TMD physics with e.m. probes at COMPASS

INFŃ

(on behalf of the COMPASS Collaboration)

INT-18-3-PROBING NUCLEONS AND NUCLEI IN HIGH ENERGY COLLISIONS Symposium – 22-26 October, UW, SEATTLE

COMPASS data taking

muon beam	deuteron (⁶ LiD) PT	2002 2003 2004	80% L/20% T target polarisation
		2006	L target polarisation
	proton (NH ₃) PT	2007	50% L /50% T target polarisation
Hadron	LH target	2008 2009	
muon beam	proton (NH ₃) PT	2010	T target polarisation
		2011	L target polarisation
Hadron	Ni target	2012	Primakoff
muon beam	LH2 target	2012	Pilot DVCS & unpol. SIDIS
Hadron	Proton (NH3) DT	2014	Pilot DY run
	PT	2015	DY run
		2018	DY run
muon beam	LH2 target	2016 2017	DVCS & unpol. SIDIS
10/24/2018	IN	T-18 Symposyum Week	

Muon beam: SIDIS setup

- high energy beam
- large angular acceptance
- broad kinematical range

two stages spectronfieter Large Angletspectrolum@ter (SM/c) Small Angle Spectrometer (SM2)

COMPASS target area

COMPASS-I 1997-2011

COMPASS-II 2012-2020

INT-18 Symposyum Week

Operations on the target area

Spectrometer top view

7

Two stage spectrometer

Large Angle Spectrometer

Hadron beam: Drell-Yan setup

Muon beam – DVCS setup

Spectrometer elements

Spectrometer: momentum determination

the polarized target system (>2005)

Typical cycle of a "field rotation"

Vertex determination

16

Kinematic distributions

DIS cuts: $Q^2 > 1 (GeV/c)^2$ 0.1 < y < 0.9 W > 5 GeV/c²

Kinematic distributions - 2

DIS cuts: $Q^2 > 1 (GeV/c)^2$ 0.1 < y < 0.9 W > 5 GeV/c²

hadron selection: $P_{hT} > 0.1 \text{ GeV/c},$ z>0.2

Selected COMPASS results on TMD effects

Importance of unpolarized SIDIS

- The cross section dependence from P_{hT} results from:
 - intrinsic k_{\perp} of the quarks
 - p_{\perp} generated in the quark fragmentation
- The azimuthal modulations in the unpolarised cross sections comes from:
 - Intrinsic k_{\perp} of the quarks
 - The Boer-Mulders PDF
- Difficult measurements were one has to correct for the apparatus acceptance
- COMPASS and HERMES have
 - results on ${}^{6}LiD$ (~d) and d and on p (Hermes only)
 - No COMPASS measurements on p since on NH_3 ($\sim p$) nuclear effects may be important
- \Rightarrow COMPASS-II, measurements on LH₂ in parallel with DVCS

proton

 k_{\perp}

Positive vs Negative charged hadrons

Azimuthal distributions in exclusive events

- $|\phi_h|$ distributions show very large modulations
- Strong correlation between z and $|\phi_h|$

Modulations in the azimuthal distributions

INT-18 Symposyum Week

Subtraction from the measured asymmetries

10/24/2018

INT-18 Symposyum Week

Ζ

Subtracted results

26

Transversity PDF

$$h_1^q(\mathbf{x}) = q^{\uparrow\uparrow}(\mathbf{x}) - q^{\uparrow\downarrow}(\mathbf{x})$$

 $q = u_v, d_v, q_{sea}$ quark with spin parallel to the nucleon spin in a transversely polarised nucleon

- probes the relativistic nature of quark dynamics
- no contribution from the gluons \rightarrow simple Q^2 evolution
- first moments: tensor charge...... $\delta q(Q^2) = \int_0^1 dx \left[h_1^q(x) h_1^{\overline{q}}(x) \right]$
- is chiral-odd: decouples from inclusive DIS

