Aspects of Quark Orbital Angular Momentum

Matthias Burkardt

New Mexico State University

October 16, 2018

Outline

- Jaffe-Manohar vs. Ji decomposition of spin
- $\hookrightarrow \mathcal{L}^q_{JM} L^q_{Ji} = \text{change in OAM as quark}$
 - OAM from twist-3 GPD G_2
 - model studies of sum rule
 - $\delta(x)$ in $G_2(x,0,t)$

 $q(\xi^-,\xi_\perp)$

 $\bar{q}(0^{-}, \mathbf{0}_{+})$

- $\hookrightarrow\,$ implications for DVCS..
- Summary

ξL

Nucleon Spin Puzzle

spin sum rule

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}$$

Longitudinally polarized DIS:

•
$$\Delta \Sigma = \sum_{q} \Delta q \equiv \sum_{q} \int_{0}^{1} dx \left[q_{\uparrow}(x) - q_{\downarrow}(x) \right] \approx 30\%$$

 \hookrightarrow only small fraction of proton spin due to quark spins

Gluon spin ΔG

could possibly account for remainder of nucleon spin, but still large uncertainties \rightarrow EIC

Quark Orbital Angular Momentum

- how can we measure $\mathcal{L}_{q,g}$
- \hookrightarrow need correlation between position & momentum
 - how exactly is $\mathcal{L}_{q,g}$ defined

Nucleon Spin Puzzle

spin sum rule

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}$$

Longitudinally polarized DIS:

•
$$\Delta \Sigma = \sum_{q} \Delta q \equiv \sum_{q} \int_{0}^{1} dx \left[q_{\uparrow}(x) - q_{\downarrow}(x) \right] \approx 30\%$$

 \hookrightarrow only small fraction of proton spin due to quark spins

Gluon spin ΔG

could possibly account for remainder of nucleon spin, but still large uncertainties \rightarrow EIC

Quark Orbital Angular Momentum

- how can we measure $\mathcal{L}_{q,g}$
- \hookrightarrow need correlation between position & momentum
 - how exactly is $\mathcal{L}_{q,g}$ defined

Deeply Virtual Compton Scattering (DVCS)

form factor

- electron hits nucleon & nucleon remains intact
- \hookrightarrow form factor $F(q^2)$
 - position information from Fourier trafo
 - no sensitivity to quark momentum
 - $F(q^2) = \int dx GPD(x,q^2)$
- \hookrightarrow GPDs provide momentum disected form factors

Compton scattering

- electron hits nucleon, nucleon remains intact & photon gets emitted
- additional quark propagator
- \hookrightarrow additional information about momentum fraction x of active quark
- \hookrightarrow generalized parton distributions $GPD(x, q^2)$
 - info about both position and momentum of active quark

Physics of GPDs: 3D Imaging MB, PRD 62, 071503 (2000)

- \hookrightarrow probabilistic interpretation
 - $F_1(-\boldsymbol{\Delta}_{\perp}^2) = \int dx H(x,0,-\boldsymbol{\Delta}_{\perp}^2)$

Physics of GPDs: 3D Imaging MB, IJMPA 18, 173 (2003)

proton polarized in $+\hat{x}$ direction

 \vec{p}_{γ^*}

$$\begin{split} q(x,\mathbf{b}_{\perp}) &= \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} H_q(x,0,-\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\Delta_{\perp}} \\ &- \frac{1}{2M} \frac{\partial}{\partial b_y} \int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} E_q(x,0,-\Delta_{\perp}^2) e^{-i\mathbf{b}_{\perp}\cdot\Delta_{\perp}} \end{split}$$

- relevant density in DIS is $j^+ \equiv j^0 + j^z$ and left-right asymmetry from j^z
- av. shift model-independently related to anomalous magnetic moments:

$$\begin{aligned} \langle b_y^q \rangle &\equiv \int dx \int d^2 b_\perp q(x, \mathbf{b}_\perp) b_y \\ &= \frac{1}{2M} \int dx E_q(x, 0, 0) = \frac{\kappa_q}{2M} \end{aligned}$$

$GPD \longleftrightarrow Single Spin Asymmetries (SSA)$

- u, d distributions in \perp polarized proton have left-right asymmetry in \perp position space (T-even!); sign "determined" by $\kappa_u \& \kappa_d$
- attractive final state interaction (FSI) deflects active quark towards the center of momentum
- \hookrightarrow FSI translates position space distortion (before the quark is knocked out) in $+\hat{y}$ -direction into momentum asymmetry that favors $-\hat{y}$ direction \rightarrow chromodynamic lensing

 $\kappa_p, \kappa_n \quad \longleftrightarrow \quad \text{sign of SSA!!!!!!!!} (\text{MB}, 2004)$

• confirmed by HERMES & COMPASS data

 \Rightarrow

Angular Momentum Carried by Quarks

- $L_x = yp_z zp_y$
- if state invariant under rotations about \hat{x} axis then $\langle yp_z \rangle = -\langle zp_y \rangle$
- $\hookrightarrow \langle L_x \rangle = 2 \langle yp_z \rangle$
 - GPDs provide simultaneous information about longitudinal momentum and transverse position
- $\hookrightarrow \text{ use quark GPDs to determine angular} \\ \text{momentum carried by quarks}$

Ji sum rule (1996)

$$J_q^x = \frac{1}{2} \int dx \, x \left[H(x,0,0) + E(x,0,0) \right]$$

- $\hookrightarrow {\rm M.Constantinou, \, K.F.Liu,...}$
 - parton interpretation in terms of 3D distributions only for \perp component (MB,2001,2005)

