Exclusive dijet or ρ meson production in eA collisions CGC at 1 loop, collinear factorization and the CGC

Renaud Boussarie

Brookhaven National Laboratory

INT workshop November 2018

The shockwave description of the Color Glass Condensate

 The shockwave formalism
 Collinear factorization
 Open parton production
 Dijet production
 ρ_L production
 Applications
 ρ_T production

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Kinematics

$$p_{1} = p^{+} n_{1} - \frac{Q^{2}}{2s} n_{2}$$

$$p_{2} = \frac{m_{t}^{2}}{2p_{2}^{-}} n_{1} + p_{2}^{-} n_{2}$$

$$p^{+} \sim p_{2}^{-} \sim \sqrt{\frac{s}{2}}$$

Lightcone (Sudakov) vectors

$$n_1 = \sqrt{rac{1}{2}}(1, 0_{\perp}, 1), \quad n_2 = \sqrt{rac{1}{2}}(1, 0_{\perp}, -1), \quad (n_1 \cdot n_2) = 1$$

Lightcone coordinates:

$$x = (x^0, x^1, x^2, x^3) \to (x^+, x^-, \vec{x})$$
$$x^+ = x_- = (x \cdot n_2) \quad x^- = x_+ = (x \cdot n_1)$$

Rapidity separation

Let us split the gluonic field between "fast" and "slow" gluons

$$\begin{split} \mathcal{A}^{\mu a}(k^+,k^-,\vec{k}\,) &= & \mathcal{A}^{\mu a}_{\eta}(|k^+| > e^{\eta} p^+,k^-,\vec{k}\,) \\ &+ & b^{\mu a}_{\eta}(|k^+| < e^{\eta} p^+,k^-,\vec{k}\,) \end{split}$$

 $e^{\eta} = e^{-Y} \ll 1$

Large longitudinal boost to the projectile frame

$$b^{\mu}(x) \rightarrow b^{-}(x) n_{2}^{\mu} = \delta(x^{+}) \mathbf{B}(\vec{x}) n_{2}^{\mu} + O(\sqrt{\frac{m_{t}^{2}}{s}})$$

Shockwave approximation

Effective Feynman rules in the external shockwave field

Wilson lines :

$$U^\eta_i = U^\eta_{ec{z}_i} = P \exp\left[ig \int_{-\infty}^{+\infty} b^-_\eta(z^+_i, ec{z}_i) \, dz^+_i
ight]$$

Fourier transform of a Wilson line

$$ilde{U}^\eta(ec{p}) = \int d^{D-2}ec{z} \; e^{-i(ec{p}\cdotec{z})} U^\eta_{ec{z}}$$

Quark line in the external field in momentum space

Exchange in *t*-channel of an effective off-shell particle with 0 momentum along n_1

$$ar{u}(p_q, z_0)|_{U=1} = e^{i(p_q \cdot z_0)} ar{u}_{p_q} \left(1 - rac{\hat{p}_q \gamma^+}{2p_q^+}\right)$$

Factorized picture

Factorized amplitude

$$\mathcal{A}^{\eta} = \int d^{D-2} \vec{z}_1 d^{D-2} \vec{z}_2 \, \Phi^{\eta}(\vec{z}_1, \vec{z}_2) \, \langle \mathcal{P}' | [\operatorname{Tr}(\mathcal{U}^{\eta}_{\vec{z}_1} \mathcal{U}^{\eta\dagger}_{\vec{z}_2}) - \mathcal{N}_c] | \mathcal{P} \rangle$$

Dipole operator $U_{ij}^{\eta} = \frac{1}{N_c} \text{Tr}(U_{\vec{z}_j}^{\eta} U_{\vec{z}_j}^{\eta\dagger}) - 1$ Written similarly for any number of Wilson lines in any color representation!

Evolution for the dipole operator

B-JIMWLK hierarchy of equations [Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner]

$$\frac{\partial \mathcal{U}_{12}^{\eta}}{\partial \eta} = \frac{\alpha_{s} N_{c}}{2\pi^{2}} \int d\vec{z}_{3} \frac{\vec{z}_{12}^{2}}{\vec{z}_{13}^{2} \vec{z}_{23}^{2}} \left[\mathcal{U}_{13}^{\eta} + \mathcal{U}_{32}^{\eta} - \mathcal{U}_{12}^{\eta} + \mathcal{U}_{13}^{\eta} \mathcal{U}_{32}^{\eta} \right] \\ \frac{\partial \mathcal{U}_{13}^{\eta} \mathcal{U}_{32}^{\eta}}{\partial \eta} = \dots$$

Evolves a dipole into a double dipole

The BK equation

Mean field approximation, or 't Hooft planar limit $N_c \to \infty$ in the dipole B-JIMWLK equation replacements

⇒ BK equation [Balitsky, 1995] [Kovchegov, 1999]

$$\frac{\partial \langle \mathcal{U}_{12}^{\eta} \rangle}{\partial \eta} = \frac{\alpha_{s} N_{c}}{2\pi^{2}} \int d\vec{z}_{3} \frac{\vec{z}_{12}^{2}}{\vec{z}_{13}^{2} \vec{z}_{23}^{2}} \left[\langle \mathcal{U}_{13}^{\eta} \rangle + \langle \mathcal{U}_{32}^{\eta} \rangle - \langle \mathcal{U}_{12}^{\eta} \rangle + \langle \mathcal{U}_{13}^{\eta} \rangle \langle \mathcal{U}_{32}^{\eta} \rangle \right]$$

