Jet evolution in a dense QCD medium

Edmond Iancu IPhT Saclay & CNRS

based on work with J.-P. Blaizot, P. Caucal, F. Dominguez, Y. Mehtar-Tani, A. H. Mueller, and G. Soyez (2013-18)

INT Program 18-3, Seattle, Nov 2018 [Jet evolution in a dense medium](#page-51-0) Fedmond Iancu 1 / 43

Outline

- Jets in heavy ion collisions
	- jet quenching
	- di-jet asymmetry, fragmentation functions
- Two types of radiation
	- vacuum-like: bremsstrahlung (parton virtualities)
	- medium-induced radiation : BDMPS-Z (collisions in the plasma)
- **•** Separately well understood
- How to combine them together (within pQCD)?
- How is the "vacuum-like" radiation modified by the medium ?

Jets: *pp* vs. *AA* collisions at the LHC

- Hard processes in QCD typically create pairs of partons which propagate back–to–back in the transverse plane
- In the "vacuum" (*pp* collisions), this leads to a pair of symmetric jets
- A spray of collimated particles produced via radiation (parton branching)

• In *AA* collisions, the two jets can be differently affected by their interactions with the surrounding, partonic, medium: quark-gluon plasma

INT Program 18-3, Seattle, Nov 2018 [Jet evolution in a dense medium](#page-0-0) and the section of the Edmond Iancu 3 / 43

Jets in practice

- Experimentally, jets are constructed by grouping together hadrons which propagate at nearby angles
- The jet opening angle θ_0 (a.k.a. *R*) is the same for both jets

Medium modifications refer both to the jets and to the outer regions

From di-jets in $p+p$ collisions ...

\ldots to "mono-jets" in Pb $+$ Pb collisions

- Central Pb+Pb: 'mono–jet' events
- The secondary jet can barely be distinguished from the background: $E_{T1} > 100$ GeV, $E_{T2} > 25$ GeV

Di–jet asymmetry at the LHC

- Huge difference between the energies of the two jets
- The missing energy is found in the underlying event:
	- many soft $(p_{\perp} < 2 \text{ GeV})$ hadrons propagating at large angles
- Very different from the usual jet fragmentation pattern in the vacuum

INT Program 18-3, Seattle, Nov 2018 [Jet evolution in a dense medium](#page-0-0) Edmond Iancu 7 / 43

Di–jet asymmetry : A_J

Event fraction as a function of the di-jet energy imbalance in $p+p$ (a) and Pb+Pb (b–f) collisions for different bins of centrality

$$
A_J = \frac{E_1 - E_2}{E_1 + E_2} \qquad (E_i \equiv p_{T,i} = \text{ jet energies})
$$

Di-jet asymmetry : A_{J}

 \bullet N.B. A pronounced asymmetry already in $p+p$ collisions !

3-jets events, fluctuations in the branching process

• Central Pb+Pb: the asymmetric events occur more often

The nuclear modification factor for jets

• The jet yield in Pb+Pb collisions normalized by $p+p$ times the average nuclear thickness function $\langle T_{AA} \rangle$

$$
R_{AA} \equiv \frac{\frac{1}{N_{\rm evt}} \frac{d^2 N_{\rm jet}}{dp_T dy}\Big|_{AA}}{\langle T_{AA} \rangle \frac{d^2 \sigma_{\rm jet}}{dp_T dy}\Big|_{pp}}
$$

- R_{AA} would be equal to one in the absence of nuclear effects
- stronger suppression for more central collisions

• Naturally interpreted as a consequence of energy loss inside the medium

The nuclear modification factor for jets

• The jet yield in $Pb+Pb$ collisions normalized by $p+p$ times the average nuclear thickness function $\langle T_{AA} \rangle$

$$
R_{AA} \equiv \frac{\frac{1}{N_{\rm evt}} \frac{d^2 N_{\rm jet}}{dp_T dy} \Big|_{AA}}{\langle T_{AA} \rangle \frac{d^2 \sigma_{\rm jet}}{dp_T dy} \Big|_{pp}}
$$

- jet spectra are rapidly decreasing with p_T
- \bullet they are shifted towards lower p_T due to in-medium energy loss