Photon Angular Momentum in QED

QED with electrons

$$\begin{split} \vec{J}_{\gamma} &= \int d^3 r \, \vec{r} \times \left(\vec{E} \times \vec{B} \right) = \int d^3 r \, \vec{r} \times \left[\vec{E} \times \left(\vec{\nabla} \times \vec{A} \right) \right] \\ &= \int d^3 r \, \left[E^j \left(\vec{r} \times \vec{\nabla} \right) A^j - \vec{r} \times (\vec{E} \cdot \vec{\nabla}) \vec{A} \right] \\ &= \int d^3 r \, \left[E^j \left(\vec{r} \times \vec{\nabla} \right) A^j + \left(\vec{r} \times \vec{A} \right) \vec{\nabla} \cdot \vec{E} + \vec{E} \times \vec{A} \right] \end{split}$$

9

• replace 2^{nd} term (eq. of motion $\vec{\nabla} \cdot \vec{E} = ej^0 = e\psi^{\dagger}\psi$), yielding

$$\vec{J}_{\gamma} = \int d^3r \left[\psi^{\dagger} \vec{r} \times e \vec{A} \psi + E^j \left(\vec{x} \times \vec{\nabla} \right) A^j + \vec{E} \times \vec{A} \right]$$

• $\psi^{\dagger}\vec{r} \times e\vec{A}\psi$ cancels similar term in electron OAM $\psi^{\dagger}\vec{r} \times (\vec{p} - e\vec{A})\psi$

 \hookrightarrow decomposing \vec{J}_{γ} into spin and orbital also shuffles angular momentum from photons to electrons!

The Nucleon Spin Pizzas

10

How large is difference $\mathcal{L}_q - L_q$ in QCD and what does it represent?

Quark OAM from Wigner Functions

Quark OAM from Wigner Functions

5-D Wigner Functions (Lorcé, Pasquini)

$$W(x,\vec{b}_{\perp},\vec{k}_{\perp}) \equiv \int \frac{d^2 \vec{\Delta}_{\perp}}{(2\pi)^2} \int \frac{d^2 \xi_{\perp} d\xi^-}{(2\pi)^3} e^{ik\cdot\xi} e^{-i\vec{\Delta}_{\perp}\cdot\vec{b}_{\perp}} \langle P'S' | \bar{q}(0)\gamma^+q(\xi) | PS \rangle.$$

- TMDs: $f(x, \mathbf{k}_{\perp}) = \int d^2 \mathbf{b}_{\perp} W(x, \vec{b}_{\perp}, \vec{k}_{\perp})$
- GPDs: $q(x, \mathbf{b}_{\perp}) = \int d^2 \mathbf{k}_{\perp} W(x, \vec{b}_{\perp}, \vec{k}_{\perp})$
- $L_z = \int dx \int d^2 \mathbf{b}_\perp \int d^2 \mathbf{k}_\perp W(x, \vec{b}_\perp, \vec{k}_\perp) (b_x k_y b_y k_x)$
- need to include Wilson-line gauge link $\mathcal{U}_{0\xi} \sim \exp\left(i\frac{g}{\hbar}\int_0^{\xi} \vec{A} \cdot d\vec{r}\right)$ to connect 0 and ξ
- $\,\hookrightarrow\,$ 'light-cone staple' crucial for SSAs in SIDIS & DY

Light-Cone Staple \leftrightarrow Jaffe-Manohar-Bashinsky

$\overline{\mathcal{L}_{\Box}}/\mathcal{L}_{\Box}$

 \mathcal{L} with light-cone staple at $x^- = \pm \infty$

PT (Hatta)

• $\operatorname{PT} \longrightarrow \mathcal{L}_{\Box} = \mathcal{L}_{\Box}$

(different from SSAs due to factor \vec{x} in OAM)

Bashinsky-Jaffe

- $A^+ = 0$ no complete gauge fixing
- \hookrightarrow residual gauge inv. $A^{\mu} \rightarrow A^{\mu} + \partial^{\mu} \phi(\vec{x}_{\perp})$

•
$$\vec{x} \times i \vec{\partial} \rightarrow \mathcal{L}_{JB} \equiv \vec{x} \times \left[i \vec{\partial} - g \vec{\mathcal{A}}(\vec{x}_{\perp}) \right]$$

•
$$\vec{\mathcal{A}}_{\perp}(\vec{x}_{\perp}) = \frac{\int dx^- \vec{\mathcal{A}}_{\perp}(x^-, \vec{x}_{\perp})}{\int dx^-}$$

Bashinsky-Jaffe \leftrightarrow light-cone staple

•
$$A^+ = 0$$

 $\hookrightarrow \mathcal{L}_{\Box/\Box} = \vec{x} \times \left[i \vec{\partial} - g \vec{A}_{\perp}(\pm \infty, \vec{x}_{\perp}) \right]$
• $\mathcal{L}_{JB} = \vec{x} \times \left[i \vec{\partial} - g \vec{\mathcal{A}}(\vec{x}_{\perp}) \right]$
• $\vec{\mathcal{A}}_{\perp}(\vec{x}_{\perp}) = \frac{\int dx^- \vec{\mathcal{A}}_{\perp}(x^-, \vec{x}_{\perp})}{\int dx^-} = \frac{1}{2} \left(\vec{\mathcal{A}}_{\perp}(\infty, \vec{x}_{\perp}) + \vec{\mathcal{A}}_{\perp}(-\infty, \vec{x}_{\perp}) \right)$
 $\hookrightarrow \mathcal{L}_{JB} = \frac{1}{2} \left(\mathcal{L}_{\Box} + \mathcal{L}_{\Box} \right) = \mathcal{L}_{\Box} = \mathcal{L}_{\Box}$