BFKL/BKP part Triple pomeron vertex

Non-linear term : saturation

Practical use of the formalism

- Compute the upper impact factor using the effective Feynman rules
- Build non-perturbative models for the matrix elements of the Wilson line operators acting on the target states
- Solve the B-JIMWLK evolution for these matrix elements with such non-perturbative initial conditions at a typical target rapidity $\eta = Y_0$
- Evaluate the solution at a typical projectile rapidity η = Y, or at the rapidity of the slowest gluon
- Convolute the solution and the impact factor

Exclusive diffraction allows one to probe the b_{\perp} -dependence of the non-perturbative scattering amplitude

Collinear factorization for light vector meson production

Light Cone Collinear Factorization (LCCF) vs Covariant Collinear Factorization (CCF)

The impact factor is the convolution of a hard part and the vacuum-to-meson matrix element of an operator

H and S are by convolution and by summation over spinor and color indices

Spinorial and color factorization

Applying a simple Fierz decomposition in color space and in spinor space

$$\frac{1}{4N_{c}}\mathrm{Tr}_{c,D}\left[\frac{H_{2}}{H_{2}}\Gamma^{\lambda}\right]\left\langle\rho\left|\bar{\psi}\,\Gamma_{\lambda}\,\psi\right|0\right\rangle\qquad\quad\frac{1}{4}\mathrm{Tr}_{c,D}\left[\frac{H_{3}^{\mu,c}}{H_{3}^{\nu}}t^{c}\Gamma^{\lambda}\right]\left\langle\rho\left|\bar{\psi}\,A_{\mu}\Gamma_{\lambda}\,\psi\right|0\right\rangle$$

We thus need to study the following matrix elements:

 $\left\langle
ho \left| \bar{\psi} \, \Gamma_{\lambda} \, \psi \right| 0 \right\rangle$ and $\left\langle
ho \left| \bar{\psi} \, A_{\mu} \Gamma_{\lambda} \, \psi \right| 0 \right\rangle$

Light Cone Collinear Factorization

The Light Cone Collinear Factorization approach

Momentum factorization

- Define a Sudakov vector *n* such that $p \cdot n = 1$ and write $d^4p_q = \int dx \, d^4p_q \, \delta(x p_q \cdot n)$.
- Taylor expansion of the hard part $H(p_q)$ along the collinear direction xp:

$$H(p_q)e^{-ip_q\cdot z}S(z)$$

= $H(xp)e^{-ip_q\cdot z}S(z) + \frac{\partial H(p_q)}{\partial p_q^{\mu}}\Big|_{p_q=xp}(p_q-xp)^{\mu}e^{-ip_q\cdot z}S(z) + \dots$

- $p_q^{\mu} \xrightarrow{lbP}$ derivative of the soft term: $\int d^4 z \ e^{-i\ell \cdot z} \langle \rho(p) | \psi(0) i \ \overleftrightarrow{\partial_{\mu}} \overline{\psi}(z) | 0 \rangle$
- Standard derivative ⇒ need for 3-body contributions to combine into a covariant derivative.

Light Cone Collinear approach

LCCF at twist 2

• Leading twist DA for a longitudinally polarized light vector meson

$$\langle \rho \left| \bar{\psi}(z) \gamma^{\mu} \psi(0) \right| 0 \rangle \rightarrow p^{\mu} f_{\rho} \int_{0}^{1} dx e^{i x(\rho \cdot z)} \varphi_{1}(x)$$

• Leading twist DA for a transversely polarized light vector meson

$$\left\langle \rho \left| \bar{\psi}(z) \sigma^{\mu\nu} \psi(0) \right| 0 \right\rangle \rightarrow i(p^{\mu} \varepsilon^{\nu}_{\rho} - p^{\nu} \varepsilon^{\mu}_{\rho}) f^{T}_{\rho} \int_{0}^{1} dx e^{ix(\rho \cdot z)} \varphi_{\perp}(x)$$

The twist 2 DA for a transverse meson is chiral odd, thus $\gamma^* A \rightarrow \rho_T A$ starts at twist 3

