{a}(x) \exp\left[-tf_{a}(x)\right]$$
$$k^{a}(x, \mathbf{b}) = \frac{1}{4\pi} \frac{k_{a}(x)}{f_{a}(x)} \exp\left[-b^{2}/(4f_{a}(x))\right]$$

more general profile fct. DFJK(04), Diehl-K 1302.4604, (de Teramond et al 1801.09154, $f_a = (B_a + \alpha'_a \ln 1/x)(1-x)^3 + A_a x(1-x)^2$ Moutarde et al 1807.07620)

density interpretation of FT: Burkhardt(00), Diehl-Hägler(05)

 $\begin{array}{ll} q(x,\mathbf{b}) & \text{density of unpolarized quark in an unpolarized proton} \\ q^{\pm} = \frac{1}{2}[q(x,\mathbf{b}) \pm \Delta q(x,\mathbf{b})] \text{ quarks with helicity (anti)parallel to proton helicity} \\ q_X(x,\mathbf{b}) = q(x,\mathbf{b}) - \frac{b_y}{m} \frac{\partial}{\partial b^2} e(x,\mathbf{b}) & \text{unpolarized quark in proton} \\ polarized along X \text{ direction} \\ q_T^x(x,\mathbf{b}) = \frac{1}{2}[q(x,\mathbf{b}) - \frac{b_y}{m} \frac{\partial}{\partial b^2} \bar{e}_T(x,\mathbf{b})] \text{ transversely pol. quark (x direction)} \\ & \text{ in unpolarized proton} \end{array}$

Estimate of proton radius

consider Fourier transform of ${\cal H}$

work in hadron's center of momentum frame $\sum x_i \mathbf{b_i} = 0$

distance between active parton and cluster of spectators:

$$d_q(x) = \frac{\sqrt{\langle b^2 \rangle_x^q}}{1-x} = \frac{2\sqrt{f_q(x)}}{1-x} \to 2\sqrt{A_q}$$
 for $x \to 1$

Regge-type term, A term, full profile fct Regge-like profile fct can (only) be used at small x (small -t) (Regge-like: A = 0 and $(1 - x)^3 \rightarrow 1$)

FT with Regge-like profile function

large x-region not explored by electroproduction

Densities in transverse position space at large x

only for valence quarks as yet; for gluons and strange quarks?

d quark density in unpolarized and polarized proton (in X direction) proton f.f.

u quarks with same helicity transversely pol. u quark (in as the proton dominates x direction) in unpolarized in agreement with pQCD proton Brodsky et al(95) wide-angle photopro. of π^0 F_A and WACS K_{LL}

DVCS

leading-twist, LO accuracy, collinear for consistency

with *H* most of the DVCS observables can be computed good agreement with all data from HERMES, HERA except for Jlab6 kinematics (large skewness) power corrections needed Braun et al 1401.7621

DVCS at HERA

 $W \simeq 90 \,\mathrm{GeV}$ data from ZEUS, H1K-Moutarde-Sabatie (1210.6975)leading-twist accuracyparameter-free computationUNIVERSALITY

Target asymmetry in DVCS

positivity bound for FTs forbids large sea \implies gluon small too (Diehl-Kugler(07)) $\frac{b^2}{m^2} \left(\frac{\partial e_s(x,b)}{\partial b^2}\right)^2 \leq s^2(x,b) - \Delta s^2(x,b)$

negative $\mathcal{E}^{ ext{sea}}$ favored in both cases

Application: Angular momenta of partons

$$J^{a} = \frac{1}{2} \begin{bmatrix} q_{20}^{a} + e_{20}^{a} \end{bmatrix} \qquad J^{g} = \frac{1}{2} \begin{bmatrix} g_{20} + e_{20}^{g} \end{bmatrix} \qquad (\xi = t = 0)$$

$$q_{20}^{a}, g_{20} \text{ from ABM11 (NLO) PDFs} \qquad (a = u, d, s, \bar{u}, \bar{d}, \bar{s})$$

$$e_{20}^{av} (=0.163, -0.122) \text{ from form factor analysis} \qquad \text{Diehl-K. (13):}$$

$$e_{20}^{s} \simeq 0 \dots - 0.024 \text{ from analysis of } A_{UT} \text{ in DVCS and positivity. bound}$$

$$e_{20}^{g} (= -\sum e_{20}^{av} - 6e_{20}^{s}) \qquad (\text{Goloskokov-K (09), K. 1410.4450})$$
at scale 2 GeV:

$$J^{u+\bar{u}} = 0.249^{+0.022}_{-0.036}; \qquad \text{this work}$$

$$J^{u+\bar{u}} = 0.024^{+0.033}_{-0.014}; \qquad \text{Thomas}$$

$$J^{s+\bar{s}} = 0.005^{+0.014}_{-0.014}; \qquad \text{Deka}$$

$$J^{g} = 0.221^{-0.067}_{-0.014}; \qquad \text{Deka}$$

$$I^{u+\bar{u}} = 1/0 (-i - 5) ($$

 $\sum J^{i} = 1/2 \text{ (spin of the proton)} \qquad J^{u+u} \qquad J^{d+d}$ need better determination of E^{s} and/or E^{g} e.g. smaller errors of A_{UT} in DVCS or in J/Ψ production Koempel et al(11)_{PK 15}