Quark OAM from Wigner Distributions

straight line (
$$\rightarrow$$
Ji)light-cone staple (\rightarrow Jaffe-Manohar) $\frac{1}{2} = \sum_{q} \frac{1}{2} \Delta q + L_{q} + J_{g}$ $\frac{1}{2} = \sum_{q} \frac{1}{2} \Delta q + \mathcal{L}_{q} + \Delta G + \mathcal{L}_{g}$ $L_{q} = \int d^{3}x \langle P, S | \bar{q}(\vec{x}) \gamma^{+}(\vec{x} \times i\vec{D}) \overset{z}{q}(\vec{x}) | P, S \rangle$ $\frac{1}{2} = \sum_{q} \frac{1}{2} \Delta q + \mathcal{L}_{q} + \Delta G + \mathcal{L}_{g}$ $i\vec{D} = i\vec{\partial} - g\vec{A}$ $i\vec{D} = i\vec{\partial} - g\vec{A}(\vec{x}^{-} = \infty, \mathbf{x}_{\perp})$

13

difference $\mathcal{L}^q - L^q$

$$\mathcal{L}^{q} - L^{q} = -g \int d^{3}x \langle P, S | \bar{q}(\vec{x}) \gamma^{+} \left[\vec{x} \times \int_{x^{-}}^{\infty} dr^{-} F^{+\perp}(r^{-}, \mathbf{x}_{\perp}) \right]^{z} q(\vec{x}) | P, S \rangle$$

 $\sqrt{2}F^{+y} = F^{0y} + F^{zy} = -E^y + B^x$

Quark OAM from Wigner Distributions

straight line (
$$\rightarrow$$
Ji)light-cone staple (\rightarrow Jaffe-Manohar) $\frac{1}{2} = \sum_{q} \frac{1}{2} \Delta q + L_{q} + J_{g}$ $\frac{1}{2} = \sum_{q} \frac{1}{2} \Delta q + \mathcal{L}_{q} + \Delta G + \mathcal{L}_{g}$ $L_{q} = \int d^{3}x \langle P, S | \bar{q}(\vec{x}) \gamma^{+}(\vec{x} \times i\vec{D}) \overset{z}{q}(\vec{x}) | P, S \rangle$ $\frac{1}{2} = \int d^{3}x \langle P, S | \bar{q}(\vec{x}) \gamma^{+}(\vec{x} \times i\vec{D}) \overset{z}{q}(\vec{x}) | P, S \rangle$ • $i\vec{D} = i\vec{\partial} - g\vec{A}$ $i\mathcal{D}^{j} = i\partial^{j} - gA^{j}(x^{-}, \mathbf{x}_{\perp}) - g\int_{x^{-}}^{\infty} dr^{-}F^{+j}$

difference $\mathcal{L}^q - L^q$

$$\mathcal{L}^{q} - L^{q} = -g \int d^{3}x \langle P, S | \bar{q}(\vec{x}) \gamma^{+} \left[\vec{x} \times \int_{x^{-}}^{\infty} dr^{-} F^{+\perp}(r^{-}, \mathbf{x}_{\perp}) \right]^{z} q(\vec{x}) | P, S \rangle$$

color Lorentz Force on ejected quark (MB, PRD 88 (2013) 014014)

$$\sqrt{2}F^{+y} = F^{0y} + F^{zy} = -E^y + B^x = -\left(\vec{E} + \vec{v} \times \vec{B}\right)^y$$
 for $\vec{v} = (0, 0, -1)$

Quark OAM from Wigner Distributions

straight line (
$$\rightarrow$$
Ji)light-cone staple (\rightarrow Jaffe-Manohar) $\frac{1}{2} = \sum_{q} \frac{1}{2} \Delta q + L_{q} + J_{g}$ $\frac{1}{2} = \sum_{q} \frac{1}{2} \Delta q + \mathcal{L}_{q} + \Delta G + \mathcal{L}_{g}$ $L_{q} = \int d^{3}x \langle P, S | \bar{q}(\vec{x}) \gamma^{+}(\vec{x} \times i\vec{D}) \overset{z}{q}(\vec{x}) | P, S \rangle$ $\frac{1}{2} = \int d^{3}x \langle P, S | \bar{q}(\vec{x}) \gamma^{+}(\vec{x} \times i\vec{D}) \overset{z}{q}(\vec{x}) | P, S \rangle$ • $i\vec{D} = i\vec{\partial} - g\vec{A}$ $i\mathcal{D}^{j} = i\partial^{j} - gA^{j}(x^{-}, \mathbf{x}_{\perp}) - g\int_{x^{-}}^{\infty} dr^{-}F^{+j}$

difference $\mathcal{L}^q - L^q$

$$\mathcal{L}^{q} - L^{q} = -g \int d^{3}x \langle P, S | \bar{q}(\vec{x}) \gamma^{+} \left[\vec{x} \times \int_{x^{-}}^{\infty} dr^{-} F^{+\perp}(r^{-}, \mathbf{x}_{\perp}) \right]^{z} q(\vec{x}) | P, S \rangle$$

color Lorentz Force on ejected quark (MB, PRD 88 (2013) 014014)

$$\sqrt{2}F^{+y} = F^{0y} + F^{zy} = -E^y + B^x = -\left(\vec{E} + \vec{v} \times \vec{B}\right)^y \text{ for } \vec{v} = (0, 0, -1)$$