Twist 2

Twist 3 Distribution Amplitudes

Required DAs for ρ_T production at twist 3 in LCCF

• 2-body DAs

$$\begin{split} \left\langle \rho\left(p\right)\left|\bar{\psi}\left(z\right)\gamma_{\mu}\psi\left(0\right)\right|0\right\rangle &\to m_{\rho}f_{\rho}\left[\varphi_{1}\left(x\right)\left(\varepsilon_{\rho}^{*}\cdot n\right)p_{\mu}+\varphi_{3}\left(x\right)\varepsilon_{\rho,T\mu}^{*}\right]\right.\\ \left\langle \rho\left(p\right)\left|\bar{\psi}\left(z\right)\gamma_{5}\gamma_{\mu}\psi\left(0\right)\right|0\right\rangle &\to m_{\rho}f_{\rho}i\varphi_{A}\left(x\right)\varepsilon_{\mu\lambda\beta\delta}\varepsilon_{\rho,T}^{\lambda*}p^{\beta}n^{\delta}\right.\\ \left\langle \rho\left(p\right)\left|\bar{\psi}\left(z\right)\gamma_{\mu}i\overleftrightarrow{\partial}_{\alpha}\psi\left(0\right)\right|0\right\rangle &\to m_{\rho}f_{\rho}\varphi_{1T}\left(x\right)p_{\mu}\varepsilon_{\rho,T\alpha}^{*}\\ \left\langle \rho\left(p\right)\left|\bar{\psi}\left(z\right)\gamma_{5}\gamma_{\mu}i\overleftrightarrow{\partial}_{\alpha}\psi\left(0\right)\right|0\right\rangle &\to m_{\rho}f_{\rho}i\varphi_{AT}\left(x\right)p_{\mu}\varepsilon_{\alpha\lambda\beta\delta}\varepsilon_{\rho,T}^{*\lambda}p^{\beta}n^{\delta}\right. \end{split}$$

• 3-body DAs

$$\left\langle
ho\left(p
ight)\left|ar{\psi}\left(z_{1}
ight)\gamma_{\mu}g\mathcal{A}_{lpha}\left(z_{2}
ight)\psi\left(0
ight)\right|0
ight
angle
ightarrow m_{
ho}f_{3}^{V}B\left(x_{1},x_{2}
ight)p_{\mu}arepsilon_{
hoTlpha}^{*}$$

 $\left\langle
ho\left(\mathbf{p}\right)\left|\bar{\psi}\left(\mathbf{z}_{1}\right)\gamma_{5}\gamma_{\mu}\mathbf{g}A_{\alpha}\left(\mathbf{z}_{2}\right)\psi\left(0\right)\right|0
ight
angle
ightarrow m_{
ho}f_{3}^{A}iD\left(\mathbf{x}_{1},\mathbf{x}_{2}\right)\mathbf{p}_{\mu}\epsilon_{\alpha\lambda\beta\delta}\varepsilon_{
ho T}^{*\lambda}\mathbf{p}^{\beta}\mathbf{n}^{\delta}$

Minimal set of DAs

7 required DAs

• Equations of motion: Dirac equation

$$\left\langle \left(i\hat{D}\psi_{lpha}
ight)\left(0
ight)ar{\psi}_{eta}\left(z
ight)
ight
angle =0, \quad \left\langle \psi_{lpha}\left(0
ight)\left(i\hat{D}ar{\psi}_{eta}
ight)\left(z
ight)
ight
angle =0$$

• Leads to two equations

$$\begin{aligned} x_{1}\varphi_{3}\left(x_{1}\right) + \bar{x}_{1}\varphi_{A}\left(x_{1}\right) + \varphi_{1T}\left(x_{1}\right) + \varphi_{AT}\left(x_{1}\right) \\ + \int dx_{2}\left[\zeta_{3}^{V}B\left(x_{1}, x_{2}\right) + \zeta_{3}^{A}D\left(x_{1}, x_{2}\right)\right] = 0\end{aligned}$$

$$\bar{x}_{1}\varphi_{3}(x_{1}) - x_{1}\varphi_{A}(x_{1}) - \varphi_{1T}(x_{1}) + \varphi_{AT}(x_{1})$$
$$-\int dx_{2} \left[\zeta_{3}^{V}B(x_{2},x_{1}) - \zeta_{3}^{A}D(x_{2},x_{1})\right] = 0$$

7-2 required DAs

Minimal set of DAs

7-2 required DAs

- *n*-independence. *n* appeared in three constraints:
 - Lighcone direction of the separation $z: z = \lambda n$
 - Definition of the transverse polarization $\varepsilon_{\rho} \cdot \mathbf{n} = 0$
 - Chosen gauge $n \cdot A = 0$
- Leads to 2 additional constraints for the DAs, plus the gauge invariance condition.

7-4 required DAs

 $\begin{array}{lll} \varphi(x) & \leftarrow \text{ 2-body twist 2 correlator} \\ B(x_1, x_2) & \leftarrow \text{ 3-body genuine twist 3 vector correlator} \\ D(x_1, x_2) & \leftarrow \text{ 3-body genuine twist 3 axial correlator} \end{array}$

Covariant Collinear Factorization

- Work directly on the operators, with gauge invariant light ray operators
- 2-body correlators

$$\left\langle
ho\left(p
ight)\left|ar{\psi}\left(z
ight)\left[z,0
ight]\gamma^{\mu}\psi\left(0
ight)\right|0
ight
angle
ight
angle
ight
angle f_{
ho}m_{
ho}\left[-ip^{\mu}\left(arepsilon_{
ho}^{*}\cdot z
ight)h\left(x
ight)+arepsilon_{
ho}^{\mu*}g_{\perp}^{\left(v
ight)}\left(x
ight)
ight]$$

$$\left\langle
ho\left(p
ight)\left|ar{\psi}\left(z
ight)\left[z,0
ight]\gamma_{5}\gamma_{\mu}\psi\left(0
ight)\right|0
ight
angle
ight
ight
angle
ight
angle
ightarrowrac{1}{4}f_{
ho}m_{
ho}\epsilon_{\mulphaeta\delta}\varepsilon_{
ho\perp}^{lpha}p^{eta}z^{\delta}g_{\perp}^{\left(a
ight)}\left(x
ight)$$

