Exploring the Nucleus in 3D

Mapping the nuclear effects in three dimensions

Raphaël Dupré

The Classic Nuclei

Nuclei described as a sum of protons and neutrons

- Bound together by two and three body forces
- Can explain exactly the light nuclei spectrum

Can be related to electron scattering measurements

- Elastic form factors and quasi-elastic scattering
- Nucleon momentum spectrum matches

All seems well and working, until...

The Nuclear Effects

We discovered nuclear effects at the quark level

- Shadowing, anti-shadowing and EMC effect

The EMC effect remains a mystery to this day

- Meson content induced by NN interaction
- 6, 9, 12-quark clusters
 - Both are excluded by Drell-Yan measurements
- Nucleon size might change → bound FF
 - Difficult to prove due to FSI effects
- Q²- or x-rescaling with widely different physical meaning

Shadowing

Linked to multiple scattering

- Screening of some nucleons leads to reduced cross section
- Several calculation methods available
- They diverge largely at lower x

Data is very limited

- Low x coincide with low Q²
- Below 10⁻² is barely explored

Strong impact on LHC

- Relevant x range for PbPb collisions at LHC
- Very important phenomena to understand initial state in HIC

N. Armesto, J.Phys. G32 (2006) R367-R394

Reconciling Two Points of View

So where do we stand?

- New models are still coming up
- Yet they give similar predictions for traditional effects

How do we resolve this?

- Using new observables!
- Mapping the nucleus in 3D will provide a much needed new stream on information on the nucleus

Generalized Parton Distributions

Generalizing the parton distributions

- Three dimensional (x, ξ and t) structure functions
- Accessible through exclusive processes
 - DVCS, DVMP, TCS, DDVCS...

Deeply virtual Compton scattering

- The exclusive electro-production of a photon
 - The simplest access to GPDs
- x is not directly measurable
- We access the Compton Form Factors (CFF)

$$F_{Re}(\xi,t) = \mathcal{P} \int_{-1}^{1} dx \left[\frac{1}{x-\xi} \mp \frac{1}{x+\xi} \right] F(x,\xi,t),$$

$$F_{Im}(\xi,t) = F(\xi,\xi,t) \mp F(-\xi,\xi,t).$$

Measuring DVCS

DVCS is not the only process to produce photons exclusively

- Photons can be emitted by the lepton (Bethe-Heitler)
- Generates asymmetries through its interference with DVCS

Gives many interesting observables

- Absolute cross sections
- Spin asymmetries (beam and target)
- Charge asymmetries

Allows to extract the complex CFFs

- A complete set of measurement is possible
- But only achieved by HERMES

Proton Tomography

CFFs are directly linked to the tomography of the proton

- The mean square charge radius of the proton for slices of x
- Error bars reflect a factor 5 of the model for unconstrained CFFs

We observe the nucleon size shrinking with x

- A proof that the framework holds

New observables are best to reduce the model errors

- Also important for the spin structure

GPDs & Nuclei

Nuclei give control over the spin

- **Spin-0** → **2 GPD**
- **Spin-1/2** → **8 GPDs**
- **Spin-1** → **18 GPDs**
- Half only intervene in DVCS

In the nucleus two processes

- Coherent and incoherent channels
 - Similar to elastic and quasi-elastic
- Give a global view and a probe of the components

- Offer localization with the *t* dependence
- Coherent DVCS gives access to nonnucleonic degrees of freedom
- Incoherent DVCS gives access to the modifications of the nucleon

Measuring DVCS on Helium

Jefferson Laboratory

- Provides a 6 GeV electron beam (now up to 12 GeV)
- High quality beam
- 100% duty factor
- Beam 150 μm wide
- Intensity up to 100 μA

CEBAF Large Acceptance Spectrometer

- Nearly 4π
- Offers electron and proton identification for our experiment
- Recording rates up to 8 kHz

Experimental Apparatus

Experimental challenges

- Detecting very forward photons
- Detecting very low energy alphas (7 MeV)