Bakker, Leader, Trueman, PRD 70 (04)

Transversity

is chiral-odd:

observable effects are given only by the product of h_1^q (x) and an other chiral-odd function can be measured in SIDIS on a transversely polarised target via "quark polarimetry"

- $\ell N^{\uparrow} \rightarrow \ell' h X$
- $\ell \, \mathbf{N}^{\uparrow} \rightarrow \ell' \, \mathbf{h} \, \mathbf{h} \, \mathbf{X}$

 $\ell\,\mathsf{N}^{\uparrow}\to\ell^{\textrm{\tiny T}}\,\Lambda\,\mathsf{X}$

- "Collins" asymmetry "Collins" Fragmentation Function
- "two-hadron" asymmetry "Interference" Fragmentation Function
- **Λ** polarisation

Fragmentation Function of $q\uparrow \rightarrow \Lambda$

Collins asymmetry on proton

Collins asymmetry on proton. Multidimensional Extraction of TSAs with a Multi-D $(x: Q^2: z: p_T)$ approach

COMPAS

One dense plot out of many

10/24/2018

30

Interplay among dihadron and single hadron asymmetries

• dihadron asymmetry only somewhat larger than h+ Collins

Como 2013, DSpin2013, PLB736 (2014) 124

 $\langle \overset{a}{V} 0.10 \rangle$

0.05

0

-0.05

-0.10

2007 & 2010 proton data

 $h^{+}h$

○ Collins h^+ ○ Collins h^-

 10^{-2}

х

 10^{-1}

INT-18 Symposyum Week

A^{p}_{Coll} on proton and ${}^{3}P_{0}$ model for FF

Albi Kerbizi @ DSPIN17 <u>http://theor.jinr.ru/~spin/2017/</u> Phys. Rev. D 97, 074010 (2018)/<u>arXiv:1802.00962</u>

- The curves are fits of the Monte Carlo data, scaled by $\lambda \sim \langle h_1^u / f_1^u \rangle \sim 0.055$
- Agreement with the measured Collins asymmetry is quite satisfactory

2h asymmetries on p and ${}^{3}P_{0}$ model for FF $A_{UT}^{\sin(\phi_R + \phi_S - \pi)} = \frac{\sum_q e_q^2 h_1^q(x) H_{q \to h_1 h_2}^{\measuredangle} \left(z, \mathcal{M}_{h_1 h_2}^2 \right)}{\sum_q e_q^2 q(x) D_a^{h_1 h_2} \left(z, \mathcal{M}_{h_1 h_2}^2 \right)}$ $\uparrow \to h^{\pm} X$ $0.0 \frac{G}{C}$ 0.02O COMPASS ${\cal I}^{sin\phi}_{UT,p}sin\Theta$ MC -0.05 $a^{\mu\uparrow} \rightarrow h^{+}h^{-}+X$ $A_{CL\ 2h}^{\sin\Phi_{2h,S}}$ $= h^+h^-MC$ \square h⁺h 0.5 -0.020.05 -0.04-0.06 $M_{inv}^{1.5} (GeV/c^2)$ 0.2 0.8 0.5 0.40.6 -2 0 2 Ζ $\Delta \phi$ $\Delta \phi$

 $a_P^{u\uparrow \to h^+h^-X} = \langle \sin(\phi_R + \phi_S - \pi) \rangle$ and $\vec{R} = \frac{z_2 \vec{P}_{h_1} - z_1 \vec{P}_{h_2}}{z_1 + z_2}$ and as before $\lambda \sim \langle h_1^u / f_1^u \rangle \sim 0.055$

Λ transverse spin transfer from COMPASS

$$P_{\Lambda(\overline{\Lambda})}(x,z) = \frac{\sum_{q} e_q^2 h_1^q(x) H_1^{\Lambda(\overline{\Lambda})}(z)}{\sum_{q} e_q^2 f_1^q(x) D_1^{\Lambda(\overline{\Lambda})}(z)}$$

$$\frac{dN}{d\cos\theta^*} \propto A \big(1 + \alpha P_{\Lambda(\overline{\Lambda})}\cos\theta^* \big)$$