• 3-body correlators

$$\begin{split} &\left\langle \rho\left(p\right)\left|\bar{\psi}\left(z\right)\left[z,tz\right]\gamma_{\alpha}gG_{\mu\nu}\left(tz\right)\left[tz,0\right]\psi\left(0\right)\right|0\right\rangle \right.\\ &\left.\rightarrow-im_{\rho}f_{3\rho}^{V}p_{\alpha}\left(p_{\mu}\varepsilon_{\rho\perp\nu}^{*}-p_{\nu}\varepsilon_{\rho\perp\mu}^{*}\right)V\left(x_{1},x_{2}\right)\right.\\ &\left.\left\langle \rho\left(p\right)\left|\bar{\psi}\left(z\right)\left[z,tz\right]\gamma_{\alpha}\gamma_{5}g\tilde{G}_{\mu\nu}\left(tz\right)\left[tz,0\right]\psi\left(0\right)\right|0\right\rangle \right.\\ &\left.\rightarrow-m_{\rho}f_{3\rho}^{A}p_{\alpha}\left(p_{\mu}\varepsilon_{\rho\perp\nu}^{*}-p_{\nu}\varepsilon_{\rho\perp\mu}^{*}\right)A\left(x_{1},x_{2}\right)\right. \end{split}$$

• Equations of motions \Rightarrow only 3 DAs are required

The shockwave formalism	Collinear factorization	Open parton production	Dijet production	ρ_L production	Applications	ρ_T production
000000000	00000000000	000000000000000000000000000000000000000	00000	00000	000000000	000000000000000000000000000000000000000

Matching at twist 3 accuracy

LCCF	CCF
$\varphi_{3}(x)$	$g_{\perp}^{(v)}(x)$
$\varphi_{1}^{T}(x)$	$\tilde{h}(x) - h(x)$
$\varphi_A(x)$	$-\frac{1}{4}\frac{\partial g_{\perp}^{(a)}}{\partial x}(x)$
$\varphi_A^T(x)$	$-rac{1}{4}g_{\perp}^{(a)}\left(x ight)$
$B\left(x_{q}, x_{\bar{q}}; x_{g}\right)$	$\frac{-V(x_q, x_{\bar{q}}; x_g)}{1 - x_q - x_{\bar{q}}}$
$D(x_q, x_{\bar{q}})$	$\frac{-A(x_q, x_{\bar{q}}; x_g)}{1 - x_q - x_{\bar{q}}}$

A process-specific comparison was done previously [Anikin, Ivanov, Pire, Szymanowski, Wallon]

A completely generic proof exists [RB et al, to be published].

Open parton production at NLO

First step: open parton production

- Regge-Gribov limit : $s \gg Q^2 \gg \Lambda_{QCD}$
- Otherwise completely general kinematics
- Shockwave (CGC) Wilson line approach
- Transverse dimensional regularization $d = 2 + 2\varepsilon$, longitudinal cutoff

 $|\boldsymbol{p}_{g}^{+}| > \alpha \boldsymbol{p}_{\gamma}^{+}$

Collinear factorization	Open parton production	Dijet production	ρ_L production	Applications	ρ_T production
	••••••••••••••••				000000000000000000000000000000000000000

LO diagram

$$\mathcal{A} = \frac{\delta^{ik}}{\sqrt{N_c}} \int d^D z_0 [\bar{u}(p_q, z_0)]_{ij}(-ie_q) \hat{e}_{\gamma} e^{-i(p_{\gamma} \cdot z_0)} [v(p_{\bar{q}}, z_0)]_{jk} \theta(-z_0^+)$$

= $\delta(p_q^+ + p_{\bar{q}} - p_{\gamma}^+) \int d^d \vec{p}_1 d^d \vec{p}_2 \delta(\vec{p}_q + \vec{p}_{\bar{q}} - \vec{p}_{\gamma} - \vec{p}_1 - \vec{p}_2) \Phi_0(\vec{p}_1, \vec{p}_2)$
 $\times \langle P' | \tilde{\mathcal{U}}^{\alpha}(\vec{p}_1, \vec{p}_2) | P \rangle$

$$\tilde{\mathcal{U}}^{\alpha}(\vec{p}_{1},\vec{p}_{2}) = \int d^{d}\vec{z}_{1}d^{d}\vec{z}_{2} \ e^{-i(\vec{p}_{1}\cdot\vec{z}_{1})-i(\vec{p}_{2}\cdot\vec{z}_{2})} [\frac{1}{N_{c}} \text{Tr}(U^{\alpha}_{\vec{z}_{1}}U^{\alpha\dagger}_{\vec{z}_{2}}) - 1]$$