Radial Time Projection Chamber

Small TPC placed around the target

Inner Calorimeter

- Very forward electromagnetic calorimeter

CLAS Coherent DVCS

Coherent DVCS on helium

- Measured at CLAS
 - Unlike HERMES previous measurement we use a recoil detector to ensure exclusivity
- We observe the expected larger beam spin asymmetry

Interpretation

 Very strong signal proves that we have the nuclei as a whole

Easy direct GPD extraction

- Helium has a single GPD

Extraction of the CFF

Helium allows for a simple extraction

- Spin-0 → 1 GPD/CFF

Different contributions from *Im* and *Re* in phi

- These are calculable within perturbative QCD
- Allows to separate their contributions

$$A_{LU}(\phi) = \frac{\alpha_0(\phi) \Im m(\mathcal{H}_A)}{\alpha_1(\phi) + \alpha_2(\phi) \Re e(\mathcal{H}_A) + \alpha_3(\phi) \left(\Re e(\mathcal{H}_A)^2 + \Im m(\mathcal{H}_A)^2\right)}$$

Works very well

- We are mostly sensitive at the imaginary part
- More statistics will help with binning and the real part of H

From DVCS to GPDs

Is this problem tractable?

- It is actually not that clear
- We will need many observables
- We get only to the CFFs not GPDs

What about NLO and HT?

- Hall A in JLab seems to point to HT effect
- Can we check these using nuclei?

Fit from Kumericki

LT/LO
$$\mathbb{H}_{++}$$
, \mathbb{E}_{++} \nearrow bad fit

HT \mathbb{H}_{++} , \mathbb{H}_{0+} \checkmark good fit

NLO \mathbb{H}_{++} , \mathbb{H}_{-+} \checkmark good fit

$$\Delta \sigma_{LU} \propto \sin \phi \ Im\{F_1 \mathcal{H} + \xi(F_1 + F_2)\tilde{\mathcal{H}} - kF_2 \mathcal{E} + ...\}$$

$$\Delta \sigma_{UL} \propto \sin \phi \ Im\{F_1 \tilde{\mathcal{H}} + \xi(F_1 + F_2) \left(\tilde{\mathcal{H}} + \frac{x_B}{2} \mathcal{E}\right) - \xi k F_2 \tilde{\mathcal{E}} + ...\}$$

$$\Delta \sigma_{LL} \propto (A + B \cos \phi) \ Re\{F_1 \tilde{\mathcal{H}} + \xi(F_1 + F_2) \left(\mathcal{H} + \frac{x_B}{2} \mathcal{E}\right) + ...\}$$

$$\Delta \sigma_{Ux} \propto \sin \phi \ Im\{k(F_2 \mathcal{H} - F_1 \mathcal{E}) + ...\}$$

CLAS Incoherent DVCS

Measurement of CLAS

- Proton bound in helium target

Gives a generalized EMC

- Strongly suppressed in particular in the antishadowing region
- Strange behavior compared to the models

A New kind of EMC effect?

- It could be an initial state nuclear effect
- Or it could be due to final state interactions
 - Can be very complicated in DVCS
- Tagged measurements will help resolve this question

Extracting Signal of the TMDs

TMD extraction is simple, in principle

- Each function has a different modulation
- Experimentally, it is a bit more complicated

Experimental needs

- Polarized targets
 - Preferably long. and tr.
- High acceptance
- High resolution

