Unpolarised quark TMDs: extraction, problems and prospects

giuseppe bozzi

in collaboration with A.Bacchetta, C. Bissolotti, F. Delcarro, F. Piacenza, C. Pisano, M. Radici, A. Signori, W. Vogelsang

European Research Council

Part 1 Unpolarised quark TMD: past, present and future of an almost-global fit

Semi-inclusive Deep Inelastic Scattering

$$l(\ell) + N(\mathcal{P}) \to l(\ell') + h(\mathcal{P}_h) + X$$

A selection of results

	Framework	HERMES	COMPASS	DY	Z production	N of points
KN 2006 <u>hep-ph/0506225</u>	LO-NLL	×	×	~	~	98
Pavia 2013 (+Amsterdam, Bilbao) <u>arXiv:1309.3507</u>	No evolution	✓	×	*	×	1538
Torino 2014 (+JLab) <u>arXiv:1312.6261</u>	No evolution	✓ (separately)	✓ (separately)	*	*	576 (H) 6284 (C)
DEMS 2014 <u>arXiv:1407.3311</u>	NLO-NNLL	×	×	✓	~	223
ElKV 2014 <u>arXiv:1401.5078</u>	LO-NLL	1 (x,Q ²) bin	1 (x,Q²) bin	✓	~	500 (?)
Pavia 2017 arXiv:1703.10157	LO-NLL	✓	~	✓	~	8059
SV 2017 arXiv:1706.01473	NNLO-NNLL	×	×	~	~	309

Pavia (realistically) 2019: NLO-NLL + LHC data!

SIDIS: fitting the hadron multiplicities

Evolution of TMDs

analogous formula for FF

Fourier transform:
$$\xi_T(b_T)$$
 space
 $f_1^a(x,k_{\perp};\mu^2) = \frac{1}{2\pi} \int d^2 \xi_T e^{-i\xi_T \cdot k_{\perp}} \tilde{f}_1^a(x,\xi_T;\mu^2)$

 $\tilde{f}_1^a\left(x,\xi_T;\mu^2\right) =$

Model: non perturbative elements

Inspired by model calculations:

Matevosyan et al. Phys. Rev. D85, 014021 (2012), 1111.1740 Bacchetta et al. Phys. Lett. B659, 234 (2008), 0707.3372 Bacchetta at al. Phys. Rev. D65, 094021 (2002), hep-ph/0201091

$$\hat{z} = 0.5$$

$$g_{3,4}(z) = N_{3,4} \frac{(z^{\beta} + \delta)(1-z)^{\gamma}}{(\hat{z}^{\beta} + \delta)(1-\hat{z})^{\gamma}}$$

Model: non-perturbative evolution

Experimental data

Total: 8059 data points

90 data points

Work in progress!

 $q\bar{q} \to Z_0/\gamma^* + X$

7 TeV 8 TeV

7 TeV 8 TeV $pp \rightarrow Z_0/\gamma^* \rightarrow (\mu^+ + \mu^-/e^+ + e^-)$

7 TeV 8 TeV 13 TeV $pp \rightarrow Z_0 \rightarrow \mu^+ + \mu^-$

Distribution of data

Data selection: SIDIS

	HERMES	HERMES	HERMES	HF	ERMES		TMD factorization	
	$p \to \pi^+$	$p \to \pi^-$	$p \to K^+$	p	$\rightarrow K^{-}$		$(\mathbf{P}_{\mathrm{hT}^{2}}/\mathrm{Z}^{2}<<\mathrm{Q}^{2})$	
Reference		[6]	1]			avoi	d target frequencies	
	en an	$Q^2 > 1.4$	$4 { m GeV}^2$			avor		
Cuts		0.2 < z	< 0.7			and exclusive contributions		
	$P_{hT} <$	$\min[0.2 \ Q, 0]$	$[0.7 \ Qz] + 0.1$	$5~{ m Ge}$	eV		(high z)	
Points	190	190	189		187			
Max. Q^2		9.2 G	${ m deV}^2$	1		Problem with normalizati		
x range	0.06 < x < 0.4					in the previous releas		
	HERMES	HERMES	S HERMI	ES	HERMES	COMPASS	COMPASS	
	1 .			.				