Sivers Asymmetry

Sivers: correlates nucleon spin & <u>quark transverse momentum k_T</u>/T-ODD

at LO:

Δ	_	$\sum_{q} e_{q}^{2} f_{1Tq}^{\perp} \otimes D_{q}^{h}$
^A Siv	_	$\overline{\sum_{q} e_{q}^{2} q \otimes D_{q}^{h}}$

$$\mu p^{\uparrow}
ightarrow \mu X h^{\pm}$$

The Sivers PDF		
1992	Sivers proposes f_{1T}^{\perp}	
1993	J. Collins proofs $f_{1T}^{\perp} = 0$ for T invariance	
2002	S. Brodsky, Hwang and Schmidt demonstrate that f_{1Tq}^{\perp} may be $\neq 0$ due to FSI	
2002	J. Collins shows that $(f_{1T}^{\perp})_{DY} = -(f_{1T}^{\perp})_{SIDIS}$	
2004	HERMES on p: $A_{Siv}^{\pi^+} \neq 0$ and $A_{Siv}^{\pi^-} = 0$	
2004	COMPASS on d: $A_{Siv}^{\pi^+} = 0$ and $A_{Siv}^{\pi^-} = 0$	
2008	COMPASS on p: $A_{Siv}^{\pi^+} \neq 0$ and $A_{Siv}^{\pi^-} = 0$	

Sivers Asymmetry

$$A_{Siv}(x,z) = \frac{F_{UT}^{sin\Phi_{Siv}}(x,z)}{F_{UU}(x,z)} = \frac{\sum_{q} e_{q}^{2} x f_{1T}^{\perp q}(x,k_{\perp}^{2}) \otimes D_{1q}^{h}(z, p_{\perp}^{2})}{\sum_{q} e_{q}^{2} x f_{1}^{-q}(x, k_{\perp}^{2}) \otimes D_{1q}^{h}(z, p_{\perp}^{2})}$$

 To evaluate it we need to solve the convolutions (i.e. make hypothesis on the transverse momenta dependences of the TMDs)

• Gaussian ansatz:
$$f_{1T}^{\perp q}(x) \frac{e^{-k_{\perp}^{2}/\langle k_{\perp}^{2} \rangle_{S}}}{\pi \langle k_{\perp}^{2} \rangle_{S}} \qquad D_{1q}^{h}(z) \frac{e^{-p_{\perp}^{2}/\langle p_{\perp}^{2} \rangle}}{\pi \langle p_{\perp}^{2} \rangle}$$

• Leading to: $A_{Siv,G}(x,z) = \frac{\sqrt{\pi}M}{\sqrt{z^{2} \langle k_{T}^{2} \rangle_{S} + \langle p_{T}^{2} \rangle}} \frac{\sum_{q} e_{q}^{2} x f_{1T}^{\perp(1)q}(x) z D_{1q}^{h}(z)}{\sum_{q} e_{q}^{2} x f_{1}^{\perp}(x) D_{1q}^{h}(z)}$ with $f_{1T}^{\perp(1)q}(x) = \int d^{2}\vec{k}_{T} \frac{k_{T}^{2}}{2M^{2}} f_{1T}^{\perp q}(x, k_{T}^{2})$