$$\begin{split} \frac{d\sigma}{dx_B \, dy \, d\phi_S \, dz \, d\phi_h \, dP_{h\perp}^2} &= \frac{\alpha^2}{x_B y \, Q^2} \, \frac{y^2}{2 \, (1-\varepsilon)} \\ &\times \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2 \, \varepsilon (1+\varepsilon)} \, \cos \phi_h \, F_{UU}^{\cos \phi_h} \right. \\ &+ \varepsilon \cos(2\phi_h) \, F_{UU}^{\cos 2\phi_h} + \lambda_e \, \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \sin \phi_h \, F_{LU}^{\sin \phi_h} \\ &+ S_{\parallel} \left[\sqrt{2 \, \varepsilon (1+\varepsilon)} \, \sin \phi_h \, F_{UL}^{\sin \phi_h} + \varepsilon \sin(2\phi_h) \, F_{UL}^{\sin 2\phi_h} \right] \\ &+ S_{\parallel} \lambda_e \left[\sqrt{1-\varepsilon^2} \, F_{LL} + \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \cos \phi_h \, F_{LL}^{\cos \phi_h} \right] \\ &+ |S_{\perp}| \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon \, F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \right. \\ &+ \varepsilon \sin(\phi_h + \phi_S) \, F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) \, F_{UT}^{\sin(3\phi_h - \phi_S)} \\ &+ \sqrt{2 \, \varepsilon (1+\varepsilon)} \, \sin \phi_S \, F_{UT}^{\sin \phi_S} + \sqrt{2 \, \varepsilon (1+\varepsilon)} \, \sin(2\phi_h - \phi_S) \, F_{UT}^{\sin(2\phi_h - \phi_S)} \right] \\ &+ |S_{\perp}| \lambda_e \left[\sqrt{1-\varepsilon^2} \, \cos(\phi_h - \phi_S) \, F_{LT}^{\cos(\phi_h - \phi_S)} + \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \cos \phi_S \, F_{LT}^{\cos \phi_S} \right. \\ &+ \sqrt{2 \, \varepsilon (1-\varepsilon)} \, \cos(2\phi_h - \phi_S) \, F_{LT}^{\cos(2\phi_h - \phi_S)} \right] \bigg\}. \end{split}$$

Nuclear TMD

Theory only, no experimental data

- But an important prospect
- Similarly to GPDs can offer an insight in nucleon modifications in medium
- Offers a view into the transport coefficient of the nuclear matter
 - A controversial question with variations of an order of magnitude between theoretical extractions from data

Asymmetries generated at the partonic level

- Independent of final state effects

$$\Delta_{2F} = \int d\xi_N^- \hat{q}_F(\xi_N)$$

$$\hat{q}_F(\xi_N) = \frac{2\pi^2 \alpha_s}{N_c} \rho_N^A(\xi_N) [x f_g^N(x)]_{x \to 0}$$

Using TMDs for Hadronization

Usual hadronization measurements use outdated methods

- We should use the TMD framework to study semi-inclusive DIS on nuclei
- The sin and cos moments give direct parton level sensitivity to the transport coefficient \hat{q}

Offers two extra independent measurements

To be compared with the absorption and the transverse momentum broadening

From Hadronization to Saturation

Saturation is one of the key topics of EIC

- We want to look at the saturation scale in nuclei
- Transport coefficient and gluon saturation scale are the same thing

The hadronization studies will provide an independent result for this

- It can be measured for several nuclei
- Possibility to test the A dependence of the saturation scale

One Function to Unify Them All

Eventually, we would like to unify all of this

Wigner distributions are the tool of choice

We would like to understand higher order and higher twist

- Leads to a massive zoology of functions
- Becomes increasingly difficult to extract from data

How to measure all this?

- Ideas are proposed
- 16 complex GTMDs for the proton
- What about the helium-4 though?
 - At first sight just a convolution of nucleons without spin exchange

Future of Nuclear 3D Mapping

Short term @ JLab

- The ALERT run group
 - A Low Energy Recoil Tracker
 - Measure nuclear DVCS
- What about nTMDs?
 - Doable in CLAS12

Long term @ EIC

- Collider kinematics
 - Simplify low angle detection
 - Increase the phase space available
- Polarized light nuclei
 - Gives access to new observables
- Higher energy
 - Cleaner interpretation

What Nuclei?

- Helium-3 for neutron
- Helium-4 for simplicity
- Deuterium for complexity

Summary

We have a direct conflict between traditional nuclear physics and hadron physics measurements

- We need new observables to resolve it

We have now access to nuclear GPDs

- We are able to measure nuclear DVCS

Coherent DVCS shows strong signal

- We can extract CFFs in a fully model independent way
- Need much less data than for protons to get a result

Incoherent DVCS surprising result

Surprisingly small asymmetries

TMDs in Nuclei

- Offer a unique access to the property of the medium and the saturation scale
- Can help separate initial and final state effects

EIC and 3D nuclei

- Shadowing region, polarized light nuclei, gluons, parton energy loss comparable to RHIC & LHC...