	$D \to \pi^+$	$D \to \pi^-$	$D \to K^+$	$D \to K^-$	$D \rightarrow h^+$	$D o h^-$		
Reference								
		$Q^2 > 1.4 \ { m GeV}^2$						
Cuts		0.2 < z < 0.7						
	$P_{hT} < Min[0.2 \ Q, 0.6 \ Qz] + 0.5 \ GeV$							
Points	188	188	186	187	3024	3021		
Max. Q^2		9.2 (${ m GeV}^2$			$10 \ \mathrm{GeV}^2$		
x range	0.06 < x < 0.4				0.006 < x < 0.12			
					Observable:	$\frac{m_N^h(x,z,\boldsymbol{P}_{hT}^2,Q^2)}{h\left(1-\frac{1}{2}\right)}$		
						$m_N^{\prime\prime}(x,z,\mathrm{Min}[P_{hT}^2],Q^2)$		

14

Data selection: Drell-Yan & Z

	E288 200	E288 300	E288 400	E605		
Cuts	$q_T < 0.2 \ Q + 0.5 \ \text{GeV}$					
Points	45	45	78	35		
\sqrt{s}	$19.4 \mathrm{GeV}$	$23.8 \mathrm{GeV}$	$27.4 \mathrm{GeV}$	$38.8 \mathrm{GeV}$		
Q range	4-9 GeV	4-9 GeV	5-9, 11-14 GeV	7-9, 10.5-18 GeV		
Kin. var.	y=0.4	y = 0.21	y=0.03	$-0.1 < x_F < 0.2$		

	CDF Run I	D0 Run I	CDF Run II	D0 Run II			
Cuts	$q_T <$	$q_T < 0.2 \ Q + 0.5 \ \text{GeV} = 18.7 \ \text{GeV}$					
Points	31	14	37	8			
\sqrt{s}	1.8 TeV	$1.8 { m TeV}$	$1.96 { m ~TeV}$	1.96 TeV			

An almost-global fit

	Framework	HERMES	COMPASS	DY	Z production	N of points
Pavia 2017 arXiv:1703.10157	LO-NLL	~	~	~	~	8059

PROs

CONs

almost a **global fit** of quark unpolarized TMDs

includes TMD evolution

replica (bootstrap) fitting methodology

kinematic dependence for intrinsic k_T

beyond Gaussian assumption for intrinsic k_T

no "pure" info on TMD FFs (would need e+ e- data)

accuracy of TMD evolution: not the state of the art*

only "low" q_T (no fixed order and Y-term)*

no flavor dependence**

* working on it! ** thinking about working on it!

Agreement data-theory

Flavor independent configuration 11 parameters

	HERMES	HERMES	HERMES	HERMES
	$p \to \pi^+$	$p \to \pi^-$	$p \to K^+$	$p \to K^-$
Points	190	190	189	187
χ^2 /points (4.83	2.47	0.91	0.82

Points	Parameters	χ^2	$\chi^2/{ m d.o.f.}$
8059	11	12629 ± 363	1.55 ± 0.05

	HERMES	HERMES	HERMES	HERMES	COMPASS	COMPASS
	$D \to \pi^+$	$D \to \pi^-$	$D \to K^+$	$D \to K^-$	$D \rightarrow h^+$	$D \rightarrow h^{-}$
Points	190	190	189	189	3125	3127
χ^2 /points	3.46	2.00	1.31	2.54	1.11	1.61

	E288 [200]	E288 [300]	E288 [400]	E605
Points	45	45	78	35
χ^2 /points	0.99	0.84	0.32	1.12