• R_{AA} is almost flat at very high p_T : energy loss increases with p_T

Intra-jet nuclear modifications

Jet fragmentation function: energy distribution of hadrons inside the jet

$$
D(\omega) \equiv \omega \frac{dN}{d\omega}
$$

$$
= \int_0^R d\theta \; \omega \frac{dN}{d\theta d\omega}
$$

- $\bullet \ \omega \equiv p_T \ \text{of a hadron inside the jet}$
- \bullet ratio of FFs in Pb+Pb and $p+p$
- slight suppression at intermediate energies
- **e** enhancement at low energies $(z \ll 1)$

Intra-jet nuclear modifications

- Jet fragmentation function: energy distribution of hadrons inside the jet
- Similar pattern when the distribution is plotted vs. p_T or vs. $z = p_T/p_T^{jet}$

- Two classes of nuclear modifications: inside & outside the jet cone
- We shall argue that they refer to two different types of radiation

Medium-induced jet evolution

- The leading particle (LP) is produced by a hard scattering
- It subsequently evolves via radiation (branchings) ...

- \bullet ... and via collisions off the medium constituents
- Collisions can have several effects
	- transfer energy and momentum between the jet and the medium
	- trigger additional radiation ("medium-induced")
	- wash out the color coherence (destroy interference pattern)

Medium-induced jet evolution

- The leading particle (LP) is produced by a hard scattering
- It subsequently evolves via radiation (branchings) ...

- \bullet ... and via collisions off the medium constituents
- Collisions can have several effects
	- transfer energy and momentum between the jet and the medium
	- trigger additional radiation ("medium-induced")
	- wash out the color coherence (destroy interference pattern)

Transverse momentum broadening

 \bullet An energetic quark acquires a transverse momentum p_{\perp} via collisions in the medium, after propagating over a distance *L*

- Direct amplitude (DA) \times Complex conjugate amplitude (CCA)
- Weakly coupled medium \implies independent scattering centers
- A random walk in p_{\perp} : $\langle p_{\perp}^2 \rangle \simeq \hat{q} L$

Dipole picture

• The individual collisions are relatively soft : $k_1 \sim m_D \ll E$

• Scattering can be computed in the eikonal approximation: Wilson lines

$$
V^{\dagger}(\boldsymbol{x}) = \text{P} \exp \left\{ \text{i} g \int \text{d} x^+ \, A_a^-(x^+, \boldsymbol{x}) t^a \right\}
$$

• Two such Wilson lines (DA \times CCA) \Longrightarrow a $q\bar{q}$ color dipole

Dipole picture

Average over the Gaussian distribution of the color fields $A^-_a(x^+, \bm{x})$:

$$
\left\langle A_a^-(x^+, \mathbf{k}) A_b^-(y^+, -\mathbf{k}) \right\rangle_0 = n \, \delta_{ab} \delta(x^+ - y^+) \, \frac{g^2}{(\mathbf{k}^2 + m_D^2)^2}
$$

• $n = C_F n_q + N_c n_q \sim T^3$: color weighted density of thermal quarks & gluons

The tree-level approximation ("MV model")

$$
\langle \hat{S}_{xy} \rangle_0 \simeq \exp \left\{-\frac{1}{4} L \hat{q}_0(1/r^2) r^2\right\}
$$

• The tree-level jet quenching parameter \hat{q}_0 (logarithmic scale dependence):

$$
\hat{q}_0(Q^2) \equiv ng^4 C_F \int \frac{Q^2 \,\mathrm{d}^2 \bm{k}}{(2\pi)^2} \frac{\bm{k}^2}{(\bm{k}^2 + m_D^2)^2} \, \simeq \, 4\pi \alpha_s^2 C_F n \ln \frac{Q^2}{m_D^2}
$$

• The cross–section for p_1 –broadening at tree-level:

$$
\frac{\mathrm{d}N}{\mathrm{d}^2\bm{p}} = \frac{1}{(2\pi)^2} \int_{\bm{r}} e^{-i\bm{p}\cdot\bm{r}} \,\,\mathrm{e}^{-\frac{1}{4}L\hat{q}_0(1/r^2)\,\bm{r}^2} \,\simeq\, \frac{1}{\pi Q_s^2} \,\mathrm{e}^{-p_\perp^2/Q_s^2}
$$

