Probing nuclear gluons with heavy flavors at an Electron-Ion Collider

Yulia Furletova INT, 28 Oct-3 Nov 2018

LDRD- 1601/1701 project ("Nuclear gluons with charm at EIC") E. Chudakov, D. Higinbotham, Ch. Hyde, S. Furletov, Yu. Furletova, D. Nguyen, N.Sato, M. Stratmann, M.Strikman, C. Weiss

https://wiki.jlab.org/nuclear_gluons/ [arXiv:1610.08536], [arXiv:1608.08686]

Overview

- Nuclear modification of gluons (large-x)
- Open charm/beauty as direct probe
- Charm reconstruction at EIC
	- \triangleright Charm production rate at large-x
	- \triangleright Charm reconstruction
	- \triangleright PID and Vertex detectors at EIC
- Impact on nuclear gluons
- … and in addition "Other processes with heavy flavor at EIC"

Nuclear partons: Physics interest

• DIS processes on nuclei A > 1 probe nuclear PDFs

Quark/gluon densities of entire nucleus Nuclear matrix elements of QCD quark/gluon operators, DGLAP evolution

• Fundamental physics interest

 \triangleright Compare quark/gluon densities of nucleus with those of a system of free nucleons: $\overline{A} \neq \sum N$, "nuclear modifications"

 \triangleright Learn about QCD substructure of nucleon interactions $-$ how they emerge from the microscopic theory?

 \triangleright "Next step" after exploring single nucleon structure!

Nuclear partons: Nucleon interactions

Hard process, QCD factorization

Nuclear matrix element <A| Twist-2 |A>

- 1-nucleon contribution $\langle N|$ Twist-2 $|N\rangle$ nucleon PDF, Fermi motion
- 2-nucleon contribution <NN| Twist-2 |NN> nucleon interactions!
- Well-defined operator, scale dependence µ2, matching with LQCD, nuclear EFT

Physics questions:

- \triangleright How do interactions modify quarks/gluons with different x?
- \triangleright What are the relevant distances in the NN interactions?
- \triangleright What are the relevant intermediate states? Non-nucleonic DoF!

Nuclear partons: Nucleon interactions

Nuclear partons: Probing gluons

- \triangleright Determine nuclear gluon density at large x (> 0.05)!
- \triangleright Nuclear gluon probes:

 $pA/eA/\gamma A$ Jets?

 \triangleright EIC capabilities

Nuclear beams A = 2-208 first eA collider CM energy \sqrt{s} (eN) ~ 20-100 GeV coverage at large x_B Luminosity L ~ 10^{34} cm⁻² s⁻¹ and $\sqrt{2}$ rare processes Next generation of detectors extending the states final states with PID and vertex

 $eA/\mu A/\nu A$ Q² dependence of F_{2A} , F_{LA} + DGLAP
eA/ νA Heavy guark production - direct pro Heavy quark production - direct probe!

Open charm/beauty production as a direct gluon probe

Boson (photon or Z) Gluon Fusion (BGF)

 $h = c, b$

$$
F_2^h(x,Q^2) \;\; = \;\; \int_{ax}^1 \frac{dx'}{x'} \, x' G(x') \; \hat{F}_g^h(x/x',\; Q^2, \; m_h^2, \, \mu^2)
$$

coefficient function

$$
a = 1 + \frac{4m_h^2}{Q^2}
$$

sets limit of x' integral

 $G(x')$

 x, Q^2

INT, 28 Oct-3 Nov 2018

 \boldsymbol{e}

 \boldsymbol{A}

 χ'

•Heavy quark production probes large–x′ gluons "almost locally" at $\boldsymbol{\mathsf{x}}^\prime$ glue ≥ $\boldsymbol{\mathsf{x}}_{\scriptscriptstyle\mathsf{BJ}}\left(1\texttt{+}4\mathsf{m}^2_\mathsf{h}/\mathsf{Q}^2\right)$

•NLO corrections calculated, theory uncertainties quantified

Laenen, Riemersma, Smith, Van Neerven 93+, Kawamura et al. 12, Alekhin, Moch et al. 93+

Heavy quark production: Higher orders

Heavy quark production at NLO

- Sensitivity to light quarks at O(ehg2)
- LO photon-gluon fusion large at $x > 0.1$
- Theoretical uncertainties quantified

Laenen, Riemersma, Smith Van Neerven, Harris 93+. Alekhin, Moch, Bl¬umlein, Vogt, Kawamura et al. 11+

Perturbative stability LO → NLO

- Good stability of F^c_2 with choice of effective LO scale Gluck, Reya, Stratmann ⁹⁴
- Rapidity, pT distributions more sensitive

Heavy quark production at HERA

HERA: 27.5 GeV electrons/positrons with 920 GeV protons

ZEUS: \sim 0.5 fb⁻¹ after 10 years of operation

At EIC (10-100 fb⁻¹/year) which is 100-1000 times higher then at HERA

. The HVQDIS calculation produces a good description of the measured data.