	CDF Run I	D0 Run I	CDF Run II	D0 Run II
Points	31	14	37	8
χ^2 /points	1.36	1.11	2.00	1.73

Hermes P/D into π+: problems at low z

Hermes kaons better than pions: larger uncertainties from FFs

Compass : better agreement due to #points and normalization

Stay tuned for LHC data and NLO-NLL 17

Average transverse momenta

Bacchetta, Delcarro, Pisano, Radici, Signori JHEP06(2017)081
Signori, Bacchetta, Radici, Schnell arXiv:1309.3507
Schweitzer, Teckentrup, Metz, arXiv:1003.2190
Anselmino et al. arXiv:1312.6261 [HERMES]
Anselmino et al. arXiv:1312.6261 [HERMES, high z]
Anselmino et al. arXiv:1312.6261 [COMPASS, norm.]
Anselmino et al. arXiv:1312.6261 [COMPASS, high z, norm.]
Echevarria, Idilbi, Kang, Vitev arXiv:1401.5078 (Q = 1.5 GeV)

Red/orange regions: 68% CL from replica method Inclusion of DY/Z diminishes the correlation Inclusion of Compass increases the $\langle P_{\perp}^2 \rangle$ and reduces its spread e+e- would further reduce the correlation

Average transverse momentum

Stability of the results

Best *χ*²/dof = **1.55**

If we

• normalize HERMES data as we did for COMPASS: χ^2 /dof = **1.27**

• change collinear PDFs: w.r.t to NLO GJR 2008 default choice: NLO MSTW 2008 (χ^2 /dof = **1.84**), NLO CJ12 (χ^2 /dof = **1.85**)

• choose more stringent cuts (deeper into TMD factorization region): $Q^2 > 1.5 \text{ GeV}^2$; 0.25 < z < 0.6; $P_{hT} < 0.2 \text{Qz} \Rightarrow \chi^2/\text{dof} = 1.02$ (477 bins)

Conclusions and open issues

First global extraction of TMDs from SIDIS, DY and Z boson

Test of the universality and evolution formalism of partonic TMDs

Definition of a parametrization of TMDs from 8000 data points

Part 2

Stumbling into unexpected problems: Drell-Yan at low Q^2 and high q_T

Low-energy Drell-Yan data

Experiment	Reaction	Year	TMD fits	PDF fits
R209	р-р	1981	 	×
E288	p-Cu(Pt)	1981	 	×
E605	p-Cu	1991	~	~
E866	p-p(d)	2003	×	~
E615	pi-W	1989	×	~

 $20~GeV \lesssim \sqrt{s} \lesssim 60~GeV$

Transverse momentum of Drell-Yan pairs

scale uncertainty

$$p p \rightarrow \mu^+ \mu^- X$$

 $\sqrt{s} = 38.8 \, GeV$

----- asymptotic

 $p Cu(Pt) \rightarrow \mu^+ \mu^- X$

$$p \ Cu(Pt) \rightarrow \mu^+ \mu^- X$$

 $\sqrt{s} = 38.8 \ GeV$

threshold resummation

31

threshold resummation

known similar cases

de Florian Vogelsang PRD 71 114004 (2005)

known similar cases

intrinsic k_T smearing

taken from TMD fit flavour-blind and kinematical-independent (gluons as well!)

Conclusions (?)

- fixed-order pQCD largely underestimates low-energy Drell-Yan data at high q_T
- neither threshold resummation nor intrinsic- k_T models seem to help
- more high q_T data needed
- important to see effects of E866 data in TMD fits
- any help/hint/comment/suggestion is welcome!

