From proton to nuclear GPDs and PDFs at EIC (and RHIC)

Salvatore Fazio

Brookhaven National Lab

INT 18-3, weeks 5-6 Seattle WA *29 October -09 November 2018*

Plan of the talk

- Ø **Imaging with an EIC**
- Ø **e+p (***also talk on week 1 and 4***)**
	- § **DVCS Impact studies**
	- § **DVMP**
- Ø **e+A**
	- § **nPDFs, GPDs in nuclei, saturation (***also talk on week 4***)**
	- § **Gluon GPD in UPC at RHIC**
- Ø **Access to Wigner function (in e+p and e+A)**
- Ø **Final discussion**

Exclusive Vector Meson and real photon production

DVCS:

- **Very clean experimental signature**
- **No VM wave-function uncertainty**
- **Hard scale provided by Q2**
- **Sensitive to both quarks and gluons [via Q2 dependence of xsec (scaling violation)**

DVCS on a real neutron target \rightarrow **polarized Deuterium or He³**

VMP:

- **Uncertainty of wave function**
- \cdot J/Psi \rightarrow direct access to gluons, c+bar-c pair **produced via quark(gluon)-gluon fusion**
- **Light VMs** à **quark-flavor separation**

Alternative/complementary way to quark-flavor separation

Accessing the GPDs in exclusive processes

$$
\frac{d\sigma}{dt} \sim A_0 \left[H \left| ^2(x,t,Q^2) - \frac{t}{4M_p^2} \left| E^2 \left(x,t,Q^2 \right) \right| \right]
$$
\nDominated by H
slightly dependent on E
and scattering planes

\n
$$
\varphi = \varphi_h - \varphi_l
$$
\nAngle but the production and scattering planes

\n
$$
A_C = \frac{d\sigma^* - d\sigma^-}{d\sigma^* + d\sigma^-} \propto Re(A)
$$
\nRequired B with a scattering plane

\n
$$
A_{UT} \propto \sqrt{\frac{-t}{4M^2}} \left[F_2(t) H \left(\frac{z}{2}, \frac{z}{2}, t, Q^2 \right) - F_1(t) E \left(\frac{z}{2}, \frac{z}{2}, t, Q^2 \right) + \ldots \right]
$$
\nRequired by H
and the transverse pol. vector
done φ HERA

\nRequired by E and H
Required by E and H
Equires a polarized proton-target

\n
$$
\frac{1}{2} = J_q^z + J_s^z = \frac{1}{2} \Delta \Sigma + \sum_q z_q^z + J_s^z
$$
\nresponsible for orbital angular momentum
a window to the SPIN physics

 b_\perp

DVCS at an EIC

- **Signal extraction "a la HERA"**
- **xSec meas.: Specific requirements to suppress BH**
	- à **keep BH/sample below 60% at high energies**
- **Radiative Corrections evaluated**
- **detector acceptance & smearing**
- **t-slope: b=5.6 compatible with H1 data**
- **|t|-binning is (3*resolution)**
- **5% systematic uncertainties**

DVCS at a high luminosity collider

The code MILOU by E. Perez, L Schoeffel, L. Favart [arXiv:hep-ph/0411389v1] is Based on a GPDs convolution by: A. Freund and M. McDermott [[http://durpdg.dur.ac.uk/hepdata/dvcs.html\]](http://durpdg.dur.ac.uk/hepdata/dvcs.html)

²**EIC will provide sufficient lumi to bin in multi-dimensions**

… we can do a fine binning in Q2 and W… and even in |t|

S. Fazio (BNL)

Luminosity: 10 fb-1

- **Measurement dominated by systematics**
- Fourier transf. of d σ /dt \rightarrow partonic profiles

Transverse target-spin asymmetry

DVCS-based imaging

Ø **A global fit over all mock data was done, based on: [Nuclear Physics B 794 (2008) 244–323]** Ø **Known values** *q(x)***,** *g(x)* **are assumed for** *Hq, Hg* **(at t=0 forward limits** *Eq , Eg* **are unknown)**

E.C. Aschenauer, S. F., K. Kumerički, D. Müller, JHEP09(2013)093

31 OCT 2018 S. Fazio (BNL)

Spatial Imaging – as in the EIC White Paper

Impact of EIC (based on DVCS only):

- ü **Excellent reconstruction of** *Hsea ,* **and** *Hg* **(from** *dσ/dt***)**
- ü **Reconstruction of sea-quarks GPD E**

Other capabilities still to be evaluated?