A random walk in transverse momentum: $\langle p_\perp^2 \rangle = Q_s^2(L) \equiv L \hat{q}_0(Q_s^2)$

• Power-law tail at large $p_{\perp} \gg Q_s$: single hard scattering

$$
\frac{dN}{d^2p} \simeq \frac{1}{(2\pi)^2} \int_r e^{-i\bm{p}\cdot\bm{r}} \left\{-\frac{1}{4}L\hat{q}_0(1/r^2)\,\bm{r}^2\right\} \simeq \frac{4\pi\alpha_s^2 C_F n}{p_\perp^4}
$$

Radiation: Formation time

- Uncertainty principle: quantum particles are delocalized
- The gluon has been emitted when it has no overlap with its source

"Formation time" : the time it takes to emit a gluon

- \bullet This argument universally applies to radiation: in vacuum $\&$ in the medium
- \bullet In vacuum, t_f is measured from the hard scattering

Medium-induced radiation

Collisions introduce a lower limit on the transverse momentum ...

- ... hence an upper limit on the formation time !
- Three types of emissions:
	- vacuum-like (usual bremsstrahlung): $k_{\perp}^2 \gg \hat{q} t_{\rm f}$, or $t_{\rm f} \ll \sqrt{\omega/\hat{q}}$
	- medium-induced, single hard scattering: $k_\perp^2 \gg \hat{q} t_{\rm f}$, or $t_{\rm f} \ll \sqrt{\omega/\hat{q}}$
	- medium-induced, multiple soft scattering: $k_{\perp}^2 \simeq \hat{q}t_{\rm f}$, or $t_{\rm f} \simeq \sqrt{\omega/\hat{q}}$

Radiative corrections to p_{\perp} –broadening

- Medium-induced emissions contribute to momentum broadening via recoil
- Formally, a higher-order effect, but amplified by logarithms: "evolution"

• The quark 'evolves' by emitting a soft gluon ('real' or 'virtual')

 \bullet 'soft' $\Longleftrightarrow \omega \equiv k^+ \ll E \Longrightarrow$ eikonal emission vertices
18-3. Seattle, Nov. 2018
Edmond lancy

In-medium BK/JIMWLK evolution

 \bullet 'Exchange graphs' between q and \bar{q} , or 'self-energy' graphs

- All partons undergo multiple scattering: non-linear evolution
- \bullet However, and unlike for a shockwave (DIS, pA), the multiple scattering cannot be computed in the eikonal approximation
- **Eikonal scattering: transverse deviation** Δx_{\perp} **during collision time** Δt **should** be small compared to the transverse wavelength $\lambda_{\perp} = 1/p_{\perp}$:

$$
\Delta x_{\perp} = \frac{p_{\perp}}{\omega} \Delta t \ll \lambda_{\perp} = \frac{1}{p_{\perp}} \implies \Delta t \ll \frac{\omega}{p_{\perp}^2} = t_{\rm f}
$$

• But for the soft gluon emissions at hand, one rather has $\Delta t = t_{\rm f}$

The single scattering approximation

- **•** The dominant radiative corrections are associated with fluctuations which undergo only a single scattering *(Liou, Mueller, Wu, 2013)*
- Power-law spectrum $\propto 1/k_{\perp}^4$ yielding a logarithmic enhancement of the recoil
- single scattering

 $k_{\perp}^2 \gg \hat{q} t_{\rm f}$ or $t_{\rm f} \ll \sqrt{\omega/\hat{q}}$

Gunion-Bertsch (or GLV) spectrum

• The one-loop contribution to p_{\perp} -broadening to double-log accuracy:

$$
\langle p_{\perp}^2 \rangle_{\text{rad}} = \int_{\omega, \mathbf{k}} \mathbf{k}^2 \, \frac{\mathrm{d}N}{\mathrm{d}\omega \, \mathrm{d}^2 \mathbf{k}} = \bar{\alpha} \hat{q}_0 L \int \frac{\mathrm{d}\omega}{\omega} \int \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} \equiv L \, \Delta \hat{q}
$$

A renormalization group equation for \hat{q}

(Liou, Mueller, Wu, 2013; Blaizot and Mehtar-Tani, 2014; E.I., 2014)

