

Correlations and collectivity from large to small systems

Jiangyong Jia Stony Brook University and BNL

- **n** Introduce collectivity with $A+A$
- Collectivity in small systems
- **n** Some future opportunities

Brookhaven National Laboratory

Office of Science | U.S. Department of Energy

Oct 25, 2018

Space-time dynamics

t~10fm/c =10-22 s

Credit: Bjoern Schenke

Model by 3D relativistic viscous hydrodynamics

Space time history of heavy Ion **3**

DIS and Heavy Ion

- DIS: initial-state constituent distribution (one-body Wigner func.)
	- **n** Precise control on kinematics

Heavy-ion: Multi-Parton interactions (many-body Wigner function) Longitudinal view **Transverse** view

Require: 3D space-momentum distri. of initial-state partonic structure

Collectivity in A+A collisions

Final particle flow Initial state

- What we know:
	- Large event-by-event initial state fluctuation
	- Each event follows its own hydrodynamic space-time evolution
	- Small viscosity ensure efficient transfer of (ϵ_n, Φ_n^*) to (v_n, Φ_n)

Quantify long-range two-particle correlation 6

Connection to underlying event analysis

Fourier decompose the "long-range" UE (ridge)

 $\frac{dN}{d\phi} \propto 1 + 2 \sum_{n} v_n \cos n \left(\phi - \Phi_n \right)$

 $\frac{dN_{pairs}}{d\Delta\phi} \propto 1 + 2\sum_{n} v_n^2 \cos\left(n\Delta\phi\right)$

Single-particle distribution Two-particle correlation with Δη gap

Event-by-event fluctuations $\frac{8}{3}$

Object of interest:

$$
p(v_n, v_m, \ldots, \Phi_n, \Phi_m, \ldots) = \frac{1}{N_{\text{evts}}} \frac{dN_{\text{evts}}}{dv_n dv_m \ldots d\Phi_n d\Phi_m \ldots}
$$

Fluctuation observables

Single particle distribution

$$
\frac{dN}{d\phi} = N \left[1 + 2 \sum_{n} v_n \cos n(\phi - \Phi_n) \right] = N \left[\sum_{n=-\infty}^{\infty} V_n e^{in\phi} \right] \qquad V_n = v_n e^{in\Phi_n}
$$

 dN_{1} *d*φ dN_{2} $\frac{a_1}{d\phi}$.. *dN m d*φ Tools: Multi-particle correlations $=\langle V$ *n*1 *V* $n₂$ $\Rightarrow \left\langle \left\langle e^{i(n_1 \varphi_1 + n_2 \varphi_2 + ... + n_m \varphi_m} \right\rangle \right\rangle = \left\langle V_{n_1} V_{n_2} ... V_{n_m} \right\rangle$ *v n*1 *v* $n₂$..*v* $n_m \cos(n_1 \Phi)$ $n_1 + n_2 \Phi$ $n₂$ $+..+n_{m}\Phi$ *nm*) $\langle P^{i(n_1\phi_1+n_2\phi_2+...+n_m\phi_m)} \rangle = \langle V_{n_1}V_{n_2}...V_{n_m} \rangle \quad n_1 + n_2 + ... + n_m = 0$ $\bar{\bm{\mathsf{V}}}$ Examples: Average over events

Moments of $p(v_n, \Phi_{n} ...)$

 $\langle \langle \{2\}_n \rangle \rangle = \langle \langle e^{\mathrm{i} n (\phi_1 - \phi_2)} \rangle \rangle = \langle v_n^2 \rangle$ 2PC

$$
\text{4PC} \qquad \langle \langle \{4\}_n \rangle \rangle = \langle \langle e^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \rangle \rangle = \langle v_n^4 \rangle
$$

$$
\mathsf{4PC} \qquad \langle \langle \{4\}_{n,m} \rangle \rangle = \langle \langle e^{in(\phi_1 - \phi_2) + im(\phi_3 - \phi_4)} \rangle \rangle = \langle v_n^2 v_m^2 \rangle
$$

$$
3PC \qquad \langle \langle \{3\}_n \rangle \rangle = \langle \langle e^{in(\phi_1 + \phi_2 - 2\phi_3)} \rangle \rangle = \langle v_n^2 v_{2n} \cos 2n (\Phi_n - \Phi_{2n}) \rangle
$$

How to quantify nature of fluctuations?