Sivers asymmetry on p

charged pions (and kaons), HERMES and COMPASS

Transverse Spin Asymmetry in Drell-Yan

190 GeV/c π -beam, transversely polarized NH₃ target

- If we weight the spin dependent part of the cross-section $F_{UT}^{sin\Phi_{Siv}}(x,z) = \Sigma_q \ e_q^2 \int d^2 \vec{P}_T P_T F_q(x,z,P_T^2)$
- with $w = P_T/zM$, i.e. $F_{UT}^{sin\Phi_{Siv,W}}(x,z) = \Sigma_q \ e_q^2 \int d^2 \vec{P}_T \frac{P_T^2}{zM} F_q(x,z,P_T^2) = 2 \ \Sigma_q \ e_q^2 x f_{1T}^{\perp(1)q}(x) D_{1q}^h(z)$

and $F_q(x, z, P_T^2) = \int d^2 \vec{k}_T \int d^2 \vec{p}_T \, \delta^2 (\vec{P}_T - z\vec{k}_T - \vec{p}_T) \frac{\vec{P}_T \cdot \vec{k}_T}{M P_T^2} x f_{1T}^{\perp q}(x, k_T^2) \, D_{1q}(z, p_T^2)$

 we have no longer a convolution but a product of two integrals and we can write

$$A_{Siv}^{w}(x,z) = \frac{F_{UT}^{sin\Phi_{Siv},w}(x,z)}{F_{UU}(x,z)} = 2\frac{\sum_{q} e_{q}^{2} x f_{1T}^{\perp(1)q}(x) D_{1q}^{h}(z)}{\sum_{q} e_{q}^{2} x f_{1}^{q}(x) D_{1q}^{h}(z)}$$

with $f_{1T}^{\perp(1)q}(x) = \int d^{2}\vec{k}_{T} \frac{k_{T}^{2}}{2M^{2}} f_{1T}^{\perp q}(x,k_{T}^{2})$

$$A_{Siv}^{w}(x) = 2 \frac{\sum_{q} e_{q}^{2} x f_{1T}^{\perp(1)q}(x) \int D_{1q}^{h}(z) dz}{\sum_{q} e_{q}^{2} x f_{1}^{q}(x) \int D_{1q}^{h}(z) dz} \qquad w = P_{T}/zM$$

standard cuts z>0.2

both $f_{1T}^{\perp(1)u}$ and $f_{1T}^{\perp(1)d}$ contribute

standard cuts z>0.2

The ratio between weighted and unweighted Sivers asymmetries follows the average of $4\langle x \rangle / \pi M \langle z P_T \rangle$ of the unpolarised sample

Sivers Asymmetry for Gluon from SIDIS

C. Adolph et al. (COMPASS Collaboration), Phys. Lett. B 772, 854 (2017).

INT-18 Symposyum Week

FUTURE

2021 Deuteron run

• Benchmark: h_1 extraction from Collins asymmetries

44

From ⁶*LiD* ('02 - '04) to NH_3 ('07 - '10)

- Many improvements from 2004 data taking:
 - New 3 cells target / 1.3 gain due to larger diameter
 - New superconducting magnet / Factor 2.5 increase of acceptance at large x
 - New large x trigger with LAST / Factor
 2 increase at large x
 - + larger integrated luminosity (partially lost given the less favorable figure of merit $\frac{f_p P_{pT}}{f_D P_{DT}} = 0.6$) ALL IN ALL A TOTAL FACTOR OF >10

 σ_D/σ_p

 COMPASS proposed to CERN to run a full year with the transversely polarized deuteron target and this proposal has been approved

From Collins asymmetries to transversity

• Following Physical Review D 91, 014034 (2015), in the valence region

$$xh_{1}^{u} = \frac{1}{5} \frac{1}{\tilde{a}_{P}^{h}(1-\tilde{\alpha})} \left[\left(xf_{p}^{+}A_{p}^{+} - xf_{p}^{-}A_{p}^{-} \right) + \frac{1}{3} \left(xf_{d}^{+}A_{d}^{+} - xf_{d}^{-}A_{d}^{-} \right) \right]$$

$$xh_{1}^{d} = \frac{1}{5} \frac{1}{\tilde{a}_{P}^{h}(1-\tilde{\alpha})} \left[\frac{4}{3} \left(xf_{d}^{+}A_{d}^{+} - xf_{d}^{-}A_{d}^{-} \right) - \left(xf_{p}^{+}A_{p}^{+} - xf_{p}^{-}A_{p}^{-} \right) \right]$$