Part 3 Impact on precision measurements at the LHC: the W mass case

The extraction of physical quantities

Observables

accessible via counting experiments: cross sections and asymmetries

Pseudo-Observables

- functions of cross sections and symmetries
- require a model to be properly defined
 - M_Z at LEP as pole of the Breit-Wigner resonance factor
 - *Mw* at hadron colliders as fitting parameter of a *template fit* procedure

Template fit

- 1. generate several histograms with the <u>highest available theoretical accuracy</u> and degree of realism in the detector simulation, and let the fit parameter (e.g. *Mw*) vary in a range
- 2. the histogram that best describes data selects the preferred (*i.e. measured*) Mw
- the result of the fit depends on the hypotheses used to compute the templates (PDFs, scales, non-perturbative, different prescriptions, ...)
- these hypotheses should be treated as theoretical systematic errors

General template-fit strategy (example: PDF uncertainty)

Bozzi, Rojo, Vicini PRD 83, 113008 (2011)

- **pseudodata** with different PDF sets: <u>low-statistics</u> (100M) and <u>fixed *M*_{W0}</u>
- templates with a reference PDF set (CTEQ6.6): high-statistics (1B) and different M_W
- same code used to generate both pseudodata and templates → only effect probed is the PDF one

(7 stat, 11 exp, 14 th)

The determination of the *W*-boson mass from the global fit of the electroweak parameters has an uncertainty of 8 MeV, which sets a natural target for the precision of the experimental measurement of the mass of the *W* boson. The modelling uncertainties, which currently dominate the overall uncertainty on the m_W measurement presented in this note, need to be reduced in order to fully exploit the larger data samples available at centre-of-mass energies of 8 and 13 TeV. A better knowledge of the PDFs, as achievable with the inclusion in PDF fits of recent precise measurements of *W*- and *Z*-boson rapidity cross sections with the ATLAS detector [41], and improved QCD and electroweak predictions for Drell-Yan production, are therefore crucial for future measurements of the *W*-boson mass at the LHC.

Observables and techniques

 M_W extracted from the study of the shape of m_T , p_{TI} , p_{Tmiss}

jacobian peak enhances sensitivity to M_W

Transverse mass: important detector smearing effects, weakly sensitive to p_{TW} modelling Lepton p_T : moderate detector smearing effects, extremely sensitive to p_{TW} modelling p_{TW} modelling depends on flavour and all-order treatment of QCD corrections

Observables and techniques

Challenging shape measurement: a distortion at the few per mille level of the distributions yields a shift of O(10 MeV) of the M_W value

Uncertainties on M_W due to p_{TW}

CDF

D0

m_T fit uncertainties			p_T^ℓ fit uncertainties			Source	Section	m_T	p_T^e	E_T		
Source	$W \rightarrow \mu \nu$	$W \rightarrow e v$	Common	Source	$W \rightarrow \mu \nu$	$W \rightarrow ev$	Common	Experimental				
Lepton energy scale	7	10	5	Lepton energy scale	7	10	5	Electron Energy Scale	VIIC4	16	17	16
Lepton energy resolution	1	4	0	Lepton energy resolution	1	4	0	Electron Energy Resolution Electron Shower Model	VIIC5 VC	2	2 6	3
Lepton efficiency	0	0	0	Lepton efficiency	1	2	0	Electron Energy Loss	VD	4	4	4
Lepton tower removal	2	3	2	Lepton tower removal	0	0	0	Recoil Model	VIID3	5	6	14
Recoil scale	5	5	5	Recoil scale	6	6	6	Electron Efficiencies Backgrounds	VII B 10	1 2	3	5
Recoil resolution	7	7	7	Recoil resolution	5	5	5	\sum (Experimental)		18	20	24
Backgrounds	3	4	0	Backgrounds	5	3	0	W Production and Decay Model				
PDFs	10	10	10	PDFs	9	9	9	PDF	VIC	11	11	14
W boson p_T	3	3	(3)	W boson p_T	9	9	9	QED Record are	VIB			9
Photon radiation	4	4	4	Photon radiation	4	4	4	$\sum (Model)$	VIA			17
Statistical	16	19	0	Statistical	18	21	0			10	14	- 11
Total	23	26	15	Total	25	28	16	Systematic Uncertainty (Experimental and Model)		22	24	29
10141	25	20	15					W Boson Statistics	IX	13	14	15
								Total Uncertainty		26	28	33