Evolution of the angular momenta

$$e_{20}^{a_{v}}(Q^{2}) = e_{20}^{a_{v}}(Q_{0}^{2}) e^{-d_{qq}s} \qquad d_{qq} = \frac{32}{75} \qquad d_{+} = \frac{56}{75}$$
$$\Sigma_{e}(Q^{2}) = \sum_{a} \left(e_{20}^{a} + e_{20}^{\bar{a}}\right) = -e_{20}^{g}(Q^{2}) = \Sigma_{e}(Q_{0}^{2}) e^{-d_{+}s}$$

 $n_f = 4 \qquad \qquad s = \ln \frac{\ln \left(Q^2 / \Lambda_{QCD}^2\right)}{\ln \left(Q_0^2 / \Lambda_{QCD}^2\right)}$

small charm contribution not shown

Lepton-pair production in exclusive processes

related to electroproduction

- same GPDs
- $\hat{s} \hat{u} (l P)$ crossed subprocess $(P = \gamma, \pi, K)$

-
$$\mathcal{H}^{P \to \gamma^*}(\hat{u}, \hat{s}) = -\mathcal{H}^{\gamma^* \to P}(\hat{s}, \hat{u})$$

- equivalent to $Q^2 \rightarrow -Q'^2$
- timelike DVCS Pire et al, 1203.4392, 1407.0413, 1407.1990
- $\pi^- p \rightarrow l^+ l^- n$ Goloskokov-K, 1506.04619
- $p(\pi)p \rightarrow l^+ l^- p(\pi)p$ double handbag Pivovarov-Teryaev(14)

The exclusive Drell-Yan process

Berger-Diehl-Pire (01): leading-twist, LO analysis of long. cross section (i.e. exploiting asymp. factor. formula) (detailed reanalysis Sawada et al, 1605.00364)

we know that leading-twist analysis of π^+ production fails with JLAB, HERMES data by order of magnitude

Therefore ...

(Goloskokov-K. 1506.04619)

a reanalyis of the exclusive Drell-Yan process seems appropriate making use of what we have learned from analysis of pion production

- take into account transverse photons and transversity GPDs
- retaining quark transverse momenta in the subprocess (the MPA)

Results on the Drell-Yan cross sections

 $\begin{array}{l} Q'^2 = 4 \, {\rm GeV}^2 \, \mbox{and} \, s = 20 \, {\rm GeV}^2 & \mbox{solid lines with error bands: full result} \\ \mbox{pion pole,} \, |\langle \widetilde{H}^{(3)} \rangle|^2, \, \mbox{interference, short dashed: leading-twist contribution} \\ \mbox{time-like pion FF:} \, Q'^2 |F_{\pi}(Q'^2)| = 0.88 \pm 0.04 \, {\rm GeV}^2 \, \, \mbox{(CLEO, BaBar, } J/\Psi \rightarrow \pi^+\pi^-) \\ \mbox{phase (exp } [i\delta(Q'^2)]) \, \mbox{from disp. rel. Belicka et al(11) for } Q'^2 < 8.9 \, {\rm GeV}^2 \\ \delta = 1.014\pi + 0.195(Q'^2/{\rm GeV}^2 - 2) - 0.029(Q'^2/{\rm GeV}^2 - 2)^2 \\ \mbox{for } Q'^2 \geq 8.9 \, {\rm GeV}^2: \quad \delta = \pi, \quad \mbox{the LO pQCD result} \end{array}$

Remarks on processes with time-like virtual photons

- time-like excl. processes difficult to understand theoretically e.g. no satisfactory explanation of time-like elm form factors within pert. QCD
- Drell-Yan process $\pi^- p \rightarrow l^+ l^- X$ large K-factor needed (larger than NLO corr. Sutton et al (92)) now understood as 'threshold logs' $(Q'^2/(x_1x_2s) \rightarrow 1)$ (gluon radiation resummed to NLL Sterman(87), Catani-Trentadue(89)) leading finally to reasonable fits of data and extraction of PDFs for the pion with plausible behavior for $x \rightarrow 1$ Aicher-Schäfer-Vogelsang (11)
- hard exclusive scattering processes with time-like virtual photons no data as yet but predictions
 experimental verification of predictions important

ω **SDMEs**

unnatural parity contribution

$$U_1 = 1 - r_{00}^{04} + 2r_{1-1}^{04} - 2r_{11}^1 - 2r_{1-1}^1 = 2\frac{d\sigma_U}{d\sigma}$$