With \tilde{a}_{P}^{h} and $\tilde{\alpha}$ constants π^{+} in p: $f_{p}^{+} = 4\left(f_{1}^{u} + \frac{\tilde{D}_{unf}}{\tilde{D}_{f}}f_{1}^{\overline{u}}\right) + \left(\frac{\tilde{D}_{unf}}{\tilde{D}_{f}}f_{1}^{d} + f_{1}^{\overline{d}}\right) + \frac{\tilde{D}_{unf}}{\tilde{D}_{f}}\left(f_{1}^{s} + f_{1}^{\overline{s}}\right)$ π^{-} in p: $f_{p}^{+} = 4\left(\frac{\tilde{D}_{unf}}{\tilde{D}_{f}}f_{1}^{u} + f_{1}^{\overline{u}}\right) + \left(f_{1}^{d} + \frac{\tilde{D}_{unf}}{\tilde{D}_{f}}f_{1}^{\overline{d}}\right) + \frac{\tilde{D}_{unf}}{\tilde{D}_{f}}\left(f_{1}^{s} + f_{1}^{\overline{s}}\right)$

New deuteron data

New QCD facility at CERN M2

Hardware

Earliest

https://arxiv.org/abs/1808.00848

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

August 3, 2018

Letter of Intent: A New QCD facility at the M2 beam line of the CERN SPS

> O. Yu. Denisov on behalf of the working group: "A New QCD Facility at the M2 beam line of the CERN SPS""

Contents

1	Intr	oductio	n	1		
2	2 Hadron physics with standard muon beams					
	2.1	Proton	radius measurement using $\mu - p$ elastic scattering	3		
		2.1.1	Experiments targeting the proton radius puzzle: the M2 beam line case	3		
	2.1.2 Formalism of Elastic lepton-proton scattering					
		2.1.3	Measurement at the CERN M2 beam line	6		
	2.2 Exclusive reactions with muon beams and transversely polarised target					
	2.2.1 Motivations for a measurement of the GPD E					
		2.2.2	Measurements of Deeply Virtual Compton Scattering	8		
		2.2.3	Measurements of Deeply Virtual Meson Production	10		
3	3 Hadron Physics with Standard Hadron Beams 12 The final autor list of the LoJ with be finished in October 2018. Please send e-mail to NOE-M2@ceen th for musclose					
and	I reque	sts.				

Program	Goals	Energy	Intensity	Rate	Туре	Target	start time,	Additions
		[GeV]	[s ⁻¹]	[kHz]			duration	
μ_P	Precision							active TPC,
elastic	proton-radius	100	$4 \cdot 10^{6}$	100	μ^{\pm}	high-pr.	2022	SciFi trigger,
scattering	measurement					H2	1 year	silicon veto,
Hard			_					recoil silicon,
exclusive	GPD E	160	$2 \cdot 10^{7}$	10	μ^{\pm}	NH_3^{\uparrow}	2022	modified
reactions							2 years	PT magnet
			5					
Input for	\overline{p} production	20-280	$5 \cdot 10^{3}$	25	p	LH2,	2022	LHe
DMS	cross section					LHe	1 month	target
			z 10 ⁷					target spectr.:
p-induced	Heavy quark	12, 20	$5 \cdot 10^{\circ}$	25	\overline{P}	LH2	2022	tracking,
Spectroscopy	exotics						2 years	calorimetry
Duall Van	Dian DDEa	100	7 107	25	_±	CIW	2022	
Dren- ran	PION PDFS	190	7.10	25	π	U.W.	2022	
							1-2 years	
		100	1.08		+	†		"active
Drell-Yan	Kaon PDFs &	~ 100	105	25-50	K^+, \overline{p}	NH_3 ,	2026	absorber",
(RF)	Nucleon TMDs					C/W	2-3 years	vertex det.
D: 1.00	Kaon polarisi-	100	c 106	. 10	w=	N .11	non-exclusive	
Primakoff	bility & pion	~ 100	5.10	> 10	K	N1	2026	
(KF)	ine ume						1 year	
Prompt	Manager	> 100	5 106	10,100	v±	1.112	non-exclusive	1 1
Photons	Meson gluon	≥ 100	5.10	10-100	K ⁻	LH2,	2026	hodoscope
(KF)	PDF8				π	IN1	1-2 years	man il TOF
K-induced	High-precision	50 100	5 106	25	<i>w</i> =	1.110	2026	recon TOF,
Spectroscopy	strange-meson	50-100	5.10	25	K	LH2	2026	Iorward
(KF)	spectrum						1 year	PID
Vactor masons	Spin Density	50 100	5 106	10 100	$v^{\pm} = \pm$	from H	2026	
(DE)	Flamonta	50-100	5.10	10-100	Γ,π	to Dh	2020	
(KF)	Elements						i year	