. In particular, NLO QCD describes the dependence on Q^2 of the data over 4 orders of magnitude in Q^2 • Mostly x < 10⁻²

Heavy quarks at HERA

Charm production rate at large x at EIC

Differential cross sections using LO QCD formulas

 $d\sigma(e+N \to e'+X) = \text{Flux}(x,y,Q^2) F_2(x,Q^2) dx dQ^2$ (1)

 $d\sigma(e+N \to e' + c\bar{c} + X') =$ Flux $(x, y, Q^2) F_2^{c\bar{c}}(x, Q^2) dx dQ^2$ (2)

- Charm production rates drop rapidly at large x
- Charm production rates 105 at x~0.1 (int. lumi 10 fb[−]¹) Defines charm reconstruction efficiency needed for physics
- Charm/DIS ratio 2–3 % at \times ~0.1 Defines charm reconstruction environment
- Nuclear rates comparable: Structure function Fc2A~ AFc2N, but luminosity LA~ LN/A

Charm momentum and angle distributions

Low ep/eA ratio colliders

- Large-x cc pairs produced almost at rest in low-ratio collider Example: Gluon with $x = 0.2$ at 10GeV e on 50 GeV/N Contrast with high-ratio collider!
- π /K produced at large angles, with typical momenta \sim 5 GeV Favorable situation!
- Good PID and momentum resolution available in central detector

Enables "new" methods of charm reconstruction

EIC: charm event reconstruction

- Exclusive D-meson decays
- Inclusive decays with displace vertex

Questions

- \triangleright How well do the methods work at large x?
- \triangleright What are the overall efficiencies and uncertainties?
- \triangleright What detector performance is required?

Simulations at different levels

1) Theoretical estimates of reconstruction efficiency

2) Model acceptance and PID performance, describe resolution effects

- through smearing of vertex and momentum distributions
- 3) Tracking and vertexing based on schematic JLEIC detector model

EIC: Charm reconstruction with exclusive D's

- Simple exclusive channel $D^{**} \to \pi^*_{slow}$ + $(K^-\pi^*)_{\text{DO}}$
- For reconstruction need to provide good vertex and PID
- At HERA1: no PID, no vertex \Rightarrow Efficiency < 1% HERA2: no PID + vertex \Rightarrow Other channels, incl.
- At EIC: PID + vertex detection => allow use of other exclusive channels D^0 , D^* , $\mathsf{D}^*{}_{\mathsf{s}}$
- Theoretical efficiency ∼ 10% summed over channels Fragmentation ratio $f \sim$ Branching ratio BR

EIC: Charm reconstruction with exclusive D's

Example: D0 meson reconstruction using exclusive decay $D^0 \rightarrow K^-\pi^+$ ep (10 GeV x100 GeV), $Q^2 \ge 10$ GeV² and $x_B \ge 0.05$, vertex cut \rightarrow 100 µm

simulation with mass/momentum and vertex smearing Impact of PID and vertex detection

INT, 28 Oct-3 Nov 2018

INT, 28 Oct-3 Nov 2018

PID detectors

** Here, electron/hadron separation only from Cherenkov detectors is shown. Main e/h rejection is done by calorimeters.

EIC: Charm reconstruction with inclusive modes

Decay length significance distribution: Establish secondary vertex Project decay length on jet axis, positive/negative

Identify D-meson decays through positive projection Used at HERA-I with vertex detector Use for charm at EIC

Identified K from PID.

INT, 28 Oct-3 Nov 2018

EIC: Charm reconstruction efficiency

Total efficiency estimated:

∼5-6% exclusive, ∼25-30% inclusive

- Little kinematic variation in (x,Q2) region of interest
- Systematic uncertainties? HERA ≾10%
- Both vertex detection and PID are essential for charm reconstruction

INT, 28 Oct-3 Nov 2018

PDF reweighting

- Method for quantifying impact of new (pseudo-) data on existing global fit Giele, Keller 98; NNPDF Collab Ball et al 11; Paukkunen, Zurita 14; Sato et al 16
- Represents existing fit as statistical ensemble, uses Bayes' theorem
- Avoids costly re-fitting
- Widely used in PDF analysis, HEP

Implemented for charm pseudodata from EIC

• Presently F2c, can be extended to other observables

Charm impact: Large-x gluons

- Charm pdeudodata Fc2 (x,Q2), assumed 10% total uncertainty, dominated by systematics, point-to-point Here EPS09, LO approximation. To be updated/refined
- Substantial impact on large–x nuclear gluons

See also: Aschenauer et al, PRD 96 114005 (2017)

- Theoretical uncertainties to be estimated
- Nuclear final-state interactions vs. initial-state modifications
- Uncertainties of nuclear ratios

INT, 28 Oct-3 Nov 2018

Other applications

F2 charm in high-x region at EIC

Int lumi 10 fb-1, 10x100 GeV charm reconstruction efficiency 20%

Statistical errors only

Charm in Photo production

- \checkmark High P_T charm pair.
- \checkmark Need far-rear instrumentation (for low-Q² e' measurements)

Lessons learned at HERA:

- \triangleright Beauty production at HERA is suppressed by 2 order of magnitude with respect to charm, due to the larger mass and smaller electric charge of the b quark.
- \triangleright Total cross section is dominated by photoproduction
- \triangleright Final states: steeply falling pT spectrum -> challenge for secondary vertex.