- GPD H-Gluon is nice but can be much better by including J/ψ
- Access to GPD E-gluon \rightarrow orbital momentum (Ji sum rule)
- Flavor Separation of GPDs (VMP and/or DVCS on deuteron)
	- Nuclear imaging (modification of GPDs in p+A collisions)

Time to move on…

How to separate flavors?

Method 1 – VMP

rho0: 2u+d 9/4g omega: 2u-d /4g phi: s,g rho+: u-d **J/psi: g**

We simulated the J/Psi cross section and the Fourier transform but never included it on GPDs fits

Challenges of VMP (if compared to DVCS)

- Uncertainty on wave function
- measuring muons vs electron decay channel

Method 2 – DVCS on protons and neutrons

- We do not a real neutron target \rightarrow Use Deuterium (D)
- **We incoherent DVCS on D (D can break up) but coherent on n (tagged by ZDC)**
- **One still needs J/psi to directely access the gluons and extract Eg**

Transverse distance from center, b_T (fm)

Imaging gluons with J/ψ

Luminosity: 10 fb-1

- Measurement dominated by systematics
- Fourier transf. of d σ /dt \rightarrow partonic profiles

Only possible at EIC: from valence quark region, deep into the sea!

Average densities

Next-generation GPD studies with exclusive Center for Frontiers meson production at EIC

<https://indico.bnl.gov/event/4346/>

Outcomes of the Workshop

• **QCD factorization with finite-size effects provides realistic description of exclusive meson production**

Use in GPD & imaging studies Need theoretical work: NLO corrections, relation between approaches

• **UPCs at LHC extend energy frontier in heavy quarkonium production** LHCb, ALICE results for γ + p \rightarrow J/ ψ + p (up to *W* ~ 1.5 TeV) Consistent with HERA data; no indications of nonlinear effects • **Meson production could become essential tool for GPD studies at EIC**

Dedicated community, great interest

- **Next-level impact studies need GPD-based physics models**
	- Aim for GPD extraction with uncertainties

• **PARTONS project (H. Moutarde et al) can play important role in integrating GPD**

efforts at JLab12 and EIC Next follow up: Warsaw January 22-25 2018

Nuclear PDFs and GPDs an Electron-Ion Collider (EIC)

How does the nuclear environment affect the distribution of quarks and gluons and their interaction in nuclei?

Where does the saturation of the gluon density set in?

Reduced Cross Section & F₂ (e+Au)

(See talk by Pia Zurita)

$$
\sigma_r = F_2(x, Q^2) - \frac{y^2}{1 + (1 - y)^2} F_L(x, Q^2)
$$

- ² **Systematics = 3%**
- Stat. and Sys. error summed in quadrature **(Sys. dominate!)**
- \Diamond Gluon extraction via scaling violation \rightarrow do(x,Q²)/dlnQ² (requires ~> 1 decade in Q^2 at a fixed x)
- \Diamond Comparison of linear with nonlinear evolution in x will signal saturation

⇒ needs low-x reach

An EIC at its highest energy provides a factor 10 larger reach in Q^2 and low-x compared to available data

Radiated photons

We use **Django simulator** including O(α) radiative effects

We look at photons radiated from the electron before or after the interaction

Radiated photons are

- Low energy (most of them $<$ 1 GeV)
- uniformly distributed in the azimuthal angle
- collinear to the scattered electron (θ_{γ} > 3 rad)

31 OCT 2018 **S. Fazio (BNL)** S. Fazio (BNL) 31 OCT 2018 **18** $Rc =$ $\sigma_{_{red}}\big(O(\alpha)\big)$ **Correction factor:** $Rc = \frac{C_{red} (C(\alpha))}{\sigma_{red} (Born)} - 1$

Radiative corrections - 20 GeV x 100 GeV

Charm production: a unique tool!

Selection of charm-production events

We select **kaons** in the final state of the *D* meson decay, looking for:

- a displaced vertex: 0.01 cm <|Vertex|< 3 cm
- Momentum within the acceptance of an EIC model detector (BeAST @ eRHIC)

 $RICH > 2 GeV < P < 5 GeV$
31 OCT 2018 20 **CENTRAL DETECTOR (-1 <** h **< 1)** dE/dx -> 0.2 GeV < P < 0.8 GeV

FORWARD (1 < h **< 3.5)**

 $RICH -> 2 GeV < P < 40 GeV$

REAR (-3.5 < h **< -1)** RICH -> 2 GeV < P < 15 GeV

Charm - reduced Cross Section & F₂ (e+Au)

Background study We look at background from DIS events with kaons that pass the whole selection but are not coming from a charm decay. The fraction of background over signal events is: (selected bkg events) / (selected Charm Events) **Conclusion: The B/S fraction is expected in the order of ~1% with a very light energy dependence**

Efficiency study We look at the efficiency of selection charm production events. The efficiency is defined as: (selected Charm Events) / (charm Events in Acceptance) **Conclusion: The charm selection efficiency is expected in the order of ~28% with no significant energy dependence**

The EIC impact – gluons

EPPS16* \rightarrow **functional form** with less constraints (for gluons) in extrapolating for x < xdata

Proton SFs

Not only for nuclei!