NLO open $q\bar{q}$ production

Diagrams contributing to the NLO correction

First kind of virtual corrections

Second kind of virtual corrections

Color factor

$$\frac{\delta^{ik}}{\sqrt{N_c}}(t^a U_1 t^b U_2^\dagger)_{ik} (U_3)^{ab}$$

Action of the Wilson line in the adjoint representation

$$(U_3)^{ab}t^b = U_3t^aU_3^{\dagger} \quad \Rightarrow \quad (U_3)^{ab} = 2\mathrm{Tr}(t^aU_3t^bU_3^{\dagger})$$

+ Fierz identity

$$C_F \mathcal{U}_{12} + \frac{1}{2} [\mathcal{U}_{13} + \mathcal{U}_{32} - \mathcal{U}_{12} + \mathcal{U}_{13} \mathcal{U}_{32}] = C_F \mathcal{U}_{12} + \mathcal{W}_{123}$$

Second kind of virtual corrections

$$\begin{split} \mathcal{A}_{NLO}^{(2)} &\propto \delta(p_q^+ + p_{\bar{q}} - p_{\gamma}^+) \int \! d^d \vec{p}_1 d^d \vec{p}_2 d^d \vec{p}_3 \, \delta(\vec{p}_q + \vec{p}_{\bar{q}} - \vec{p}_{\gamma} - \vec{p}_1 - \vec{p}_2 - \vec{p}_3) \\ \times [\Phi_{V1}'(\vec{p}_1, \vec{p}_2) \, \mathcal{C}_F \, \left\langle P' \right| \tilde{\mathcal{U}}^{\alpha}(\vec{p}_1, \vec{p}_2) \, |P\rangle(2\pi)^d \delta(\vec{p}_3) \\ + \Phi_{V2}(\vec{p}_1, \vec{p}_2, \vec{p}_3) \, \left\langle P' \right| \tilde{\mathcal{W}}(\vec{p}_1, \vec{p}_2, \vec{p}_3) \, |P\rangle] \end{split}$$

LO open $q\bar{q}g$ production

 $\begin{aligned} \mathcal{A}_{R}^{(2)} &\propto \delta(p_{q}^{+} + p_{\bar{q}} + p_{g}^{+} - p_{\gamma}^{+}) \int d^{d}\vec{p}_{1}d^{d}\vec{p}_{2}d^{d}\vec{p}_{3}\delta(\vec{p}_{q} + \vec{p}_{\bar{q}} + \vec{p}_{g} - \vec{p}_{\gamma} - \vec{p}_{1} - \vec{p}_{2} - \vec{p}_{3}) \\ \times [\Phi_{R1}^{\prime}(\vec{p}_{1}, \vec{p}_{2}) C_{F} \langle P^{\prime} | \tilde{\mathcal{U}}^{\alpha}(\vec{p}_{1}, \vec{p}_{2}) | P \rangle (2\pi)^{d} \delta(\vec{p}_{3}) \\ + \Phi_{R2}^{\prime}(\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}) \langle P^{\prime} | \tilde{\mathcal{W}}(\vec{p}_{1}, \vec{p}_{2}, \vec{p}_{3}) | P \rangle] \end{aligned}$

$$\begin{aligned} \mathcal{A}_{R}^{(1)} &\propto \delta(p_{q}^{+} + p_{\bar{q}} + p_{g}^{+} - p_{\gamma}^{+}) \int d^{d}\vec{p}_{1}d^{d}\vec{p}_{2}\delta(\vec{p}_{q} + \vec{p}_{\bar{q}} + \vec{p}_{g} - \vec{p}_{\gamma} - \vec{p}_{1} - \vec{p}_{2}) \\ &\times \Phi_{R1}(\vec{p}_{1}, \vec{p}_{2}) C_{F} \left\langle P' \right| \tilde{\mathcal{U}}^{\alpha}(\vec{p}_{1}, \vec{p}_{2}) \left| P \right\rangle \end{aligned}$$

Generic computation method

- Perform the k_{\perp} integration with the usual *d*-dimensional regularization methods
- Perform the k^+ integration with the longitudinal cutoff αp_{γ}^+ when possible, or isolate the divergent term by + prescription

$$\int_{\alpha p_{\gamma}^{+}}^{\rho^{+}} dk^{+} \frac{F(k^{+})}{k^{+}} = \int_{\alpha p_{\gamma}^{+}}^{\rho^{+}} dk^{+} \frac{F(0)}{k^{+}} + \int_{0}^{\rho^{+}} dk^{+} \left[\frac{F(k^{+})}{k^{+}} \right]_{-}^{-}$$

	Collinear factorization	Open parton production	Dijet production	ρ_I production	Applications	ρ_T production
		000000000000000000000000000000000000000	00000			000000000000000000000000000000000000000
Divergences						

Divergences

- Rapidity divergence $p_g^+ \rightarrow 0$ $\Phi_{V2} \Phi_0^* + \Phi_0 \Phi_{V2}^*$
- UV divergence $\vec{p}_g^2 \rightarrow +\infty$ $\Phi_{V1} \Phi_0^* + \Phi_0 \Phi_{V1}^*$
- Soft divergence $p_g \rightarrow 0$ $\Phi_{V1} \Phi_0^* + \Phi_0 \Phi_{V1}^*, \Phi_{R1} \Phi_{R1}^*$
- Collinear divergence $p_g \propto p_q$ or $p_{\bar{q}}$ $\Phi_{R1} \Phi_{R1}^*$