Torque along the trajectory of
$$q$$

$$T^z = \left[\vec{x} \times \left(\vec{E} - \hat{\vec{z}} \times \vec{B} \right) \right]^z$$

$$\Delta L^{z} = \int_{x^{-}}^{\infty} dr^{-} \left[\vec{x} \times \left(\vec{E} - \hat{\vec{z}} \times \vec{B} \right) \right]^{z}$$

'Torque' in Scalar Diquark Model M.B. & C.Loreé

(Ji et al., 2016)

- for e^- : $\mathcal{L}_{JM} L_{Ji} = 0$ to $\mathcal{O}(\alpha)$
 - earlier paper by M.B. & H.BC overlooked h = 0component of Pauli-Villars γ

•
$$\mathcal{L}_{JM} - L_{Ji} \stackrel{?}{=} 0$$
 in general?

• how significant is $\mathcal{L}_{JM} - L_{Ji}$?

why scalar diquark model?

- Lorentz invariant
- 1st to illustrate: FSI→SSAs (Brodsky,Hwang,Schmidt 2002)
- $\hookrightarrow \text{ Sivers } \neq 0$

$$\mathcal{L}_{JM} - L_{Ji} = \langle \bar{q}\gamma^+ \left(\vec{r} \times \vec{A} \right)^z q \rangle$$

n scalar diquark model

• pert. evaluation of
$$\langle \bar{q}\gamma^+ (\vec{r} \times \vec{A})\tilde{q} \rangle$$

$$\rightarrow \mathcal{L}_{JM} - L_{Ji} = \mathcal{O}(\alpha)$$

• same order as Sivers

$$\rightarrow \mathcal{L}_{JM} - L_{Ji}$$
 as significant as SSAs

calculation $\bar{p} - \frac{\Delta}{2}$ $\bar{q}\gamma^+ A^y q$ $\bar{p} + \frac{\Delta}{2}$

• nonforward matrix elem. of $\bar{q}\gamma^+A^y q$ • $\frac{d}{d\Delta^x}\Big|_{\Delta=0}$ $\hookrightarrow \langle k_{\perp}^q \rangle = \frac{3m_q + M}{12} \pi \langle \bar{q}\gamma^+ \left(\vec{r} \times \vec{A}\right)^z_q \rangle$

Calculating Jaffe-Monohar OAM in Lattice QCD 15

challenge

- TMDs/Wigner functions relevant for SIDIS require (near) light-like Wilson lines
- on Euclidean lattice, all distances are space-like

- calculate space-like staple-shaped Wilson line pointing in \hat{z} direction; length $L \to \infty$
- momentum projected nucleon sources/sinks
- remove IR divergences by considering appropriate ratios
- \hookrightarrow extrapolate/evolve to $P_z \to \infty$

Quasi Light-Like Wilson Lines from Lattice QCD 16

Quasi Light-Like Wilson Lines from Lattice QCD 16

Quark OAM - sign of $\mathcal{L}^q - L^q$

difference $\mathcal{L}^q - L^q$

 $\begin{array}{l} \mathcal{L}_{JM}^{q} - L_{Ji}^{q} = \Delta L_{FSI}^{q} = \text{change in OAM} \text{ as quark leaves nucleon} \\ \mathcal{L}_{JM}^{q} - L_{Ji}^{q} = -g \int d^{3}x \langle P, S | \bar{q}(\vec{x}) \gamma^{+} \left[\vec{x} \times \int_{x^{-}}^{\infty} dr^{-} F^{+\perp}(r^{-}, \mathbf{x}_{\perp}) \right]^{z} q(\vec{x}) | P, S \rangle \end{array}$

e^+ moving through dipole field of e^-

- consider e^- polarized in $+\hat{z}$ direction
- $\hookrightarrow \vec{\mu} \text{ in } -\hat{z} \text{ direction (Figure)}$
 - e^+ moves in $-\hat{z}$ direction
- $\hookrightarrow \text{ net torque } \underline{\text{negative}}$

sign of $\mathcal{L}^q - L^q$ in QCD

- color electric force between two q in nucleon attractive
- \hookrightarrow same as in positronium
 - spectator spins positively correlated with nucleon spin
- \hookrightarrow expect $\mathcal{L}^q L^q < 0$ in nucleon

 $\otimes \hat{z}$

b.)

Quark OAM - sign of $\mathcal{L}^q - L^q$

difference $\mathcal{L}^q - L^q$

 $\begin{array}{l} \mathcal{L}^q_{JM} - L^q_{Ji} = \Delta L^q_{FSI} = \text{change in OAM as quark leaves nucleon} \\ \mathcal{L}^q_{JM} - L^q_{Ji} = -g \int \! d^3 x \langle P\!,\! S | \bar{q}(\vec{x}) \gamma^+ \! \left[\vec{x} \times \int_{x^-}^\infty dr^- F^{+\perp}(r^-, \mathbf{x}_\perp) \right]^z \! q(\vec{x}) | P\!,\! S \rangle \end{array}$

e^+ moving through dipole field of e^- • consider e^- polarized in $+\hat{z}$

- direction
- $\hookrightarrow \vec{\mu} \text{ in } -\hat{z} \text{ direction (Figure)}$
 - e^+ moves in $-\hat{z}$ direction
- \hookrightarrow net torque **negative**

sign of $\mathcal{L}^q - L^q$ in QCD

- color electric force between two q in nucleon attractive
- \hookrightarrow same as in positronium
 - spectator spins positively correlated with nucleon spin
- \hookrightarrow expect $\mathcal{L}^q L^q < 0$ in nucleon

lattice QCD M.Engelhardt et al.