Beam | Beam | Trigger | Beam |

Physics

Longitudinally polarized target results

Year	Obs.	
2006	$A_{LL}^{2h}(Q^2 < 0)$	$\Delta g/g$
2007	$g_1^d(x)$,	Γ_1^d , $\Delta\Sigma$
2008	$A_{1,d}^{h^+-h^-}$	$\Delta u_{v} + \Delta d_{v}$
2009	$A_{1,d}$, $A_{1,d}^{\pi\pm}$, $A_{1,d}^{K\pm}$	$\Delta u_{v} + \Delta d_{v}, \Delta \bar{u} + \Delta \bar{d}, \Delta s (= \Delta \bar{s})$
2010	$g_1^p(x)$,	Γ_1^{NS} , $ g_A/g_V $
2010	$A_{1,d}$, $A_{1,d}^{\pi\pm}$, $A_{1,d}^{K\pm}$, $A_{1,p}$, $A_{1,p}^{\pi\pm}$, $A_{1,p}^{K\pm}$	$\Delta u, \Delta d, \Delta \overline{u}, \Delta \overline{d}, \Delta \overline{d}, \Delta s, \Delta \overline{s}$
2010	$\sin\phi$, $\sin 2\phi$, $\sin 3\phi$, $\cos\phi$ asyms	h_L , f_L^{\perp} , h_1 , f_{1T}^{\perp} , h_{1L}^{\perp} , h_{1T}^{\perp} , h_{1L}^{\perp} , g_L^{\perp} , g_{1T}
2013	A_{LL}^{2h}	$\Delta g/g$
2013	$A_D^{\gamma N}$	$\Delta g/g$ in LO and NLO
2015	$g_1^p(x)$	Γ_1^{NS} , $\Delta\Sigma$, $\Delta u + \Delta \bar{u} \cdots$
2015	A_{LL}^p	NLO QCD fits for $\Delta g/g$
2017	$g_1^d(x)$	Final result + BJ sum rule
2018	$A_1^p(x)$ and $g_1^p(x)$	Small x and Q^2