The limits of the double-logarithmic phase–space are simpler in terms of the formation time $t_{\mathrm{f}} = 2\omega/k_{\perp}^2$ *(below,* $\lambda \equiv 1/T$ *)*

$$
\frac{\Delta \hat{q}}{\hat{q}_0} = \bar{\alpha} \int_{\lambda}^{L} \frac{\mathrm{d}t_{\mathrm{f}}}{t_{\mathrm{f}}} \int_{\hat{q}t_{\mathrm{f}}}^{\hat{q}L} \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} = \frac{\bar{\alpha}}{2} \ln^2 \frac{L}{\lambda}
$$

- a relatively large correction \implies needs for resummation
- the general ('BK') equation reduces to a linear equation : 'DLA'

$$
\hat{q}(L) = \hat{q}_0 + \bar{\alpha} \int_{\lambda}^{L} \frac{dt_f}{t_f} \int_{\hat{q}t_f}^{\hat{q}L} \frac{dk_{\perp}^2}{k_{\perp}^2} \hat{q}(t_f, k_{\perp}^2)
$$

not the standard DLA equation: medium-dependent integration limits

$$
\hat{q}(L)\,=\,\hat{q}_0\,\frac{1}{\sqrt{\bar{\alpha}}\ln\big(L/\lambda\big)}\,\mathrm{I}_1\left(2\sqrt{\bar{\alpha}}\ln\frac{L}{\lambda}\right)\propto\ L^{2\sqrt{\bar{\alpha}}}
$$

• large anomalous dimension $\gamma_s = 2\sqrt{\bar{\alpha}} \sim 1$

Using a running coupling *(E.I., D.N. Triantafyllopoulos, 2014)*

• The running coupling slows down the evolution at large $Y \equiv \ln(L/\lambda)$

$$
\hat{q}(L) = \hat{q}_0 + \int_{\lambda}^{L} \frac{\mathrm{d}t_{\mathrm{f}}}{t_{\mathrm{f}}} \int_{\hat{q}t_{\mathrm{f}}}^{\hat{q}L} \frac{\mathrm{d}k_{\perp}^2}{k_{\perp}^2} \,\bar{\alpha}(k_{\perp}^2) \,\hat{q}(t_{\mathrm{f}}, k_{\perp}^2)
$$
\n
$$
\implies \ln \hat{q}(L) \simeq 4\sqrt{b_0 \ln \frac{L}{\lambda}} \qquad \text{(slower than any exponential)}
$$

INT Program 18-3, Seattle, Nov 2018 [Jet evolution in a dense medium](#page-0-0) Burness and Hermand Iancu 22 / 43

Radiation from multiple soft scattering

*(Baier, Dokshitzer, Mueller, Peigné, Schi*ff*; Zakharov; 1996-97)*

• The single hard scattering regime does not also control the energy loss

$$
\langle \Delta E \rangle_{\text{rad}} = \int_{\omega, \mathbf{k}} \omega \, \frac{\mathrm{d}N}{\mathrm{d}\omega \, \mathrm{d}^2 \mathbf{k}} = \bar{\alpha} \hat{q}_0 L \int^{\omega_c} \mathrm{d}\omega \int_{\hat{q}t_f}^{\hat{q}L} \frac{\mathrm{d}k_\perp^2}{k_\perp^4}
$$

without the k_{\perp}^2 -weighting, the integral is controlled by its lower limit

$$
k_\perp^2 \sim \hat{q} t_\mathrm{f} \sim \sqrt{\hat{q}\omega} \ \& \ t_\mathrm{f} \sim \sqrt{\frac{\omega}{\hat{q}}}
$$

The BDMPS-Z spectrum for medium-induced radiation

$$
\omega \frac{\mathrm{d}N}{\mathrm{d}\omega \,\mathrm{d}^2 \mathbf{k}} \, \simeq \, \bar{\alpha} \, \frac{L}{t_{\mathrm{f}}(\omega)} \, \frac{1}{\sqrt{\hat{q}\omega}} \, \mathrm{e}^{-\frac{k_\perp^2}{\sqrt{\hat{q}\omega}}}
$$

- the emission can occur anyway inside the medium: a factor $L/t_f(\omega)$
- transverse momentum broadening during formation: $\langle k_{\perp}^2 \rangle \simeq \sqrt{\hat q \omega}$

• Maximal ω for this mechanism: $t_f \leq L \Rightarrow \omega \leq \omega_c \equiv \hat{q}L^2$