Comparable precision for proton Structure Functions in e+p scattering, to even higher Q^2 at high x

 \rightarrow Beyond what HERA achieved: precise measurement of proton F_L

Proton PDFs

Therefore EIC can have large impact on proton PDFs too!

- ü **e+Deutrium data** are sensitive to u/d quark flavor separation (need to account for nuclear modifications)
- ü **Electroweak data** allow to constrain s quark PDFs as well as **SIDIS +FF**

Imaging the gluons in nuclei

Diffractive physics in eA

- \rightarrow Measure spatial gluon distribution in nuclei
- \rightarrow Reaction: e + Au \rightarrow e' + Au' + J/ψ, φ, ρ
- \rightarrow Momentum transfer *t* = $|p_{Au}-p_{Au'}|^2$

T. Toll, T. Ullrich, Phys.Rev. C87, 024913 (2013)

detection

Hot topic:

- \triangleright Lumpiness of source?
- \triangleright Just Wood-Saxon+nucleon g(b_T)
- \Box coherent part probes "shape of black disc"
- $\mathbf{1}$ \Box incoherent part (large t) see \Box incoherent part (large *t*) sensitive to "lumpiness" ζ - saturation (bsat)
- ϵ sourc σ and bounded of the source $[=$ proton] (fluctuations, hot spots, ...)

Imaging of light nuclei

- Ø **Scattered light nuclei can be detected directedly.**
	- **The t momentum transfer can be directedly measured**
- Full range of nuclear densities: from $D \rightarrow He4$ (similar to heavy ions)

D is the least dense nucleus unbound

Polarized He3 beams will allow for simultaneous measurement of both tagged neutron structure and coherent diffraction on He3

• Interesting comparison since spin of He3 is dominated by the neutron

Measuring neutron via spectator tagging

- \triangleright Possibility to study neutron structure
- \triangleright DVCS on neutron compared to proton is important for flavor separation Using a Deuteron is the simplest case: **DVCS on incoherent D (D breaks up) but coherent on the neutron, the "double tagging" method**
	- **Tag DIS on a neutron (by the ZDC)**
	- **Measure the recoil proton momentum**
	- **The recoil proton momentum cone is**
		- $\alpha_R = (E_R + p_{R||})/(E_D + p_{D||})$ and p_{RT}
	- Gives you a free neutron structure, not affected by final state interactions

Polarized He3 also experimentally easy but more complex theoretically

Detector Requirements for Exclusive Reactions in ep/eA

\Box Exclusivity criteria:

- Ø Large rapidity coverage or tracker and Calorimeter (ballpark -4.5 <η<4.5)
- \triangleright Reconstruction of all particles in event
	- \triangleright wide coverage in t (=p_T²) \rightarrow Roman pots
- \Box eA: large acceptance for neutrons from nucleus break-up
	- \triangleright Zero Degree Calorimeter
		- \triangleright veto nucleus breakup
		- \triangleright determine impact parameter of collision

Opportunities with Ultra-Peripheral Collisions

UPC at hard scale à **production of a heavy meson**

- Analog to photoproduction in e+p
- Can probe partonic structure of (nuclear) targets **quasi-real** !

UPCs @ LHC

J/ψ, ψ(2S) in:

Pb+Pb UPCs, [ALICE] Abelev et al. PLB 718 (2013) 1273; Abbas et al., EPJ C 73 (2013) 2617; Adam et al., PLB 751 (2015) 358;[CMS] PLB 772 (2017) 489,

P+Pb UPCs, [ALICE] Abelev et al., PRL 113 (2014) 232504,

p+p UPCs, [LHCb], Aaij et al., J. Phys. G 40 (2013) 045001; J. Phys. G 41 (2014) 055002

Y(1S,2S,3S) in p+p UPCs, [LHCb], Aaij et al., JHEP 1509 (2015) 084 and p+A UPCs, [CMS], Chudasama et al, PoS ICPAQGP 2015 (2017) 042 [arXiv:1607.00786 [hep-ex]]

(*and counting… LHC Run 2*)

UPCs @ RHIC

- \triangleright In unpolarized cross section measurements, the sensitivity to GPD E is poor
- **Example 7 Transversely polarized p+p UPC @ RHIC → unique opportunity for extracting GPD E** for the gluons before the EIC era!