Transversely polarized target results

Year	Obs	
2005	$A^h_{Siv,d}$, $A^h_{Col,d}$	First ⁶ LiD data
2006	$A^h_{Siv,d}$, $A^h_{Col,d}$	Full ⁶ LiD statistics
2009	$A_{Siv,d}^{\pi^{\pm},K^{\pm},K^{0}_{S}}$, $A_{Col,d}^{\pi^{\pm},K^{\pm},K^{0}_{S}}$	Full ⁶ LiD statistics
2010	$A^h_{Siv,p}$, $A^h_{Col,p}$	2007 NH ₃ data
2012	$A_{UT,d}^{sin\phi_{RS}}$, $A_{UT,p}^{sin\phi_{RS}}$	Full ⁶ LiD
2012	$A^h_{Siv,p}$, $A^h_{Col,p}$	Full NH ₃ statistics
2012	$A_{UT,d}^{sin(\phi_{ ho}-\phi_{S})}$, $A_{UT,p}^{sin(\phi_{ ho}-\phi_{S})}$	Exclusive $ ho^0$
2013	$A_{UT,d}^{\left(\phi_{ ho},\phi_{S} ight)}$, $A_{UT,p}^{\left(\phi_{ ho},\phi_{S} ight)}$	Exclusive ρ^0 , all asyms.
2014	$A_{UT,d}^{sin\phi_{RS}}$, $A_{UT,p}^{sin\phi_{RS}}$	Full ⁶ LiD and NH ₃
2014	$A_{Siv,d}^{\pi^{\pm},K^{\pm},K^{0}_{S}}$, $A_{Col,d}^{\pi^{\pm},K^{\pm},K^{0}_{S}}$	Full NH ₃ statistics
2015	Interplay $A_{UT,p}^{sin\phi_{RS}}$ vs $A_{Col,p}^h$	Full NH ₃ statistics
2017	$A_{DY}^{sin\phi}$	Sivers in DY
0/24/2018	$A^{w,h}_{Siv,p}$ INT-18 Symposyum Week	P_T weighted Sivers

Unpolarised target results

Year	Obs	
2013	$dn^h/(dN^\mu dzdp_T^2)$	Unpolarized multiplicities on d, 2004
2014	$A_{UU,d}^{\cos\phi_h}$, $A_{UU,d}^{\cos2\phi_h}$, $A_{LU,d}^{\sin\phi_h}$	2004, part
2016	$dn^{\pi}/(dN^{\mu}dz)$	Unpolarized multiplicities on d, 2006
2016	$dn^h/(dN^\mu dzdp_T^2)$	Unpolarized multiplicities on d, 2006
2016	$dn^K/(dN^\mu dz)$	Unpolarized multiplicities on d, 2006
2018	dn^{K^+}/dn^{K^-}	Multiplicity ratio at high z
2018	$\sqrt{\langle r_{\perp}^2 \rangle}$	Transverse p extension at $\langle x \rangle = 0.056$

Thank you

Ennanna

#

M

FEEGH

- NOT directly accessible
- Their extractions require measurements of x-sections and asymmetries in a large kinematic domain of x, Q², z, P_{hT}

Is correlation having an impact?

hadron physics with hadron beams

- New Drell-Yan experiment with 190 GeV π ± beams and C, W targets
 - Determine pion valence and sea quark distributions (both π beams charges) Study direct photons and charmonium = \Rightarrow gluons in π
 - Study flavour dependent nuclear effects (2 beam charges, 2 targets: C, W)
- Important: good beam charge balance and PID in beams

projections: 2×140 days; $\pi + : \pi - \text{time 10:1}$; C, W targets

Hadron correlations

Proton 2010 data

Asymmetries for x > 0.032 vs $\Delta \phi = \phi_{h^+} - \phi_{h^-}$

ratio of the integrals compatible with $4/\pi$

Hints for a common origin of 1h and 2h mechanisms

a $\sqrt{2}(1-\cos\Delta\phi)$

a $(1 - \cos \Delta \phi)$

a $(1 - \cos \Delta \phi)$

a= -0.017±0.002, χ^2 /n.d.f.=0.98 a= -0.015±0.003, χ^2 /n.d.f.=0.65 a= 0.017±0.003, χ^2 /n.d.f.=0.80

$$a = \frac{\sigma_{1C}^{h^+h^-}(\Delta\phi)}{\sigma_U(\Delta\phi)}$$
$$= -\frac{\sigma_{2C}^{h^+h^-}(\Delta\phi)}{\sigma_U(\Delta\phi)}$$

Global Analysis: Transversity

Z.-B. Kang et al., Phys. Rev. D 93, 014009 (2016). M. Anselmino et al., Phys. Rev. D 92, 114023 (2015). M. Radici and A. Bacchetta, arXiv: 1802.05212[hep-p₂]

