Discussion on quasi-PDFS

Martha Constantinou

INT workshop on Probing Nucleons and Nuclei in High Energy Collisions October 16, 2018

Crucial aspects of calculation

1. Are there better alternatives for the Fourier transform to the x-space?

2

Alternative Fourier

Standard Fourier (SF):

$$\tilde{q}(x) = 2P_3 \int_{-z_{\text{max}}}^{z_{\text{max}}} \frac{dz}{4\pi} e^{ixzP_3} h(z)$$

can be written using integration by parts (DF):

$$\tilde{q}(x) = h(z) \frac{e^{ixzP_3}}{2\pi ix} \Big|_{z_{\max} - z_{\max}}^{z_{\max}} - \int_{-z_{\max}}^{z_{\max}} \frac{dz}{2\pi} \frac{e^{ixzP_3}}{ix} h'(z)$$

[H.W. Lin et al., arXiv:1708.05301]

Surface term ignored, but contribution non-negligible if matrix elements have not decayed to zero at some z_{max}
 The 1/x in the surface term may lead to uncontrolled effect for small values of x

T M. Constantinou

4

- Truncation at zmax (SF) vs neglecting surface term (DF) (latter non-negligible numerically)
- ***** Oscillations reduced for DF, but small-x not well-behaved
- SF, DF different systematics, but DF may have enhanced cut-off effects

 \mathbb{T}

Crucial aspects of calculation

2. How do we control contamination from excited states effects when the nucleon is boosted with high momentum?

Parameters of ETMC calculation

[C. Alexandrou et al., (PRL), arXiv:1803.02685], [C. Alexandrou et al., arXiv:1807.00232]

Nucleon momentum & statistics:

$P = \frac{6\pi}{L}$ (0.83 GeV)			$P = \frac{8\pi}{L}$ (1.11 GeV)			$P = \frac{10\pi}{L}$ (1.38 GeV)		
Ins.	$N_{\rm conf}$	$N_{\rm meas}$	Ins.	$N_{\rm conf}$	$N_{\rm meas}$	Ins.	$N_{\rm conf}$	$N_{\rm meas}$
γ_3	100	9600	γ_3	425	38250	γ_3	811	72990
γ_0	50	4800	γ_0	425	38250	γ_0	811	72990
$\gamma_5\gamma_3$	65	6240	$\gamma_5\gamma_3$	425	38250	$\gamma_5\gamma_3$	811	72990

Excited states investigation: $T_{\text{sink}} = 8a, 9a, 10a, 12a$ ($T_{\text{sink}} = 0.75, 0.84, 0.094, 1.13 \text{fm}$)

Challenges of calculation

Noise-to-signal ratio increases with:

- Hadron momentum boost
- Simulations at the physical point
- Source-sink separation

Noise problem must be tamed to investigate uncertainties

Challenges of calculation

Noise-to-signal ratio increases with:

- Hadron momentum boost
- Simulations at the physical point
- Source-sink separation

Noise problem must be tamed to investigate uncertainties

Momentum smearing helps reach higher momenta

8

Challenges of calculation

Noise-to-signal ratio increases with:

- Hadron momentum boost
- Simulations at the physical point
- Source-sink separation

Noise problem must be tamed to investigate uncertainties

Momentum smearing helps reach higher momenta

But limitations in max momentum due to comput. cost

M. Constantinou

Т

Bare matrix elements Unpolarized: 1.4 $P\simeq 0.83~{ m GeV}$ $P \simeq 0.83 \text{ GeV}$ $\operatorname{Im}\left[h_{u-d}\right]$ Re $[h_{u-d}]$ 0.4 $P \simeq 1.11 \text{ GeV}$ $P \simeq 1.11 \text{ GeV}$ 1.2 $P \simeq 1.38 \text{ GeV}$ $P \simeq 1.38 \text{ GeV}$ 1 0.2 0.8 0.6 0.4 -0.2 0.2 -0.4 0 -15 -10 -15 -10 -5 15 -5 10 15 0 5 10 0 5 z/az/a

Similar general features for polarized and transversity
 Highest priority: deliver reliable results

Analyses techniques:

***** Single-state fit, Two-state fit, Summation method

Analyses techniques:

Т

Analyses techniques:

Conclusions: Tsink=8a heavily contaminated by excited states Tsink=9a-10a not consistent within uncertainties

ፐ

Analyses techniques:

Conclusions:

- Tsink=8a heavily contaminated by excited states
- ***** Tsink=9a-10a not consistent within uncertainties
 - Crucial to have same error for reliable 2-state fit
 - Excited states worsen as momentum P increases
 - For momenta in this work, Tsink=1fm is safe

M. Constantinou

T

Non-predictible behavior (depends in *z* value)
 Real and imaginary part affected differently

Conclusions:

Excited states uncontrolled for Tsink <1fm</p>

Multi-sink analysis <u>demands</u> same accuracy for all data

M. Constantinou

 \mathbb{T}