Angular distribution

- **•** Transverse momentum broadening during formation & after formation
- formation angle:

$$
\theta_{\rm f}(\omega) \simeq \frac{(\hat{q}\omega)^{1/4}}{\omega} \simeq \left(\frac{\hat{q}}{\omega^3}\right)^{1/4}
$$

• the minimal angle

$$
\theta_c = \theta_{\rm f}(\omega_c) = \frac{1}{\sqrt{\hat{q}L^3}}
$$

final angle

$$
\theta(\omega) \, \simeq \, \frac{\sqrt{\hat{q}L}}{\omega} \, = \, \theta_c \frac{\omega_c}{\omega}
$$

- **•** Soft gluons $\omega \ll \omega_c$: small formation times $(t_f \ll L)$ & large angles $(\theta \gg \theta_c)$
- G Gluons with angles larger than the jet opening angle θ_0 move outside the jet

The average energy loss

 \bullet Differential probability for one emission (integrated over k_{\perp})

$$
\omega \frac{\mathrm{d}P}{\mathrm{d}\omega} \simeq \bar{\alpha} \frac{L}{t_{\mathrm{f}}(\omega)} \simeq \bar{\alpha} \sqrt{\frac{\omega_c}{\omega}} \qquad (\omega < \omega_c \equiv \hat{q}L^2/2)
$$

• The average energy loss by a particle with energy $E > \omega_c$

$$
\Delta E = \int^{\omega_c} d\omega \, \omega \, \frac{\mathrm{d}P}{\mathrm{d}\omega} \, \sim \, \alpha_s \omega_c \, \sim \, \alpha_s \hat{q} L^2
$$

- integral dominated by its upper limit $\omega = \omega_c$
- Hard emissions with $\omega \sim \omega_c$: probability of $\mathcal{O}(\alpha_s)$
	- rare events but which take away a large energy
	- small emission angle $\theta_c \Rightarrow$ the energy remains inside the jet
- **I** Irrelevant for the di-jet asymmetry and also for the typical events

Multiple branching

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

• When $\omega(\mathrm{d}P/\mathrm{d}\omega) \sim 1$, multiple branching becomes important

$$
\omega \frac{\mathrm{d} \mathcal{P}}{\mathrm{d} \omega} \simeq \bar{\alpha} \sqrt{\frac{\omega_c}{\omega}} \sim 1 \Longrightarrow \omega \lesssim \omega_{\rm br}(L) \equiv \bar{\alpha}^2 \hat{q} L^2
$$

• LHC: the leading particle has $E \sim 100 \,\text{GeV} \gg \omega_{\text{br}} \sim 5 \,\text{GeV}$

- \bullet In a typical event, the LP emits ...
	- a number of $\mathcal{O}(1)$ of gluons with $\omega \sim \omega_{\rm br}$

Multiple branching

J.-P. Blaizot, E. I., Y. Mehtar-Tani, PRL 111, 052001 (2013)

• When $\omega(\mathrm{d}P/\mathrm{d}\omega) \sim 1$, multiple branching becomes important

$$
\omega \frac{\mathrm{d} \mathcal{P}}{\mathrm{d} \omega} \simeq \bar{\alpha} \sqrt{\frac{\omega_c}{\omega}} \sim 1 \Longrightarrow \omega \lesssim \omega_{\rm br}(L) \equiv \bar{\alpha}^2 \hat{q} L^2
$$

• LHC: the leading particle has $E \sim 100 \,\text{GeV} \gg \omega_{\text{br}} \sim 5 \,\text{GeV}$

• In a typical event, the LP emits ...