INT-18 Symposyum Week

Kinematic coverage

When looking at the content of the structure functions/modulations in terms of TMD PDFs for the $\cos \phi_h$ and $\cos 2\phi_h$ we can write:

$$F_{UU}^{\cos\phi_h} = -\frac{2M}{Q} C \left[\frac{\hat{h} \cdot \vec{k}_\perp}{M} f_1 D_1 - \frac{p_\perp k_\perp}{M} \frac{\vec{P}_{hT} - z(\hat{h} \cdot \vec{k}_\perp)}{zM_h M} h_1^\perp H_1^\perp \right] + \text{twists} > 3$$

$$F_{UU}^{\cos 2\phi_h} = C \left[\frac{(\hat{h} \cdot \vec{k}_\perp)(\hat{h} \cdot \vec{p}_\perp) - \vec{p}_\perp \cdot \vec{k}_\perp}{MM_h} h_1^\perp H_1^\perp \right] + \text{twists} > 3$$

In the $\cos 2\phi_h$ Cahn effects enters only at twist4

$$F_{\text{Cahn}}^{\cos 2\phi_h} \approx \frac{2}{Q^2} C\left[\left\{2\left(\hat{h}\cdot\vec{k}_{\perp}\right)^2 - k_{\perp}^2\right\}f_1 D_1\right]\right]$$

$\cos \phi$ modulation

<x_B>

Boer-Mulders in $\cos 2\phi$ and in $\cos \phi$

Importance of unpolarized SIDIS

Statistical correlations

charged pions also available for charged hadrons charged kaons

have to be taken into account

Low P_{hT} behavior

1. weight $w = P_T / zM$ $A_{Siv}^w(z)$ 0.1 < z < 1.0

$$2\frac{\int C(x)xf_{1T}^{\perp(1)u}(x)dx}{\int C(x)xf_{1}^{u}(x)dx}$$

1. weight $w = P_T / zM$ $A_{Siv}^w(z)$ 0.1 < z < 1.0

For 0.1 < z < 0.2 the asymmetries for h^+ and h^- show the same behavior

TMD PDFs

• The theoretical expression of TMDs has a more complicated structure of the gauge link, connecting two space-time points with a transverse separation

$$f_{q/N}(x, \mathbf{k}_{\perp}) = \frac{1}{8\pi} \int dr^{-} \frac{dr_{\perp}^{2}}{(2\pi)^{2}} e^{-iMxr^{-}/2 + i\mathbf{k}_{\perp} \cdot r_{\perp}}$$

 $\langle N(P)|\bar{q}(r^{-},r_{\perp})\gamma^{+}W[r^{-},r_{\perp};0]q(0)|N(P)\rangle|_{r^{+}\sim 1/\nu\to 0}$

• The Wilson line *W* is no longer on the light-cone axis and may introduce a **process dependence**

Parity and Time reversal invariance \Rightarrow

$$\left(f_{1Tq}^{\perp}\right)_{DY} = -\left(f_{1Tq}^{\perp}\right)_{SIDIS}$$

Most critical test to TMD approach to SSA

Interplay among dihadron and single hadron asymmetries

agreement with data if $a_1 = -a_2 = a$ $A_{CL 2h}^{\sin \Phi_{2h,S}} = a \sqrt{2(1 - \cos \Delta \phi)}$

> ratio of the $\Delta \phi$ integrated 2h and 1h asymmetries: $4/\pi$ *slightly larger than h*⁺

Interplay among dihadron and single hadron asymmetries

agreement with data if

sin $\Phi_{2h,S}$ $= a \sqrt{2(1 - \cos \Delta \phi)}$ A_{CL 2h}

agreement with data

a very simple relationships among the asymmetries in the "2h sample"

they are driven by the same elementary mechanism.

> ratio of the $\Delta \phi$ integrated 2h and 1h asymmetries: $4/\pi$ slightly larger than h⁺