•
$$L_{staple}$$
 vs. staple length

$$\hookrightarrow L^q_{Ji}$$
 for length = 0

$$\hookrightarrow \mathcal{L}^q_{JM}$$
 for length $\to \infty$

Alternative OAM sum rule Polyakov & Kitpily

$$\int dx \, x G_2^q(x,0,0) = -L_q$$

transverse force imaging/tomography $_{\rm F.Aslan,\ MB,\ M.Schlegel}$

2D Fourier transform of x^2 moment of appropriate twist-3 GPDs yields position resolved transverse force

looked at this in spectator models and found some weird stuff...

OAM from twist 3 GPDs

twist-3 GPDs $\,$

$$\int dz^{-}e^{ixz^{-}\bar{p}^{+}} \langle p'|\bar{q}(z^{-}/2)\gamma^{x}q(-z^{-}/2)|p\rangle$$

= $\frac{1}{2\bar{p}^{+}}\bar{u}(p')\left[\frac{\Delta^{x}}{2M}G_{1} + \gamma^{x}(H+E+G_{2}) + \frac{\Delta^{x}\gamma^{+}}{\bar{p}^{+}}G_{3} + \frac{i\Delta^{y}\gamma^{+}\gamma_{5}}{\bar{p}^{+}}G_{4}\right]u(p)$

Lorentz invariance relations

•
$$\int dx G_1^q(x,\xi,t) = 0$$

•
$$\int dx G_2^q(x,\xi,t) = 0$$

•
$$\int dx G_3^q(x,\xi,t) = 0$$

•
$$\int dx G_4^q(x,\xi,t) = 0$$

Tests

• test above relations in scalar diquark model & QCD

•
$$\mathcal{L}(x) \stackrel{?}{=} - \int_x^1 dy G_2(y)$$

 \rightarrow answer: SDM yes, QTM no

QCD Eqs. of motion $_{\rm Polyakov \ \& \ Kitpily}$

•
$$\int dx \, x G_2^q(x,0,0) = -L^q$$

• same relation also derived in scalar Yukawa

issues

- $\delta(x)$ in G_2^q ?
- G_2^q from DVCS?

Polvakov & Kitpilv

Twist-3 PDFs $\longrightarrow \perp$ Force on Quarks in DIS

 $d_2 \leftrightarrow \text{average} \perp \text{ force on quark in DIS from } \perp \text{ pol target}$

polarized DIS:

•
$$\sigma_{LL} \propto g_1 - \frac{2Mx}{\nu}g_2$$
 • $\sigma_{LT} \propto g_T \equiv g_1 + g_2$

 \hookrightarrow 'clean' separation between g_2 and $\frac{1}{Q^2}$ corrections to g_1

•
$$g_2 = g_2^{WW} + \bar{g}_2$$
 with $g_2^{WW}(x) \equiv -g_1(x) + \int_x^1 \frac{dy}{y} g_1(y)$

$$d_2 \equiv 3 \int dx \, x^2 \bar{g}_2(x) = \frac{1}{2MP^{+2}S^x} \left\langle P, S \left| \bar{q}(0)\gamma^+ g F^{+y}(0)q(0) \right| P, S \right\rangle$$

magnitude of d_2

color Lorentz Force on ejected quark (MB, PRD 88 (2013) 114502)

$$\sqrt{2}F^{+y} = F^{0y} + F^{zy} = -E^y + B^x = -\left(\vec{E} + \vec{v} \times \vec{B}\right)^y$$
 for $\vec{v} = (0, 0, -1)$

matrix element defining $d_2 \leftrightarrow 1^{st}$ integration point in QS-integral $d_2 \Rightarrow \bot$ force \leftrightarrow QS-integral $\Rightarrow \bot$ impulse

sign of d_2

• \perp deformation of $q(x, \mathbf{b}_{\perp})$

 \hookrightarrow sign of d_2^q : opposite Sivers

•
$$\langle F^y \rangle = -2M^2 d_2 = -10 \frac{GeV}{fm} d_2$$

•
$$|\langle F^y \rangle| \ll \sigma \approx 1 \frac{GeV}{fm} \Rightarrow d_2 = \mathcal{O}(0.01)$$

Twist-3 PDFs $\longrightarrow \perp$ Force on Quarks in DIS

 $d_2 \leftrightarrow \text{average} \perp \text{ force on quark in DIS from } \perp \text{ pol target}$ polarized DIS:

•
$$\sigma_{LL} \propto g_1 - \frac{2Mx}{\nu}g_2$$
 • $\sigma_{LT} \propto g_T \equiv g_1 + g_2$

 \hookrightarrow 'clean' separation between g_2 and $\frac{1}{Q^2}$ corrections to g_1