The GPD Eg program at STAR

$$
\epsilon = \frac{\sigma^{\uparrow}(\varphi) - \sigma^{\downarrow}(\varphi)}{\sigma^{\uparrow}(\varphi) + \sigma^{\downarrow}(\varphi)} = A_N \cdot \frac{1}{P}
$$

Kinematic range: $10^{-4} < x < 10^{-1}$ STAR acceptance: -1 < *η* < 2

Run 17 (already on tape): 350 fb⁻¹ of transversely polarized p+p collisions at √s=510 GeV **Run 21/22 (proposed):** can collect an additional ~700 fb⁻¹ at √s=510 GeV

eSTARLight simulation, accounting for known STAR detector efficiencies and acceptance, projects the collection of:

- **~28500 signal events** after analyzing our collected run 17 data
- **~57000 signal events** after adding data from the possible 21/22 runs

Enough for a pioneering extraction of GPD E for the gluons \rightarrow crucial to tune EIC program

The GPD Eg program at STAR

Electrons from J/ψ decay, already mostly within STAR acceptance (black dashed line)

 \rightarrow Forward upgrade can further improve the acceptance (pink line), nice! Albeit not vital

Upgrade of STAR Roman Pots

- Currently only upper/lower square stations
- No space for full lateral stations
- Significant acceptance loss
- Plan is to upgrade the geometry to an L-shaped to cover the full azimuthal angle \rightarrow Factor \sim 2 increase in statistics!

Direct access to Wigner function

Process: exclusive di-jet production

First proposed in e+p scattering by:

Yoshitaka Hatta, Bo-Wen Xiao, and Feng Yuan,

Phys. Rev. Lett. 116, 202301 (2016)

Later extended to UPC:

Y. Hagiwara, Y. Hatta, R. Pasechnik, M. Tasevsky, and O. Teryaev Phys. Rev. D 96, 034009 (2017)

- **New important peace of EIC physics beyond the W.P.!**
- **EIC impact studies still be done**

Wigner function in UPC

Y. Hagiwara, Y. Hatta, R. Pasechnik, M. Tasevsky, and O. Teryaev Phys. Rev. D 96, 034009 (2017)

Type of collisions: p+p, A+p (where the first p,A is the photon source) Exclusivity requirements:

- Veto proton(nucleus) break up with RPs (ZDC)
- Use RPs to measure the scattered diffractive protons

LHC: feasibility being exploited, challenging due to required low p_T of the jets

STAR @ RHIC:

 \rightarrow ideal detector \rightarrow large acceptance for low p_{τ} di-jets (PRD**95**(2017)71103) + RPs

 \rightarrow 2017 data: provides proof of principle

à future **p↑+p RHIC runs** with upgrade of RP with curved edgeless sensors

 \rightarrow factor of \sim 2 increase in acceptance Estimated yield @ STAR: ~8000 events in p+p collisions at √s=510 GeV for a potential run 21/22 (Assumes RPs spectrometer upgrade)

31 OCT 2018 **S. Fazio (BNL)** S. Fazio (BNL) **S. Fazio (BNL) S. Fazio (BNL) S. Fazio (BNL)** Wigner & GPD Eg projections based on S.F.'s (*failed*) DOE Early Career Award

Summary (& Discussion points)

e+p(A) physics program at EIC provides an unprecedented opportunity to study quarks and gluons in free protons and nuclei

Nice! But we can't rest on our laurels!

 \cdot **The "old" studies from the EIC WP era... • DVCS and GPDs** E.C. Aschenauer, S. F., K. Kumerički, D. Müller,

JHEP09(2013)093

\dots **Back to the board… new studies performed** ❖ nPDFs (year 1 high impact physics!)

E.C. Aschenauer, S. F., M.A.C. Lamont, H. Paukkunen, P. Zurita*,* **Phys.Rev. D 96 114005 (2017) C. Weiss et al., Santa Fe Jets and heavy flavor Workshop Jan 18**

***** New excitement ahead

- ❖ Proton F_L, quark bottom
- ❖ VMP and GPDs (global fits)
- **☆ Nuclear GPDs**
- ❖ Wigner function!