• Soft and collinear divergence $p_g = \frac{p_g^+}{p_q^+} p_q$ or $\frac{p_g^+}{p_s^+} p_{\bar{q}}$, $p_g^+ \to 0$ $\Phi_{R1} \Phi_{R1}^*$

Rapidity divergence

B-JIMWLK evolution of the LO term : $\Phi_0 \otimes \mathcal{K}_{BK}$

Rapidity divergence

B-JIMWLK equation for the dipole operator

$$\begin{split} \frac{\partial \tilde{\mathcal{U}}_{12}^{\alpha}}{\partial \log \alpha} &= 2\alpha_{s} N_{c} \mu^{2-d} \int \frac{d^{d} \vec{k}_{1} d^{d} \vec{k}_{2} d^{d} \vec{k}_{3}}{(2\pi)^{2d}} \delta(\vec{k}_{1} + \vec{k}_{2} + \vec{k}_{3} - \vec{p}_{1} - \vec{p}_{2}) \Big(\tilde{\mathcal{U}}_{13}^{\alpha} \tilde{\mathcal{U}}_{32}^{\alpha} + \tilde{\mathcal{U}}_{13}^{\alpha} + \tilde{\mathcal{U}}_{32}^{\alpha} - \tilde{\mathcal{U}}_{12}^{\alpha} \Big) \\ \times \left[2 \frac{(\vec{k}_{1} - \vec{p}_{1}) \cdot (\vec{k}_{2} - \vec{p}_{2})}{(\vec{k}_{1} - \vec{p}_{1})^{2} (\vec{k}_{2} - \vec{p}_{2})^{2}} + \frac{\pi^{\frac{d}{2}} \Gamma(1 - \frac{d}{2}) \Gamma^{2}(\frac{d}{2})}{\Gamma(d-1)} \left(\frac{\delta(\vec{k}_{2} - \vec{p}_{2})}{\left[(\vec{k}_{1} - \vec{p}_{1})^{2} \right]^{1 - \frac{d}{2}}} + \frac{\delta(\vec{k}_{1} - \vec{p}_{1})}{\left[(\vec{k}_{2} - \vec{p}_{2})^{2} \right]^{1 - \frac{d}{2}}} \right) \right] \end{split}$$

 η rapidity divide, which separates the upper and the lower impact factors

$$\Phi_0 \tilde{\mathcal{U}}_{12}^{lpha}
ightarrow \Phi_0 \tilde{\mathcal{U}}_{12}^{\eta} + 2 \log\left(rac{e^{\eta}}{lpha}
ight) \mathcal{K}_{BK} \Phi_0 \tilde{\mathcal{W}}_{123}$$

Rapidity divergence

Virtual contribution

$$(\Phi^{\mu}_{V2})_{div} \propto \Phi^{\mu}_0 \left\{ 4 \ln \left(\frac{x \bar{x}}{\alpha^2} \right) \left[\frac{1}{\varepsilon} + \ln \left(\frac{\vec{p_3}^2}{\mu^2} \right) \right] - \frac{6}{\varepsilon} \right\}$$

BK contribution

$$(\Phi^{\mu}_{BK})_{div} \propto \Phi^{\mu}_0 \left\{ 4 \ln \left(rac{lpha^2}{e^{2\eta}}
ight) \left[rac{1}{arepsilon} + \ln \left(rac{ec{m{p}_3}^2}{\mu^2}
ight)
ight]
ight\}$$

Sum : the α dependence cancels

$$(\Phi_{V2}^{\prime\mu})_{div} \propto \Phi_0^{\mu} \left\{ 4 \ln \left(\frac{x \bar{x}}{e^{2\eta}} \right) \left[\frac{1}{\varepsilon} + \ln \left(\frac{\vec{p_3}^2}{\mu^2} \right) \right] - \frac{6}{\varepsilon} \right\}$$
Rapidity divergence

Cancellation of the remaining $1/\epsilon$ divergence

Convolution

$$\begin{aligned} \left(\Phi_{V2}^{\prime \mu} \otimes \mathcal{W} \right) &= 2 \int d^d \vec{p}_1 d^d \vec{p}_2 d^d \vec{p}_3 \left\{ 4 \ln \left(\frac{x \bar{x}}{e^{2 \eta}} \right) \left[\frac{1}{\varepsilon} + \ln \left(\frac{\vec{p}_3^2}{\mu^2} \right) \right] - \frac{6}{\varepsilon} \right\} \\ &\times \delta(\vec{p}_{q1} + \vec{p}_{\bar{q}2} - \vec{p}_3) \left[\tilde{\mathcal{U}}_{13} + \tilde{\mathcal{U}}_{32} - \tilde{\mathcal{U}}_{12} - \tilde{\mathcal{U}}_{13} \tilde{\mathcal{U}}_{32} \right] \Phi_0^{\mu}(\vec{p}_1, \vec{p}_2) \end{aligned}$$

Rq :

- $\Phi_0(\vec{p_1}, \vec{p_2})$ only depends on one of the *t*-channel momenta.
- The double-dipole operators cancels when $\vec{z_3} = \vec{z_1}$ or $\vec{z_3} = \vec{z_2}$.