The shape of $p(X)$ often quantified by cumulants

■ Substitute $X=V_ne^{in\Phi_n}$, one derive cumulants for flow, such as:

$$
c_n\{4\} = \left\langle v_n^4 \right\rangle - 2\left\langle v_n^2 \right\rangle^2
$$
 Probe $p(v_n)$

Four-particle cumulants

if flow is constant,
$$
c_n(4) = -v_n^{4} < 0
$$

$$
sc_{n,m}\{4\} = \left\langle v_n^2 v_m^2 \right\rangle - \left\langle v_n^2 \right\rangle \left\langle v_m^2 \right\rangle \quad \text{Probe } p(v_{n,v_m})
$$

Collectivity in small systems

Collectivity in different systems

 $~1$ $~30000$ particles* $~1$ $~2000$ particles* $~1$ $~1$ $~600$ particles*

Change system size and shape at RHIC and LHC: \rightarrow Control space-time dynamics!

* Rough number in very high-multiplicity events, integrated over full phase space at LHC

Two-particle correlation in different systems

13

Long-range correlation comes

- directly from initial state momentum correlation (structure function, CGC)
- or it is a final state response to spatial fluctuation at $t=0$ (hydro/transport). What is the timescale for emergence of collectivity?

Examples of initial vs final state correlation 14

Saturation/CGC

Domain of color fields of size $1/Q_s$, each produce multi-particles correlated across full η.

Uncorr. between domains, strong fluct. in Q_s More domains, smaller v_n , more Q_s fluct, stronger v_n

Well motivated model framework, need systematic treatment

Hydrodynamics

Hot spots in transverse plane e.g IP-plasma, boost-invariant geometry shape

Expansion and interaction of hot spots generate collectivity

 v_n depends on distribution of hot spots (ϵ_n) and transport properties.

Ongoing debate whether hydro is applicable in small systems

$v₂$ in small systems

- pp v_2 ~ constant, pPb and PbPb v_2 increase with N_{ch} (due to Geometry)
- v_2 persist to very low N_{ch} (~minbias N_{ch} value in pp and pPb) Similar origin for the collectivity?

PID v_2 in p+Pb 16

Similar as observation in A+A

Collectivity occurs at partonic level?

How about event-by-event fluctuations? 17

Mantysaari, Schenke, Phys. Rev. Lett. 117, 052301 (2016), Phys.Rev. D94 (2016) 034042

Multi-particle nature of the ridge 18

Very different from jets and dijet correlations, which are confined in **one or two η regions**

Multi-particle nature of the ridge 19

Suppress by requiring correlations between more than two η ranges

Dumitru et al Phys. Rev. Lett. 115 (2015) 25, 252301

Example: WW TMD in DIS dijet production

$$
E_1 E_2 \frac{d\sigma^{\gamma_L^* A \to q\bar{q}X}}{d^3 k_1 d^3 k_2 d^2 b} = \alpha_{em} e_q^2 \alpha_s \delta(x_{\gamma^*} - 1) z^2 (1 - z)^2 \frac{8\epsilon_f^2 P_\perp^2}{(P_\perp^2 + \epsilon_f^2)^4}
$$

\n
$$
e A \to e' Q \overline{Q} X \qquad \qquad \times \left[x G^{(1)}(x, q_\perp) + \frac{\cos(2\phi)}{\Phi} x h_\perp^{(1)}(x, q_\perp) \right]
$$

\nDumittu et al Phys. Rev. D 94, 014030 (2016).

gluon distribution (G(1)) + linearly polarized partner (h(1))

Long-range collectivity via subevent correlations²⁰

Event with dijet

Long-range collectivity via subevent correlations²¹

Long-range collectivity via subevent correlations²²¹

Jet correlation important at low N_{ch} for pPb, and over all N_{ch} in pp

Subevent method required to suppress the jet correlations in small system

Sign-change of c_2 {4}

Most positive $c_2{4}$ in standard cumulants are jets and dijets.

Remaining positive c_2 {4}in 3-subevent due to residual dijets.

Glasma diagram contribution is small?

$p(v_2)$ in pp and pPb

Constrain $p(v_2)$ from two- and four-particle correlations

$$
c_2\{2\} = \langle v_2^2 \rangle \equiv v_2\{2\}^2
$$

 $c_2\{4\} = (v_2^4) - 2(v_2^2)^2 = -v_2\{4\}^4$

Two-particle correlation Two-particle correlation

Results suggest significant non-Gaussian EbyE fluctuations

Both $v_2{2}$ and $v_2{4}$ show No hint of collectivity turning-off at low N_{ch}! Challenge both initial and final state models?

Role of initial geometry in CGC

Schenke, Schlichting, Venugopalan

The orientation of collectivity is unrelated to initial eccentricity \rightarrow Very different from hydrodynamics

Role of initial geometry in CGC ²⁶

Schenke, Schlichting, Venugopalan

The orientation of collectivity is unrelated to initial eccentricity \rightarrow Very different from hydrodynamics

Expect contribution diminish as system size is increased

Presence of both initial and final state scenarios? ²⁷

Phases of collectivity from CGC and hydro are unrelated \rightarrow a minimum of total v_n at certain system size?