Back up

Generalized Parton Distributions

The nucleon (spin-1/2) has **four quark and gluon GPDs** (H, E and their polarized versions). Like usual PDFs, GPDs are non-perturbative functions **defined via the matrix elements of**

$$
F^{q} = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ix\bar{P}^{+}z^{-}} \langle p'|\bar{q}(-\frac{1}{2}z)\gamma^{+}q(\frac{1}{2}z)|p\rangle|_{z^{+}=0, \mathbf{z}=0}
$$

=
$$
\frac{1}{2\bar{P}^{+}} \left[H^{q}(x,\xi,t,\mu^{2})\bar{u}(p')\gamma^{+}u(p) + E^{q}(x,\xi,t,\mu^{2})\bar{u}(p') \frac{i\sigma^{+\alpha}\Delta_{\alpha}}{2m_{N}}u(p) \right]
$$

Contribution from ISR

the energy spectrum of the emitted ISR photon for two different EIC beam energy combinations.

the right plots show the same photon spectra but requiring $E_v = 0.02 * E_e$

Photons with $E_y < 0.02 E_e$ do not result in a significant correction for the event kinematics.

Rosenbluth separation

$$
d\sigma = d\sigma_{DVCS} + d\sigma_{BH} + d\sigma_{INT}
$$

Rosenbluth separation of the electroproduction cross section into its parts

- § The statistical uncertainties include all the selection criteria to suppress the BH
- exponential |t|-dependence assumed

Scattered Proton measurement

Remember:

 p_{τ} of proton critical for physics $p_T = p' \sin(\theta)$ p' _L > 97% of p_{Beam}

Note:

high energy colliders (HERA, Tevatron, LHC, RHIC) use Roman Pots to detect these protons

 \rightarrow RPs are high resolution movable small tracking detectors (Si strips, Si pixels…), a crucial component

 \rightarrow 0 < 10 mrad

- \rightarrow impact on large p_T-acceptance
- \rightarrow small p_r-acceptance limited by beam divergence and immittance
- 31 OCT 2018 S. Fazio (BNL) 41 \rightarrow rule of thumb keep 10s between RP and beam

Events

Impact of proton acceptance

Impact of collected luminosity

See also B. Mueller's talk

$0.18 < p_T < 1.3$ GeV 10 fb⁻¹ \rightarrow 1 fb⁻¹

DIS on a nucleus

A more complex, multi-stage process:

- 1. Scattering on a parton
- 2. Debris from the collision interacts along the way out of the nucleus, causing an intranuclear cascade. Typically this leads to the knock out of several nucleons.
- 3. Resulting nucleus left in an excited state. This can lead to vaporization of nucleons and/or light nuclei (sometimes fission)
- 4. At lower excitation energies, emitting neutrons if preferred. No preference between charged/neutral particles at higher excitation energies. Below nucleon separation energy, the nucleus emits photons

Nuclear Modifications – Present Knowledge

Latest state-of-the-art nPDF is EPPS16 Measure different structure functions in $e+A \rightarrow$ constrain nPDF

K. J. Eskola, P. Paakkinen, H. Paukkunen, C. A. Salgado [Eur.Phys.J. C77 (2017) no.3, 163]

- \triangleright Replacing EPS09. Quark flavors are now separated
- \triangleright includes latest LHC data
- **EPPS16^{*}→ functional form** with less constraints (for gluons) in extrapolating for x < x_{data} \Rightarrow critical to study the impact of the high precision EIC data!
- Ø **What is the possible impact of an Electron-Ion Collider?**

Ratio: $g(x,Q^2)_{Pb}/g(x,Q^2)_{p}$

Reduced Cross Section & Structure Functions

$$
\sigma_r = F_2(x, Q^2) - \frac{y^2}{1 + (1 - y)^2} F_L(x, Q^2)
$$
\n
$$
\frac{y^2}{1 + (1 - y)^2} = Y^+
$$

- \triangleright Structure functions can be extracted from the reduced cross section
- Ø Pseudo-data are generated using **PYTHIA** and according to **EPS09** central values
- \triangleright In order to extract F₂ from the reduced cross section, we adopted the same method used at HERA [e.g. see HERMES paper on arXiv:1103.5704]
- \triangleright F_L extracted from the reduced cross section by fitting the slopes in Y⁺ for different √s at fixed x, Q^2 → requires running at (at least) three different c-o-m energies

Simulation:

e+Au sample simulated using PYTHIA 5(20) GeV electrons X 50 GeV Au $[Vs = 32(63)$ GeV $] \rightarrow L = 2$ fb⁻¹/A 5(20) GeV electrons X 75 GeV Au [\sqrt{v} = 39(78) GeV] \rightarrow L = 4 fb⁻¹/A 5(20) GeV electrons X 100 GeV Au[$Vs = 45(89)$ GeV] $\rightarrow L = 4$ fb⁻¹/A

Total simulated event sample (for each electron energy) **L = 10 fb-1/A**