This permits one to show that the convolution cancels the remaining $\frac{1}{\epsilon}$ divergence.

Then
$$\tilde{\mathcal{U}}_{12}^{\alpha} \Phi_0 + \Phi_{V2}$$
 is finite

Collinear factorization	Open parton production	Dijet production	ρ_L production	Applications	ρ_T production
	000000000000000000000000000000000000000	00000		00000000	000000000000000000000000000000000000000

Divergences

- Rapidity divergence
- UV divergence $\vec{p}_g^2 \rightarrow +\infty$ $\Phi_{V1} \Phi_0^* + \Phi_0 \Phi_{V1}^*$
- Soft divergence $p_g \rightarrow 0$ $\Phi_{V1} \Phi_0^* + \Phi_0 \Phi_{V1}^*, \Phi_{R1} \Phi_{R1}^*$
- Collinear divergence $p_g \propto p_q$ or $p_{\bar{q}}$ $\Phi_{R1} \Phi_{R1}^*$
- Soft and collinear divergence $p_g = \frac{p_g^+}{p_q^+} p_q$ or $\frac{p_g^+}{p_q^+} p_{\bar{q}}$, $p_g^+ \to 0$ $\Phi_{R1} \Phi_{R1}^*$

Some null diagrams just contribute to turning UV divergences into IR divergences

$$\Phi = 0 \propto \left(\frac{1}{2\epsilon_{IR}} - \frac{1}{2\epsilon_{UV}}\right)$$

In the massless limit, renormalization of the external quark lines is absent in dimensional regularization.

Collinear factorization	Open parton production	Dijet production	ρ_L production	Applications	ρ_T production
	00000000000000000	00000		00000000	000000000000000000000000000000000000000

Divergences

- Rapidity divergence
- UV divergence
- Soft divergence $p_g \rightarrow 0$ $\Phi_{V1} \Phi_0^* + \Phi_0 \Phi_{V1}^*, \Phi_{R1} \Phi_{R1}^*$
- Collinear divergence $p_g \propto p_q$ or $p_{\bar{q}}$ $\Phi_{R1} \Phi_{R1}^*$
- Soft and collinear divergence $p_g = \frac{p_g^+}{p_q^+} p_q$ or $\frac{p_g^+}{p_q^+} p_{\bar{q}}$, $p_g^+ \to 0$ $\Phi_{R1} \Phi_{R1}^*$

Constructing a finite cross section

Exclusive diffractive production of a forward dijet

From partons to jets

[R.B.,A.V.Grabovsky,L.Szymanowski,S.Wallon] JHEP 1611 (2016) 149

Soft and collinear divergence

Jet cone algorithm

We define a cone width for each pair of particles with momenta p_i and p_k , rapidity difference ΔY_{ik} and relative azimuthal angle $\Delta \varphi_{ik}$

$$\left(\Delta Y_{ik}\right)^2 + \left(\Delta \varphi_{ik}\right)^2 = R_{ik}^2$$

If $R_{ik}^2 < R^2$, then the two particles together define a single jet of momentum $p_i + p_k$.

Applying this in the small R^2 limit cancels our soft and collinear divergence.

Remaining divergence

Soft real emission

$$\left(\Phi_{R1}\Phi_{R1}^*
ight)_{soft}\propto \left(\Phi_0\Phi_0^*
ight)\int_{ ext{outside the cones}}\left|rac{p_q^\mu}{(p_q.p_g)}-rac{p_{ar{q}}^\mu}{(p_{ar{q}}.p_g)}
ight|^2rac{dp_g^+}{p_g^+}rac{d^dp_g}{(2\pi)^d}$$

Collinear real emission

$$\left(\Phi_{\textit{R1}}\Phi_{\textit{R1}}^{*}
ight)_{\textit{col}}\propto\left(\Phi_{0}\Phi_{0}^{*}
ight)\left(\mathcal{N}_{\textit{q}}+\mathcal{N}_{\bar{\textit{q}}}
ight)$$

Where $\ensuremath{\mathcal{N}}$ is the number of jets in the quark or the antiquark

$$\mathcal{N}_{k} = \frac{(4\pi)^{\frac{d}{2}}}{\Gamma(2-\frac{d}{2})} \int_{\alpha p_{\gamma}^{+}}^{p_{jet}^{+}} \frac{dp_{g}^{+}dp_{k}^{+}}{2p_{g}^{+}2p_{k}^{+}} \int_{\mathrm{in \ cone \ k}} \frac{d^{d}\vec{p}_{g}d^{d}\vec{p}_{k}}{(2\pi)^{d} \mu^{d-2}} \frac{\mathrm{Tr}\left(\hat{p}_{k}\gamma^{\mu}\hat{p}_{jet}\gamma^{\nu}\right)d_{\mu\nu}(p_{g})}{2p_{jet}^{+}\left(p_{k}^{-}+p_{g}^{-}-p_{jet}^{-}\right)^{2}}$$