Semi-leptonic channels for heavy quark identification

Figure 2.12: *Cascade decay of a beauty quark.*

HERA: σ(e+p -> e+b X) ~ 1.6 ±0.4 nb $\sigma(e+p \rightarrow b\overline{b}X \rightarrow \mu X) \sim 160 \pm 30$ pb (PhP: Q²<1 GeV²) σ(e+p ->bbX -> μX) ~ 30 \pm 8 pb (DIS) σ(ep -> ebbX -> ejj μeX) ~ 9.4 \pm 1.2 pb σ(ep -> eb $\overline{b}X$ -> ejj $\mu\mu X$) ~ 10.4 ± 1.5 pb

HVQDIS for EIC (ep 10x100 GeV), no fragmentation m ~4.18 GeV Q^2 > 1GeV 0< x <1 σ(e+p -> e+b X)~ 0.11805 nb m ~4.18 GeV Q^2 > 1GeV $x > 0.1$ σ(e+p -> e+b X) ~1.0229 10⁻³ nb

Semi-leptonic channels for charm

Di-charm events via semi-leptonic channels

BR: $c \rightarrow$ lepton + $X (\sim 17\% 7)$

Di-charm events, Combination of inclusive and exclusive decays

Olaf Behnke

Semi-leptonic channels for BSM

- Enhance of semi-leptonic decay BRs via **Leptoquark** process
- Comparisons of e vs μ decays
- Comparisons (c/c-bar, b/b-bar) rates (mixing)
- Rare decay processes (FCNC, LFV, etc)

arXiv:1703.01766v3 G. Ciezare and etc.

²⁹ Yulia Furletova "Rare D Meson Decays at HERA " C. Grab

Charm in diffractive processes

BGF process with Heavy flavors could be used as a probe of a gluon content of a diffractive (pomeron) exchange.

Diffractive gluon density (DPDF). Nuclear diffractive gluon density (nDPDF)

INT, 28 Oct-3 Nov 2018

Charm in diffractive Ds production in Charged Current DIS

Charm in Charged Current reactions

$$
e(k)
$$
\n
$$
e, v(k')
$$
\n
$$
g(xe)
$$
\n
$$
q(xP)
$$
\n
$$
q, q'
$$
\n
$$
p
$$

Charm in Charged Current reaction at EIC

σ(e+p -> $v_e + X \sim 10$ pb σ(e+p -> v_e +c +X) ~ 0.15 pb

with 10fb⁻¹/year (goal for positron beam) \Rightarrow ~1500 (s->c) events/year \Rightarrow ~500 (s->c) reconstructed events/year with 30% eff for charm reconstruction

INT, 28 Oct-3 Nov 2018

INT, 28 Oct-3 Nov 2018

Summary

- Open charm production at EIC can constrain nuclear gluons at large–x Natural measurement for medium-energy collider
- Nuclear PDFs opens window on nucleon interactions in QCD
- High Luminosity (\sim 10³⁴cm⁻² s⁻¹) is essential for charm production at \times \ge 0.1
- Challenge to identify charm/beauty with overall high efficiency and in kinematic region with ~100 times larger DIS background
- PID and high-resolution vertex detector significantly improve charm reconstruction efficiency and overall charm to background ratio and should be integrated into EIC detector design
- Many other applications for heavy-quarks at EIC: Photoproduction, diffraction, Charged current, Jets, BSM …

Backup

ENERGY LOSS OF QUARKS (JETS)

Interaction of Charged Particles with Matter:

Interaction with atomic electrons: Ionization and excitation

Energy loss is independent of the mass a charge and velocity of the incoming particle. Relatively independent of the absorber (Z/A). At βγ≈3.5 energy loss in the mimimum :

(MIP)

- At EIC energy loss of quarks.
- Gluon bremsstrahlung

• Interaction with atomic nucleus: Bremsstrahlung (for high energy charged particles) , i. e. radiation of photons, in the Coulomb field of the atomic nuclei

ELECTROMAGNETIC

- Z/A dependence (ep vs eA)
- Energy loss measurements as a function of initial quark energy and type of quark

STRONG

MULTIPLE SCATTERING OF QUARKS (JETS)

A charged particle traversing a medium is deflected by many small-angle scatters. Most of this deflection is due to Coulomb scattering from nuclei, and hence the effect is called multiple Coulomb scattering.

PARTON PROPAGATION IN MAT

Accardi, Dupre

 π^+