- a number of $\mathcal{O}(1)$ of gluons with $\omega \sim \omega_{\rm br}$
- a large number of softer gluons with $\omega \ll \omega_{\rm br}$
- The primary gluons with $\omega \lesssim \omega_{\rm br}$ keep splitting

INT Program 18-3, Seattle, Nov 2018 [Jet evolution in a dense medium](#page-0-0) Edmond Iancu 26 / 43

Democratic branchings

- The primary gluons generate 'mini-jets' via democratic branchings
	- daughter gluons carry comparable energy fractions: $z \sim 1 z \sim 1/2$
	- contrast to asymmetric splittings in the vacuum: $z \ll 1$
- Via successive democratic branchings, the energy is efficiently transmitted to softer and softer gluons, which eventually thermalize

 \bullet Energy appears in many soft quanta propagating at large angles \checkmark

Democratic branchings

- The primary gluons generate 'mini-jets' via democratic branchings
	- daughter gluons carry comparable energy fractions: $z \sim 1-z \sim 1/2$
	- contrast to asymmetric splittings in the vacuum: $z \ll 1$
- Via successive democratic branchings, the energy is efficiently transmitted to softer and softer gluons, which eventually thermalize

• CMS: The jet transverse momentum profile $P(\Delta r)$ (p_T in annular rings)

A natural explanation for the di-jet asymmetry and for jet shapes

Intra-jet nucler modifications

 \bullet How to understand the excess of soft particles inside the jet cone ($\theta < R$)?

ratios of fragmentation functions in PbPb / pp

- Medium-induced soft radiation should be pushed at large angles $\theta > R$
- Can vacuum-like radiation be modified by the medium ?

INT Program 18-3, Seattle, Nov 2018 [Jet evolution in a dense medium](#page-0-0) Edmond Iancu 28 / 43

Vacuum-like emissions (VLE)

P. Caucal, E.I., A. H. Mueller and G. Soyez, PRL 120 (2018) 232001

- \bullet A jet initiated by a colorless $q\bar{q}$ antenna (decay of a boosted γ or Z)
- The antenna propagates through the medium along a distance *L*

- Emissions $(t_{\rm f}=\frac{1}{\omega\theta^2})$ can occur either inside $(t_{\rm f}\leq L)$, or outside $(t_{\rm f}>L)$
- **•** Evolution stopped by hadronisation: $k_{\perp} \simeq \omega \theta \gtrsim \Lambda_{\text{QCD}}$

INT Program 18-3, Seattle, Nov 2018 [Jet evolution in a dense medium](#page-0-0) **Edmond Iancu** 29 / 43

The vetoed region

• Remember: the medium introduces an upper limit on the formation time

$$
t_{\mathrm{f}} \, \lesssim \, \sqrt{\frac{\omega}{\hat{q}}} \, \leq \, L
$$

No emission within the range

$$
\sqrt{\frac{\omega}{\hat{q}}} \, < \, \frac{1}{\omega \theta^2} \, < \, L
$$

End point of VETOED at $\omega_c = \hat{q} L^2 \, , \quad \theta_c = \frac{1}{\sqrt{\hat{q} L^3}}$

- VLEs in medium occur like in vacuum, but with a smaller phase-space
	- gluons within VETOED should have $k_\perp^2 \ll \hat{q} t_{\mathrm{f}}$, which is not possible
	- a leading-twist effect: DGLAP splitting functions
	- typical values: $\hat{q} = 1 \,\mathrm{GeV^2/fm}, \ \ L = 4 \,\mathrm{fm}, \ \ \omega_c = 50 \,\mathrm{GeV}, \ \ \theta_c = 0.05$

Jet in the vacuum (DLA)

• Radiation triggered by the parton virtualities: bremsstrahlung

- Log enhancement for soft $(\omega \ll E)$ and collinear $(\theta \ll 1)$ gluons
- Parton cascades: successive emissions are ordered in
	- **e** energy $(\omega_i < \omega_{i-1})$, by energy conservation
	- angle $(\theta_i < \theta_{i-1})$, by color coherence
- Double-logarithmic approximation (DLA): strong double ordering

$$
\frac{\mathrm{d}^2 N}{\mathrm{d}\omega \mathrm{d}\theta^2} \simeq \frac{\bar{\alpha}}{\omega \theta^2} \sum_{n\geq 0} \bar{\alpha}^n \left[\frac{1}{n!} \left(\ln \frac{E}{\omega} \right)^n \right] \left[\frac{1}{n!} \left(\ln \frac{\theta_0^2}{\theta^2} \right)^n \right]
$$

Color (de)coherence

- **In vacuum, wide angle emissions (** $\theta > \theta_{q\bar{q}}$ **) are suppressed by color coherence**
	- the gluon has overlap with both the quark and the antiquark