W = 4.8(8) GeV, without pion pole, dotted 3.5 GeV, $t' = -0.08 \text{ GeV}^2$ strong unnat. parity contr. - pion pole allows for extraction of $|g_{\pi\omega}|$

various cross sections different from ρ^0 and from $Q^2 \to \infty$ expectation

 $\gamma^* p \to K^+ \Lambda$

$$K_{p \to \Lambda} = \frac{1}{\sqrt{6}} \left[2K^u - K^d - K^s \right]$$

E93-018
$$W = 1.85 \text{ GeV}$$

 $t = t_0 = -0.74 \text{ GeV}^2$
FPI-2 $W = 2.39 \text{ GeV}$, $t = -0.4 \text{ GeV}^2$
Hall A $W = 2.08 \text{ GeV}$
 $t = t_0 = -0.57 \text{ GeV}^2$

same GPDs as for pions, no fits flavor symmetric sea assumed kaon/pion pole $\sim [(t-m_\pi^2)/(t-m_k^2)]^2$

also prediction for π^0 production off neutrons, η production, ρ^0 prod. with transversity GPDs (SDME)

Meson neutrino production

NLO corrections for π and K production Siddikov-Schmidt(16) nuclear effects only substantial for $x_B \leq 0.1$ Schmidt-Siddikov(15)

Summary

- The handbag approach, generalized to transverse photons and with meson size corrections, describes all DVMP data for $Q^2 \gtrsim 2 \,\mathrm{GeV}^2$ and $W \gtrsim 4 \,\mathrm{GeV}$ for ρ^0 ($\gtrsim 2 \,\mathrm{GeV}$ for ϕ, π)
- From the combined analysis of nucleon form factors, DVMP (and DVCS for E^{sea}) a set of GPDs has been extracted $(H, E, \tilde{H}, H_T, \bar{E}_T$ for valence quarks, gluon and sea quarks only for H)
- This set of GPDs allows for calculations of other hard exclusive processes (DVCS, ω , Kaon and η lepton-pair production ...) test of universality
- and to obtain first results on parton angular momenta
- Evaluation of transverse localization of partons in the proton only possible for valence quarks as yet. For others large -t behaviour unknown
- The GPDs need improvements: (of course)
 possible (and necessary) with new data from COMPASS, JLAB12 and EIC
 framework PARTONS
 Berthou et al(1512.06174)

Cross section

k momentum of $l^ \tau = Q'^2/(s-m^2)$ the time-like analogue of x_B

$$\frac{d\sigma}{dt dQ'^2 d\cos\theta d\phi} = \frac{3}{8\pi} \left\{ \sin^2 \theta \, \frac{d\sigma_L}{dt dQ'^2} + \frac{1 + \cos^2 \theta}{2} \, \frac{d\sigma_T}{dt dQ'^2} \right. \\ \left. + \frac{1}{\sqrt{2}} \sin\left(2\theta\right) \cos\phi \, \frac{d\sigma_{LT}}{dt dQ'^2} + \sin^2 \theta \cos\left(2\phi\right) \frac{d\sigma_{TT}}{dt dQ'^2} \right\}$$
$$\frac{d\sigma_L}{dt dQ'^2} = \frac{\alpha_{\rm elm}}{48\pi^2} \frac{\tau^2}{Q'^6} \sum_{\nu'} |\mathcal{M}_{0\nu',0+}|^2 \qquad \frac{d\sigma_T}{dt dQ'^2} = \frac{\alpha_{\rm elm}}{48\pi^2} \frac{\tau^2}{Q'^6} \sum_{\mu=\pm 1,\nu'} |\mathcal{M}_{\mu\nu',0+}|^2$$

partial cross sections analogous to pion production

Lepton-pair production in exclusive hadron-hadron collisions

Pivovarov-Teryaev (14): double handbag

access to pion GPD

elm. contribution $\sim F_{\rm elm}^{\pi(p)}F_{\rm elm}^p$

η production

unseparated (longitinal, transverse) cross sections

$$\frac{d\sigma(\eta)}{d\sigma(\pi^0)} \simeq \left(\frac{f_\eta}{f_\pi}\right)^2 \frac{1}{3} \left| \frac{e_u \langle K^u \rangle + e_d \langle K^d \rangle}{e_u \langle K^u \rangle - e_d \langle K^d \rangle} \right|^2 \qquad (f_\eta = 1.26 f_\pi)$$

if K^u and K^d have opposite sign: $\eta/\pi^0 \simeq 1$ $(\eta = (\cos \theta_8 - \sqrt{2} \sin \theta_1)\eta_q)$ if K^u and K^d have same sign: $\eta/\pi^0 < 1$ (FKS scheme) $t' \simeq 0 \ \widetilde{H}, H_T$ dominant (see also Eides et al(98) assuming dominance of \widetilde{H} for all t') $t' \neq 0 \ \overline{E}_T$ dominant