EMC & SRC: New Results from EIC Phase-0

Laboratory for Nuclear Science @

Probing Nucleons and Nuclei in High Energy Collisions, INT, Oct. 29th 2018.

Scale Separation and Confinement

Iron / Deuterium Structure Function

Iron / Deuterium Structure Function

Iron / Deuterium Structure Function

Short-Range Correlations (SRC)

<u>Today:</u> Short-Ranged Interactions Across Resolutions

(1) New SRC & EMC data.

- Nature 560, 617 (2018)
- PRL 121, 09201 (2018)
- arXiv: 1810.05343 (2018)
- + 3 not on arXiv

(1) New SRC & EMC data.

(2) SRC as a new bridge between nuclearstructure and quarkgluon dynamics.

Iron / Deuterium Structure Function

35 years after discovery: >1000 papers; No consensus on underlaying cause

35 years after discovery: >1000 papers; No consensus on underlaying cause

But... Lots of data!

EMC Data

EMC Data

Effect drive by nuclear structure & dynamics

Short-Range Correlations (SRC)

Nucleon pairs that are close together in the nucleus

<u>Momentum space</u>: *high relative* and *low c.m. momentum*, compared to the Fermi momentum (k_F)

Probing Correlations Using Hard Knockout Reactions

Breakup the pair => Detect <u>both</u> nucleons => Reconstruct 'initial' state

Interlude: Reaction Mechanisms

What we want:

SRC

Interlude: Reaction Mechanisms

Interlude: Reaction Mechanisms

MEC suppressed @ high-Q², IC suppressed at $x_B > 1$.

FSI suppressed in **anti-parallel** kinematics. Treated using **Glauber** approximation.

Frankfurt, Sargsian, and Strikman PRC **56**, 1124 (1997). Colle, Cosyn, and Ryckebusch, PRC **93**, 034608 (2016).

Glauber agrees with data!

Breakup the pair => Detect <u>both</u> nucleons => Reconstruct 'initial' state

3D Reconstruction

Back-to-back = SRC pairs!

"Clean" Breakup

Korover PRL (2014)

np dominance (¹²C)

Subedy Science (2008); Shneor PRL (2007); Piasetzky PRL (2006); Tang PRL (2003).
np dominance (A≥12)

Hen Science (2014)

np dominance (A≥12)

*Deduced from observing a low (e,e'pp) / (e,e'p) ratio

Hen Science (2014)

BRACE YOURSELF

(New) DATA WINTERIS COMING

Troll.me

Past attempts of high-p probs

Past attempts of high-p probs

Logarithmic reaction effects @ high-k / short-distance!

(e,e'p): large FSI at high-momentum

Dominated by FSI at large missing momentum

Data: Rvachev *et al.*, PRL94 192302 ; Benmokhtar *et al.*, PRL94 082305 Theory: Ciofi degli Atti and Kaptari, PRL95 052502 ; Alvioli *et al.*, PRC81 021001 ; Laget, PLB609 49 (not shown)

(e,e'p): large FSI at high-momentum

Dominated by FSI at large missing momentum Well described by calculation

Data: Rvachev *et al.*, PRL94 192302 ; Benmokhtar *et al.*, PRL94 082305 Theory: Ciofi degli Atti and Kaptari, PRL95 052502 ; Alvioli *et al.*, PRC81 021001 ; Laget, PLB609 49 (not shown) Magic Kinematics?

Magic Ratios?

M. Sargsian

Probing nucleon momentum distributions in A = 3 nuclei via ³He and ³H(e, e'p) measurements

R. Cruz-Torres,¹ S. Li,² F. Hauenstein,³ A. Schmidt,¹ D. Abrams,⁴ H. Albataineh,⁵ S. Alsalmi,⁶ D. Androic,⁷

(Jefferson Lab Hall A Tritium Collaboration) ¹Massachusetts Institute of Technology, Cambridge, MA ²University of New Hampshire, Durham, NH ³Old Dominion University, Norfolk, VA

Probing nucleon momentum distributions in A = 3 nuclei via ³He and ³H(e, e'p) measurements

R. Cruz-Torres,¹ S. Li,² F. Hauenstein,³ A. Schmidt,¹ D. Abrams,⁴ H. Albataineh,⁵ S. Alsalmi,⁶ D. Androic,⁷

Probing even higher momenta

Remarkable (preliminary) agreement \w abinitio calculations @ high-momenta

A. Schmidt et al.

Probing even higher momenta

Remarkable (preliminary) agreement \w abinitio calculations @ high-momenta

A. Schmidt et al.

Probing even higher momenta

Remarkable (preliminary) agreement \w abinitio calculations @ high-momenta

A. Schmidt et al.

Low Pair C.M. Motion

NEWI

E. Cohen, PRL (2018).

Consistent with Mean-Field Calculations

Asymmetric Nuclei?

Proton vs. Neutron Knockout M. Duer ELECTRON I INCIDENT **ELECTRON** TARGET **NUCLEUS NEUTRON** DRIFT **CHAMBERS** PROTON **CHERENKOV COUNTER** TIME OF FLIGHT **ELECTROMAGNETIC** CALORIMETER

Mean-Field: n/p = N/Z

SRC: n/p = 1

Same # of high-momentum protons and neutrons

What do the outer neutrons do?