 \bullet In medium, color coherence is washed out by collisions after a time $t_{\rm coh}$

$$
\hat{q} t \, \gtrsim \, \frac{1}{r^2_{\perp}(t)} \, \sim \, \frac{1}{(\theta_{q\bar{q}} t)^2} \ \Longrightarrow \ \ t \, \gtrsim \, t_{\rm coh} \, = \, \frac{1}{(\hat{q} \theta_{q\bar{q}}^2)^{1/3}}
$$

(Mehtar-Tani, Salgado, Tywoniuk; Casalderrey-Solana, E. I., 2010–12)

Color (de)coherence

- **In vacuum, wide angle emissions (** $\theta > \theta_{q\bar{q}}$ **) are suppressed by color coherence**
	- the gluon has overlap with both the quark and the antiquark

 \bullet In medium, color coherence is washed out by collisions after a time $t_{\rm coh}$

$$
t_{\rm coh} \,=\, \frac{1}{(\hat{q}\theta_{q\bar{q}}^2)^{1/3}} \,\,\ll\,\, L \quad \text{if} \quad \theta_{q\bar{q}} \,\gg\, \theta_c \simeq 0.05
$$

• Angular ordering could be violated for emissions inside the medium

L

Angular ordering strikes back

 \bullet ... But this is not the case for the VLEs !

$$
\theta > \theta_{q\bar q} \quad \& \quad t_{\rm f} = \frac{1}{\omega \theta^2} \, > \, t_{\rm coh} \implies t_{\rm f} \, \gg \, \sqrt{\frac{\omega}{\hat q}}
$$

• Wide angle emissions $(\theta > \theta_{q\bar{q}})$ have $t_f \ll t_{\text{coh}}$, hence they are suppressed

- **•** Emissions at smaller angles $(\theta < \theta_{q\bar{q}})$ can occur at any time
- DLA cascades inside the medium are still strongly ordered in angles

INT Program 18-3, Seattle, Nov 2018 [Jet evolution in a dense medium](#page-0-0) Burness and Helmond Iancu 33 / 43

There is a life after formation ...

- The VLEs inside the medium have short formation times $t_f \ll L$
- \bullet After formation, gluons propagate in the medium along a distance $\sim L$

- They can suffer significant energy loss and momentum broadening
	- additional sources for medium-induced radiation
- They contribute to the jet multiplicity (fragmentation function)
- They can emit (vacuum-like) gluons outside the medium

First emission outside the medium

- The respective formation time is necessarily large: $t_f \geq L$
- An antenna with opening angle $\theta \gg \theta_c$ loses coherence in a time $t_{\rm coh} \ll L$

- In-medium sources lose color coherence and can also radiate at larger angles
- After the first "outside" emission, one returns to angular-ordering, as usual
- Medium effects at DLA (leading twist): vetoed region $+$ lack of angular-ordering for the first "outside" emission

INT Program 18-3, Seattle, Nov 2018 [Jet evolution in a dense medium](#page-0-0) Edmond Iancu 35 / 43

Gluon distribution at DLA

Double differential distribution in energies and emission angles:

$$
T(\omega,\theta) \equiv \omega\theta^2 \frac{\mathrm{d}^2 N}{\mathrm{d}\omega \mathrm{d}\theta^2}
$$

- $E = 200 \,\text{GeV}, \ \theta_{q\bar{q}} = 0.4$
- $\hat{q} = 2 \,\text{GeV}^2/\text{fm}, L = 3 \,\text{fm}$
- $T/T_{\text{vac}} = 0$ in the excluded region
- $T/T_{\text{vac}} = 1$ inside the medium and also for $\omega > \omega_c$ and any θ
- T/T_{vac} < 1 outside the medium at small angles $\leq \theta_c$
- $T/T_{\text{vac}} > 1$ outside the medium at large angles $\sim \theta_{q\bar{q}}$

Jet fragmentation function at DLA

 \bullet Slight suppression at intermediate energies (from 3 GeV up to ω_c)

- the phase-space is reduced by the vetoed region
- the amount of suppression increases with L and \hat{q}

Jet fragmentation function at DLA

$$
D(\omega) \, \equiv \, \omega \frac{\mathrm{d}N}{\mathrm{d}\omega} \, = \int_{\Lambda^2/\omega^2}^{\theta_{q\bar{q}}^2} \frac{\mathrm{d}\theta^2}{\theta^2} \, T(\omega,\theta)
$$