•
$$g_2 = g_2^{WW} + \bar{g}_2$$
 with $g_2^{WW}(x) \equiv -g_1(x) + \int_x^1 \frac{dy}{y} g_1(y)$

$$d_{2} \equiv 3 \int dx \, x^{2} \bar{g}_{2}(x) = \frac{1}{2MP^{+2}S^{x}} \left\langle P, S \left| \bar{q}(0) \gamma^{+} g F^{+y}(0) q(0) \right| P, S \right\rangle$$

color Lorentz Force on ejected quark (MB, PRD 88 (2013) 114502)

$$\sqrt{2}F^{+y} = F^{0y} + F^{zy} = -E^y + B^x = -\left(\vec{E} + \vec{v} \times \vec{B}\right)^y$$
 for $\vec{v} = (0, 0, -1)$

sign of d_2

magnitude of d_2

•
$$\perp$$
 deformation of $q(x, \mathbf{b}_{\perp})$

$$\hookrightarrow$$
 sign of d_2^q : opposite Sivers

•
$$\langle F^y \rangle = -2M^2 d_2 = -10 \frac{GeV}{fm} d_2$$

•
$$|\langle F^y \rangle| \ll \sigma \approx 1 \frac{GeV}{fm} \Rightarrow d_2 = \mathcal{O}(0.01)$$

consitent with experiment (JLab,SLAC), model calculations (Weiss), and lattice QCD calculations (Göckeler et al., 2005)

Twist-3 GPDs $\longrightarrow \perp$ Force Tomography

- take x^2 moment of twist-3 GPDs ($\xi = 0$)
- subtract twist-2 parts
- take 2D Fourier transform

$$\int \frac{d^2 \Delta_{\perp}}{(2\pi)^2} e^{-i\Delta_{\perp} \cdot b_{\perp}} \int dx \, x^2 \tilde{G}_2^{tw\,3}(x,0,-\Delta_{\perp}^2)$$

- $\hookrightarrow \langle R_{\perp} = 0, S_{\perp} | \bar{q}(b_{\perp}) \gamma^+ g F^{+y}(b_{\perp}) q(b_{\perp}) | R_{\perp} = 0, S_{\perp} \rangle$
- \hookrightarrow distribution of \perp force in \perp plane
 - x^2 moments of different twist-3 GPDs provide info about \perp force tomography for different spin combinations
- \hookrightarrow twist-3 GPDs \Rightarrow 2D \perp force maps
 - could be done immediately in lattice QCD
 - need to address some issues regarding experimental access...

Spectator Model Calculations of PDFs

motivation

- wanted to test Polyakov sum rule
- definitions for PDFs/GPDs based on Lorentz invariance
- \hookrightarrow need Lorentz invariant model...

findings: singularities in twist 3 GPDs/PDFs

- Polyakov sum rule worked, but
- twist 3 GPDs discontinuous at $x = \pm \xi$
- $\delta(x)$ in forward limit
- $\delta(x)$ essential for various Lorentz invariance relations, such as

•
$$\int_{-1}^{1} dx G_2(x,0,t) = 0$$

•
$$\int_{-1}^{1} dx h_L(x) = \int_{-1}^{1} dx h_1(x)$$

happy ending

discontinuities cancel in linear combinations that enter DVCS amplitude

Spectator Model Calculations of PDFs

example: scalar diquark

- similar for quark target (QCD)
- $k^+ = xp^+$

denominator integral

$$\begin{split} I_{den} &\equiv \int dk^{-} \frac{1}{(k^{2} - m^{2} + i\varepsilon)^{2}} \frac{1}{(P - k)^{2} - \lambda^{2} + i\varepsilon} \\ \bullet \ k^{2} &= 2k^{+}k^{-} - k_{\perp}^{2}, \ (P - k)^{2} = 2(P^{+} - k^{+})(P^{-} - k^{-}) - k_{\perp}^{2} \\ \bullet \ I_{den} &= 0 \text{ for } k^{+} < 0: \text{ all } k^{-} \text{ poles in UHP} \\ \bullet \ I_{den} &= 0 \text{ for } k^{+} > P^{+}: \text{ all } k^{-} \text{ poles in LHP} \\ \bullet \ I_{den} &= \frac{-\pi i}{P^{+}(1 - x)x^{2}} \frac{1}{\left[2P^{+}P^{-} - \frac{k_{\perp}^{2} + m^{2}}{x} - \frac{k_{\perp}^{2} + \lambda^{2}}{1 - x}\right]^{2}} \\ \bullet \text{ twist-2: } \Gamma \text{ contains } \gamma^{+}; \ k = k^{-}\gamma^{+} \\ \xrightarrow{} \text{ numerator only function of } x, \ k_{\perp} \text{ as } \gamma^{+}\gamma^{+} = 0 \quad \Rightarrow \text{ straightforward!} \end{split}$$

Spectator Model Calculations of PDFs MB, PRD 52, 3841 (1995) 24

example: scalar diquark

- similar for quark target (QCD)
- similar for 1-loop corrections

twist-3: example $\Gamma = 1$

• numerator
$$(k + m)^2 = k^2 + m^2 + 2mk$$

•
$$\bar{u}(P,S) \not k u(P,S) = 2P^+k^- + \dots$$

•
$$2k^- = \frac{(P-k)^2 - \lambda^2}{P^+ - k^+} - \left[P^- - \frac{k_\perp^2 + \lambda^2}{P^+ - k^+}\right]$$

- 2^{nd} term canonical (from LF Hamiltonian pert. theory \rightarrow SJB)
- 1^{st} term cancels spectator propagator

$$\to I_{\delta} = \int dk^{-} \frac{1}{(k^{2} - m^{2} + i\varepsilon)^{2}} = \int dk^{-} \frac{1}{(2k^{+}k^{-} - k_{\perp}^{2} - m^{2} + i\varepsilon)^{2}} =?$$