Correlation Probability: Neutrons saturate Protons grow

(e,e'): x_B correlates with initial momenta

$$(q+p_A-p_{A-1})^2 = p_f^2 = m_N^2$$

High x_B \Leftrightarrow High initial momenta

$$(q+p_A-p_{A-1})^2 = p_f^2 = m_N^2$$

High-Momentum Scaling

- A/d (e,e') cross section ratios sensitive to n_A(k)/n_d(k)
- Observed scaling for $x_B \ge 1.5$.

 $=> n_A(k>k_F) = a_2(A) \times n_d(k)$

Frankfurt et al., PRC (1993); Egiyan et al., PRC (2003); Fomin et al., PRL (2012).

2012 High-Momentum [almost] Scaling

Fomin, PRL (2012)
2012 High-Momentum [almost] Scaling

Fomin, PRL (2012)

2018 High-Momentum Scaling

Schmookler et al., (2018)

 Nuclear momentum distribution can be divided into two distinct regions.

 Nuclear momentum distribution can be divided into two distinct regions.

- Nuclear momentum distribution can be divided into two distinct regions.
- #protons = #neutrons, irrespectively of neutron excess.

- Nuclear momentum distribution can be divided into two distinct regions.
- #protons = #neutrons, irrespectively of neutron excess.
- The fraction of correlated protons / neutrons grow / saturate with neutron excess.

Back to the EMC

Aubert et al., PLB (<u>1983</u>); Ashman et al., PLB (1988); Arneodo et al., PLB (1988); Allasia et al., PLB (1990); Gomez et al., PRD (1994); Seely et al., PRL (2009); Schmookler et al., Submitted (<u>2018</u>)

High Precision data!

JLab (2018)

High Precision data!

35 years, 1000 papers, 3 Ideas

1. Proper treatment of 'known' nuclear effects

[explain some of the effect, up to x≈0.5]

- Nuclear Binding and Fermi motion, Pions, Coulomb Field.
- No modification of bound nucleon structure.

2. Short-Range Correlations

- Beyond the mean-field.
- Momentum dependent.
- Dynamical Modification!

3. Bound Nucleons are 'larger' than free nucleons.

- Larger confinement volume => slower quarks.
- Mean-Field effect.
- Momentum Independent.
- Static Modification.

O. Hen et al., Rev. Mod. Phys. 89, 045002 (2017)

35 years, 1000 papers, 3 Ideas

- 1. Proper treatment of 'known' nuclear effects [explain some of the effect, up to $x \approx 0.5$]
 - Nuclear Binding and Fermi motion, Pions, Coulomb Field.
 - No modification of bound nucleon structure.

2. Short-Range Correlations

- Beyond the mean-field.
- Momentum dependent.
- Dynamical Modification!
- 3. Bound Nucleons are 'larger' than free nucleons.
 - Larger confinement volume => slower quarks.
 - Mean-Field effect.
 - Momentum Independent.
 - Static Modification.

O. Hen et al., Rev. Mod. Phys. 89, 045002 (2017)

EMC – SRC Correlation

PRL (2011); PRC (2012); RMP (2017)

$$F_2^A = ZF_2^p + NF_2^n + n_{SRC}^A \left(\Delta F_2^p + \Delta F_2^n\right)$$

Previously Measured

Universal?

$$\frac{F_2^A}{F_2^d} = \left(\frac{n_{SRC}^A}{n_{SRC}^d} - N\right) n_{SRC}^d \frac{\Delta F_2^p + \Delta F_2^n}{F_2^d} + (Z - N) \frac{F_2^p}{F_2^d} + N$$

$$\frac{F_2^A}{F_2^d} = \left(\frac{n_{SRC}^A}{n_{SRC}^d} - N\right) n_{SRC}^d \frac{\Delta F_2^p + \Delta F_2^n}{F_2^d} + (Z - N) \frac{F_2^p}{F_2^d} + N$$

$$n_{SRC}^{d} \frac{\Delta F_{2}^{p} + \Delta F_{2}^{n}}{F_{2}^{d}} = \left(\frac{F_{2}^{A}}{F_{2}^{d}} - (Z - N)\frac{F_{2}^{p}}{F_{2}^{d}} - N\right) / \left(\frac{n_{SRC}^{A}}{n_{SRC}^{d}} - N\right)$$

Universal?

Previously Measured A-Dependent terms

- EMC can be explained by a universal modification of SRC nucleons.
- Universality seems to hold also for x > 0.7 (Fermi-motion ~ <T>)

Free neutron extraction

97

Neutrons Saturate; Protons Grow

N/Z dependence of nuclear PDFs!

Universal Modification Tests

2018: Few Body

Probing np interactions:

Mirror nuclei: ${}^{3}\text{He} - {}^{3}\text{H}$ Proton addition: d $- {}^{3}\text{He}$ Neutron addition: d $- {}^{3}\text{H}$ ${}^{3}\text{He} - {}^{4}\text{He}$

2019: Asymmetric Nuclei

Probing many-body dynamics:

- ⁴⁰Ca \rightarrow ⁴⁸Ca \rightarrow ⁵⁴Fe
- Paring from different orbitals
- Disentangle asymmetry and mass number dependence

BAND @ CLAS12

SRC parton-structure

$({\tt some \ of}) \ The \ SRC \ World$

LABORATORY for NUCLEAR SCIENCE

Dr. Barak Schmookler

Reynier Torres

Efrain Segarra

Afroditi Papadopoulou

Jackson Pybus

Andrew Denniston

Dr. George Laskaris

Dr. Maria Patsyuk

Dr. Adi Ashkenazy

2018 High-Momentum Scaling

2018 High-Momentum Scaling