ATLAS

W-boson charge	W^+		W^{-}		Combined	
Kinematic distribution	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}	p_{T}^ℓ	m_{T}
δm_W [MeV]						
Fixed-order PDF uncertainty	13.1	14.9	12.0	14.2	8.0	8.7
AZ tune	3.0	3.4	3.0	3.4	(3.0)	3.4
Charm-quark mass	1.2	1.5	1.2	1.5	1.2	1.5
Parton shower $\mu_{\rm F}$ with heavy-flavour decorrelation	5.0	6.9	5.0	6.9	5.0	6.9
Parton shower PDF uncertainty	3.6	4.0	2.6	2.4	1.0	1.6
Angular coefficients	5.8	5.3	5.8	5.3	5.8	5.3
Total	15.9	18.1	14.8	17.2	11.6	12.9

p_{TW} and the modelling of intrinsic k_T

- *p*_{TI} ⇔ *p*_{TW} ⇔ QCD initial state radiation + intrinsic *k*_T (usually, a Gaussian in *k*_T)
- Intrinsic k_T effects measured on Z data and used to predict W distributions, assuming universality

Choice of NP parameters

We consider :

- **50 flavour-dependent sets** $\{g_{NP}^{u_v}, g_{NP}^{d_v}, g_{NP}^{u_s}, g_{NP}^{d_s}, g_{NP}^s\}$ with $g_{NP}^a \in [0.2, 0.6]$ GeV²
- **1 flavour-independent set** with $g_{NP}^a = 0.4 \text{ GeV}^2$

"Z-equivalent" sets

NLL+LO QCD curves obtained through a modified version of the **DYqT** code [Bozzi, Catani, deFlorian, Ferrera, Grazzini (2009,2011)] (Tevatron 1.96 TeV & LHC 7 TeV)

Impact on the determination of M_W

- Take the "Z-equivalent" *flavour-dependent* parameter sets and compute *low-statistics* (135M) *m_T* and *p_{Tl}* distributions
 - these are our pseudodata
- Take the *flavour-independent* parameter set and compute *high-statistics* (750M) m_T and p_T distributions for 30 different values of M_W
 - these are our templates
- perform the template fit procedure and compute the shifts induced by flavour effects
- <u>transverse mass</u>: zero or few MeV shifts, generally favouring lower values for W⁻ (preferred by EW fit)
- lepton pt: quite important shifts (W+ set 3: 9 MeV, envelope: up to 15 MeV)

Set	u_v	d_v	u_s	d_s	S
1	0.34	0.26	0.46	0.59	0.32
2	0.34	0.46	0.56	0.32	0.51
3	0.55	0.34	0.33	0.55	0.30
4	0.53	0.49	0.37	0.22	0.52
5	0.42	0.38	0.29	0.57	0.27

	ΔM	l_{W^+}	ΔM_{W^-}		
Set	m_T	$p_{T\ell}$	m_T	$p_{T\ell}$	
1	0	-1	-2	3	
2	0	-6	-2	0	
3	-1	9	-2	-4	
4	0	0	-2	-4	
5	0	4	-1	-3	

NLL+LO QCD analysis obtained through a modified version of the **DYRes** code [Catani, deFlorian, Ferrera, Grazzini (2015)] (LHC 7 TeV, ATLAS acceptance cuts)

Statistical uncertainty: 2.5 MeV

Bacchetta, Bozzi, Radici, Ritzmann, Signori (arXiv:1807.02101)

Outlook

- First flavour-dependent study of the impact of intrinsic transverse momentum on the determination of the W mass
- Flavour effects are both <u>important</u> and <u>detectable</u>: <u>no "flavour-blind" analysis allowed</u>
- Future: possible flavour effects on W mass at LHCb, on CC/NC ratios (i.e., ptW/ptZ), ...