- $I_{\delta} = 0$ for $k^+ = 0$ as pole can be avoided
- $\int d^2k_L \frac{1}{(k^2 m^2 + i\varepsilon)^2} \equiv \int dk^+ dk^- \frac{1}{(k^2 m^2 + i\varepsilon)^2} = \frac{\pi i}{k_\perp^2 + \lambda^2} \Rightarrow I_\delta = \frac{\pi i}{k_\perp^2 + \lambda^2} \delta(k^+)$

Relevance of $\delta(x)$ for QCD

sum rules for twist-3 PDFs

•
$$\int_{-1}^{1} dx g_T(x) = \int_{-1}^{1} dx g_1(x)$$

•
$$\int_{-1}^{1} dx h_L(x) = \int_{-1}^{1} dx h_1(x)$$

•
$$\int_{-1}^{1} dx e(x) = \frac{1}{2M} \langle P | \bar{q} q | P \rangle$$
 (σ -term sum rule)

• first two are Lorentz invariance (LI) relations

If sum rule is tested by evaluating e.g. $\lim_{\varepsilon \to 0} \int_{\varepsilon}^{1} dx \left[h_L(x) + h_L(-x)\right]$ then presence of $\delta(x)$ in h_L would result in <u>violation</u> of LI relation!

violation of twist-3 sum rules in QCD

MB & Y. Koike, NPB 632, 311 (2002)

Using moment relations based on QCD eqs. of motion one finds

- $h_L^{\delta}(x)$ contains $\delta(x)$ at 1 loop: LI relation 'violated'!
- $g_T^{\delta}(x)$ no $\delta(x)$ (LI relation o.k.!)
- e(x) contains $\delta(x)$ at 1 loop: σ -term sum rule 'violated'

implications for twist-3 GPDs

what does presence of $\delta(x)$ in twist-3 PDFs imply for twist-3 GPDs?

MB, PRD 52, 3841 (1995)

• relevant energy denominators:

$$\int dk^{-} \frac{1}{\left(k - \frac{\Delta}{2}\right)^{2} - m^{2} + i\varepsilon} \frac{1}{\left(k + \frac{\Delta}{2}\right)^{2} - m^{2} + i\varepsilon} \frac{1}{\left(P - k\right)^{2} - \lambda^{2} + i\varepsilon}$$

• twist-3: k^- from Dirac numerator can cancel $(P-k)^2 - \lambda^2 + i\varepsilon$ $\hookrightarrow \int dk^- \frac{1}{\left(k-\frac{\Delta}{2}\right)^2 - m^2 + i\varepsilon} \frac{1}{\left(k+\frac{\Delta}{2}\right)^2 - m^2 + i\varepsilon} \sim \frac{\Theta\left(\frac{-\Delta^+}{2} < k^+ < \frac{\Delta^+}{2}\right)}{\Delta^+} \frac{1}{k_{\perp}^2 + m^2}$

- contribution to ERBL region only!
 - nonzero only for $-\xi < x < \xi$
 - discontinuous at $x \pm \xi$
 - $\propto \frac{1}{\xi}$ for $-\xi < x < \xi$
 - \hookrightarrow representation of δ function as $\xi \to 0$
- big issue: convergence of $\int \frac{dx}{x-\xi} GPD(x,\xi,t)$ when $GPD(x,\xi,t)$ discontinuous at $x \pm \xi$
- presence of such terms 'normal' for twist-3 GPDs

G_2, \tilde{G}_2 in QCD (1 loop)

G_2, \tilde{G}_2 in scalar diquark model (1 loop)

 G_2, \tilde{G}_2 in QCD (1 loop)

• $G_2(\Gamma = \gamma_{\perp}), \ \tilde{G}_2(\Gamma = \gamma_{\perp}\gamma_5)$ discontinuous at $x = -\xi$ • $\int \frac{dx}{x \pm \xi} G_2(x, \xi, t)$ divergent $\underline{G_2, \tilde{G}_2 \text{ in QCD}} (1 \text{ loop})$

• $G_2(\Gamma = \gamma_{\perp}), \tilde{G}_2(\Gamma = \gamma_{\perp}\gamma_5)$ discontinuous at $x = -\xi$ • $\int \frac{dx}{x \pm \xi} G_2(x, \xi, t)$ divergent — oops! \hookrightarrow factorization?

terms in DVCS amplitude involving twist 3

$$\begin{split} &\int_{-1}^{1} dx [F_{\perp}^{\nu} C^{+}(x,\xi) - i\varepsilon_{\perp a}^{\nu} \tilde{F}_{\perp}^{\alpha} C^{-}(x,\xi)] \\ &= \int_{-1}^{1} dx \bigg[\Delta_{\perp}^{\nu} \frac{b}{2m} (G_{1}C^{+} + (\tilde{E} + \tilde{G}_{1})C^{-}) + h_{\perp}^{\nu} \bigg((H + E + G_{2})C^{+} - \frac{\Delta_{\perp}^{2}}{4\xi m^{2}} (\tilde{E} + \tilde{G}_{1})C^{-} - \frac{1}{\xi} (\tilde{H} + \tilde{G}_{2})C^{-} \bigg) \\ &+ \Delta_{\perp}^{\nu} \frac{h^{+}}{P^{+}} \bigg(G_{3}C^{+} - \frac{\tilde{m}^{2}}{2m^{2}} (\tilde{E} + \tilde{G}_{1})C^{-} - \tilde{G}_{4}C^{-} \bigg) \\ &+ \tilde{\Delta}_{\perp}^{\nu} \frac{\tilde{h}^{+}}{P^{+}} \bigg(G_{4}C^{+} + \frac{t}{8\xi m^{2}} (\tilde{E} + \tilde{G}_{1})C^{-} + \frac{1}{2\xi} (\tilde{H} + \tilde{G}_{2})C^{-} - \tilde{G}_{3}C^{-} \bigg) \bigg]. \end{split}$$