- Significant enhancement at low energy (below 2 GeV)
	- lack of angular ordering for the first emission outside the medium
	- the enhancement is slowly increasing with the jet energy E (= p_T)

INT Program 18-3, Seattle, Nov 2018 [Jet evolution in a dense medium](#page-0-0) Edmond Iancu 37 / 43

Jet fragmentation function at DLA

$$
D(\omega) \, \equiv \, \omega \frac{\mathrm{d}N}{\mathrm{d}\omega} \, = \int_{\Lambda^2/\omega^2}^{\theta_{q\bar{q}}^2} \frac{\mathrm{d}\theta^2}{\theta^2} \, T(\omega,\theta)
$$

- Significant enhancement at low energy (below 2 GeV)
- A related proposal by *Mehtar-Tani and Tywoniuk, arXiv:1401.8293*

Beyond DLA: Running coupling & NDLA

- Remember the double-logarithmic approximations:
	- strong ordering in both energies ($P_{ga} \simeq 1/z$) and angles
	- fixed coupling $\bar{\alpha}$
	- no "higher-twist" effects: no collisions, no medium-induced radiation

Adding a running coupling: $\bar{\alpha}(k_{\perp}^2) = \frac{1}{\bar{b} \ln \frac{\omega^2 \bar{\theta}^2}{\Lambda^2}}, \, \bar{b} = 11/12$

Finite-part of the splitting function: $P_{gg}(z) \simeq \frac{1}{z} + \int_0^1 \mathrm{d}z' \big(P_{gg}(z') - \frac{1}{z'}\big)$

Beyond DLA: Monte Carlo implementation

(P. Caucal, E.I., A. H. Mueller and G. Soyez, in preparation)

- Convolution of three showers:
	- vacuum cascades inside the medium but outside the vetoed region
		- \bullet full splitting functions, running coupling, quarks and gluons, $N_c = 3$
	- medium-induced cascade in energy with democratic branchings
		- fixed coupling $\bar{\alpha}$, energy loss, transverse momentum broadening
		- **•** partons with angles $\theta > \theta_0$ are leaving the jet
	- vacuum cascade outside the medium
		- no angular ordering for the first emission outside the medium
		- all the partons inside the jet (vacuum-like & medium-induced) can act as sources
		- cascades stop at the hadronisation line
- Leading parton selected according to the cross-section for $pp \rightarrow 2$ partons
	- experimental bias towards events with small energy loss
	- typical energy loss: $\Delta E \sim \bar{\alpha}^2 \omega_c$, rather than average: $\langle \Delta E \rangle \sim \bar{\alpha} \omega_c$

MC: preliminary results

jet p_t spectrum

INT Program 18-3, Seattle, Nov 2018 [Jet evolution in a dense medium](#page-0-0) Edmond Iancu 40 / 43

MC: preliminary results (2)

jet p_t spectrum

- *RAA*: jet yield in *AA* normalized to *pp*
- ratio of FFs in *AA* and *pp*
- Various choices for \hat{q} , L and $\alpha_{s, \text{med}}$

MC: preliminary results (3)

jet p_t spectrum

fragmentation function

- "No quenching": just VLEs
	- no energy loss: $R_{AA} = 1$
	- suppression in FF at small ξ
- "No decoherence": strict angular ordering (including first "outside" emission)
	- no effect on energy loss (R_{AA})
	- little enhancement at small ξ
- "Quenching before VLEs": no VLEs inside the medium
	- R_{AA} larger & increasing with $p_{T,\text{jet}}$

Partons created inside the medium via medium-induced emissions significantly contribute to the soft radiation outside the medium

Conclusions & perspectives

- Vacuum-like emissions inside the medium can be factorized from the medium-induced radiation via systematic approximations in pQCD
- Medium effects enter already at leading-twist level :
	- reduction in the phase-space for VLEs inside the medium
	- violation of angular ordering by the first emission outside the medium
- Angular ordering is preserved for VLEs inside the medium, like in the vacuum
- Qualitative agreement with the LHC data for jet fragmentation
- VLEs inside the medium act as sources for medium-induced radiation
- DLA: fine for multiplicity, but not for energy flow
- **•** Probabilistic picture, well suited for Monte-Carlo implementations