Presence of both initial and final state scenarios? ²⁸

B. Schenke, QM2018

IP-Glasma + hydrodynamic calculation

RHIC small system scan $e^{\int e^{+\Delta u} \cdot e^{u} \cdot e^{u} \cdot e^{u}}$

Can initial state correlation knows the shape of initial geometry?

Flow of heavy quark and high- p_T hadron 30

Implication for initial-state correlation models?

Minimal requirement for long-range ridge 31

Two interacting strings are enough to create long-range correlation!

Towards even smaller systems: ep, e+e-

Ridge observation in ep or ee is currently limited by statistics

High-multiplicity $e+A$ at EIC? 33

High-multiplicity $e+A$ at EIC ? 34

Control the size and energy of the probe via x and Q^2

High-multiplicity e+A at EIC?

π (30GeV) + Au (100GeV) from AMPT

A long-range ridge can be observed at EIC in high-multiplicity e+Au events!

Can already check and confirm this idea in high-multiplicity UPC events

Flow with polarized light-ion+A collisions 36

Flow angle Φ unknown.

- Has to determined via momentum flow
- Can't distinguish initial state flow or final state flow
- Problem for small system

W. Broniowski and P. Bozek 1808.09840

Deuterium: $J^P = 1^+$, 5%, ³D₁ wave, rest ³S₁ wave

Polarization direction as absolution reference \rightarrow uncorrelated with jets Eccentricity w.r.t. Φ_P has opposite sign

Flow with polarized light-ion+A collisions 37

Flow angle Φ unknown.

- Has to determined via momentum flow
- Can't distinguish initial state flow or final state flow

Problem for small system

Deuterium: $J^P = 1^+$, 5%, ³D₁ wave, rest ³S₁ wave

Polarization direction as absolution reference \rightarrow uncorrelated with jets Eccentricity w.r.t. $\Phi_{\rm P}$ has opposite sign

Summary

Ridge observed in small collision systems at RHIC/LHC experiments

- n Implies a long-range and multi-particle collectivity qualitatively similar to those in AA collisions
- ⁿ Results of strong multi-parton dynamics in hadronic collisions
- From AA to pA to pp allow push the boundary between initial state correlations and final state interactions.
	- ⁿ Both models are successful to some extents.
	- Nould be useful to check the existing eP and $e+e-$ data, but statistically limited
- A few unique opportunities to further test nature of collectivity.
	- **n** Particle correlations in high-multiplicity $e+P$ and $e+A$ collisions.
	- Polarized light-ion $+$ heavy-nucleus collisions offers a new way to disentangle initial vs final state effects.
- Can final-state physics shed some insight on initial-state physics i.e. EIC

What do we learn from this? 40^{40}

PRL112,082301(2014)

- $p(v_2)$ driven by fluc. of independent sources: multi-parton interactions (MPI)
- Number of sources N_s can be estimate from $v_2\{4\}/v_2\{2\}$ *v*₂{4} $\frac{v_2\{4\}}{2v_2}$ v_2^2

 N_s similar for pp and pPb at similar multiplicity.

N_s from forward-backward multiplicity fluc. 40
 $p+p$

 R apidity correlation:

$$
R_{S}(\eta) = \frac{N(\eta)}{\langle N(\eta) \rangle} \qquad C = \frac{\langle N(\eta_{1})N(\eta_{2}) \rangle}{\langle N(\eta_{1}) \rangle \langle N(\eta_{2}) \rangle} = \langle R_{S}(\eta_{1})R_{S}(\eta_{2}) \rangle_{events}
$$

$$
R_{S}(\eta) \approx 1 + a_{1}\eta \qquad C = \langle R_{S}(\eta_{1})R_{S}(\eta_{2}) \rangle \approx 1 + \langle a_{1}^{2} \rangle \eta_{1} \eta_{2}
$$

$$
+ a_1 \eta \qquad C = \langle R_s(\eta_1) R_s(\eta_2) \rangle \approx 1 + \langle a_1^2 \rangle \eta_1 \eta_2
$$

Confirmed by data:

PRC 95, 064914 (2017)

Relate to the initial geometry 42

Sources driving the transverse flow

$$
\frac{v_2\{4\}}{v_2\{2\}} = \left[\frac{4}{(3+N_s)}\right]^{1/4}
$$

arXiv:1708.03559 PRC 95, 064914 (2017)

Source for particle production which drives FB multiplicity fluc.

$$
\frac{N(\eta)}{\langle N(\eta)\rangle} \approx 1 + a_1 \eta \quad a_1 \propto \frac{1}{\sqrt{N_s}}
$$

Same sources responsible for particle production and flow?

Large event-by-event multiplicity fluctuations ⁴²

shoulder & knee \sim absent in pp, pPb

signature of multiple sources for particle production