• G_i/\tilde{G}_i twist 3 vector/axial
vector GPDs

•
$$C^{\pm} = \frac{1}{x-\xi+i\varepsilon} \pm \frac{1}{x+\xi-i\varepsilon}$$

•
$$\tilde{G}_2 \stackrel{forward}{\longrightarrow} g_2$$

•
$$\int dx x G_2^q(x,0,0) = -L_q$$

factorization?

- both in quark target model and scalar diquark model G_i & \tilde{G}_i discontinuous at $x = \pm \xi$
- GPDs in factorized DVCS amplitude convoluted with $C^{\pm} = \frac{1}{x \xi + i\varepsilon} \pm \frac{1}{x + \xi i\varepsilon} \dots$

good news

in quark target model (not in scalar diquark model) discontinuities cancel in linear combinations of twist 3 GPDs that enter \mathcal{A}_{DVCS}

$$\begin{aligned} \mathcal{A}_1 &\sim G_1 C^+ + \widetilde{G}_1' C^-, \\ \mathcal{A}_2 &\sim G_2' C^+ - \frac{1}{\xi} \left(\widetilde{G}_2' + \frac{\vec{\Delta}_{\perp}^2}{4m^2} \widetilde{G}_1' \right) C^-, \\ \mathcal{A}_3 &\sim G_3 C^+ - \left(\widetilde{G}_4 + \frac{P^2}{2m^2} \widetilde{G}_1' \right) C^-, \\ \mathcal{A}_4 &\sim G_4 C^+ - \left[\widetilde{G}_3 - \frac{1}{2\xi} \left(\widetilde{G}_2' + \frac{\Delta^2}{4m^2} \widetilde{G}_1' \right) \right] C^-. \end{aligned}$$

 $G_2 \pm \frac{1}{\epsilon} \tilde{G}_2$ in QCD (1 loop)

• $G_2 - \frac{1}{\xi}\tilde{G}_2$ continuous at $x = \xi$ \hookrightarrow makes world a lot safer for twist-3 factorization!

∞ momentum for twist 3 PDFs _{F.Aslan+MB}

quasi PDFs/TMDs

- Let $\rho_P^{\Gamma}(k_z, k_{\perp})$ be momentum distribution of quarks
- P momentum of nucleon (in \hat{z} -direction)
- Γ : Dirac structure of quark bilinear ($\Gamma = \gamma^z$ for twist 2, unpol.)
- $\hookrightarrow q_{\Gamma}(x,k_{\perp}) \equiv \lim_{P \to \infty} P \rho_P^{\Gamma}(xP,k_{\perp})$ 'quasi-PDF' x.Ji++

twist-3 quasi PDFs $\Gamma = 1$ (quark target model) $\rho_P^1(k_z, k_\perp) \sim \int dk_0 \frac{k^2 + m^2 + 2p \cdot k}{[k^2 - m^2]^2[(p-k)^2 - \lambda^2]}$ • only den: $P\rho_P^1(k_z, k_\perp) \xrightarrow{P \to \infty} \frac{1}{(1-x)x^2} \frac{1}{[M^2 - \frac{k_\perp^2 + m^2}{x} - \frac{k_\perp^2 + \lambda^2}{1-x}]^2}$ $x = \frac{k_z}{P}$ • $2p \cdot k = p^2 + k^2 - (p-k)^2 = p^2 + k^2 - \lambda^2 - [(p-k)^2 - \lambda^2]$

 \hookrightarrow contribution to $\rho_P^{\Gamma}(k_z, k_{\perp})$ that is independent of P

$$\rho_P^{1,\delta}(k_z,k_{\perp}) \sim \int dk^0 \frac{1}{[k^2 - m^2]^2}$$

corresponding quasi PDF is representation of δ function!!!!!
some quarks 'left behind' when 'hadron' gets boosted

Twist -3 pdf g_T & Twist -3 quasi-pdf g_T^{quasi} in scalar diquark model

There is a momentum component in the nucleon state which does not scale as the nucleon is boosted to the infinite momentum frame.

lattice:

this should be visible for all twist 3 PDFs containing potential $\delta(x)$

- GPDs $\xrightarrow{FT} q(x, \mathbf{b}_{\perp})$ '3d imaging'
- x^2 moment of twist-3 GPDs
- $\hookrightarrow \bar{q}\gamma^+ F^{+\perp}q$ distribution
- $\hookrightarrow \perp$ force tomography
 - $\delta(x)$ in twist-3 PDF
- \hookrightarrow discontinuities in twist-3 GPDs
 - rep. of $\delta(x)$ as $\xi \to 0$
 - cancel in DVCS amplitude $\sim G_2 \pm \frac{1}{\xi} \tilde{G}_2$
 - individual extraction of G_2 & \tilde{G}_2 questionable
 - some quarks 'left behind' in IMF at twist 3