Those two contributions cancel exactly the virtual divergences

Cancellation of divergences

Total divergence

$$(d\sigma_1)_{div} = \alpha_s \frac{\Gamma(1-\varepsilon)}{(4\pi)^{1+\varepsilon}} \left(\frac{N_c^2-1}{2N_c}\right) (S_V + S_V^* + S_R + \mathcal{N}_{jet1} + \mathcal{N}_{jet2}) d\sigma_0$$

Virtual contribution

$$S_{V} = \left[2\ln\left(\frac{x_{j}x_{j}^{2}}{\alpha^{2}}\right) - 3\right] \left[\ln\left(\frac{x_{j}x_{j}^{2}\mu^{2}}{(x_{j}\vec{p}_{j}^{2} - x_{j}\vec{p}_{j})^{2}}\right) - \frac{1}{\epsilon}\right] + 2i\pi\ln\left(\frac{x_{j}x_{j}^{2}}{\alpha^{2}}\right) + \ln^{2}\left(\frac{x_{j}x_{j}}{\alpha^{2}}\right) - \frac{\pi^{2}}{3} + 6$$

Real contribution

$$\begin{split} S_{R} + \mathcal{N}_{jet1} + \mathcal{N}_{jet2} &= 2 \left[\ln \left(\frac{(x_{j}\bar{p}_{j}^{-} - x_{j}\bar{p}_{j}^{-1})^{4}}{x_{j}^{2}x_{j}^{2}R^{4}\bar{p}_{j}^{-2}\bar{p}_{j}^{-2}} \right) \ln \left(\frac{4E^{2}}{x_{j}x_{j}(p_{\gamma}^{+})^{2}} \right) \\ &+ 2 \ln \left(\frac{x_{j}x_{j}}{\alpha^{2}} \right) \left(\frac{1}{\epsilon} - \ln \left(\frac{x_{j}x_{j}\mu^{2}}{(x_{j}\bar{p}_{j}^{-} - x_{j}\bar{p}_{j}^{-2})} \right) \right) - \ln^{2} \left(\frac{x_{j}x_{j}}{\alpha^{2}} \right) \\ &+ \frac{3}{2} \ln \left(\frac{16\mu^{4}}{R^{4}\bar{p}_{j}^{-2}\bar{p}_{j}^{-2}} \right) - \ln \left(\frac{x_{j}}{x_{j}} \right) \ln \left(\frac{x_{j}\bar{p}_{j}^{-2}}{x_{j}\bar{p}_{j}^{-2}} \right) - \frac{3}{\epsilon} - \frac{2\pi^{2}}{3} + 7 \right] \end{split}$$

Cancellation of divergences

Total "divergence"

$$div = S_V + S_V^* + S_R + \mathcal{N}_{jet1} + \mathcal{N}_{jet2}$$

$$= 4 \left[\frac{1}{2} \ln \left(\frac{(x_{\bar{j}} \vec{p}_{j} - x_{j} \vec{p}_{\bar{j}})^{4}}{x_{\bar{j}}^{2} x_{j}^{2} R^{4} \vec{p}_{\bar{j}}^{2} \vec{p}_{j}^{2}} \right) \left(\ln \left(\frac{4E^{2}}{x_{\bar{j}} x_{j} (p_{\gamma}^{+})^{2}} \right) + \frac{3}{2} \right) \right. \\ \left. + \ln \left(8 \right) - \frac{1}{2} \ln \left(\frac{x_{j}}{x_{\bar{j}}} \right) \ln \left(\frac{x_{j} \vec{p}_{j}^{2}}{x_{\bar{j}} \vec{p}_{j}^{2}} \right) + \frac{13 - \pi^{2}}{2} \right]$$

Our cross section is thus finite

Constructing a finite amplitude

Exclusive diffractive ρ_L production

[RB, Grabovsky, Ivanov, Szymanowski, Wallon] Phys.Rev.Lett. 119 (2017) ; arXiv:1612.08026 Non-forward and non-dilute extension of [Ivanov, Kotsky, Papa]

s-channel collinear factorization

Twist 2: ρ_L production

Singlet transition \Rightarrow only virtual diagrams contribute. Leading twist matrix element:

$$\left\langle \rho_{L}\left(p
ight)\left|ar{\psi}\left(z
ight)\gamma^{\lambda}\psi\left(0
ight)\right|0
ight
angle
ight.
ightarrow f_{
ho}m_{
ho}p^{\lambda}\int_{0}^{1}dx \ e^{-ixp\cdot z}\varphi_{\parallel}\left(x
ight)$$

Take the NLO open parton production result with collinear kinematics $(p_q, p_{\bar{q}}) = (xp, \bar{x}p)$, project on the leading twist Fierz matrix γ^- and convolute with the twist 2 DA φ_1

Exclusive diffractive production of a light neutral vector meson

$$\begin{array}{lll} \mathfrak{A}_{0} & = & -\frac{e_{V} f_{V} \varepsilon_{\beta}}{N_{c}} \int_{0}^{1} dx \varphi_{\parallel} \left(x \right) \int \frac{d^{d} \vec{p}_{1}}{\left(2\pi \right)^{d}} \frac{d^{d} \vec{p}_{2}}{\left(2\pi \right)^{d}} \\ & \times & \left(2\pi \right)^{d+1} \delta \left(p_{V}^{+} - p_{\gamma}^{+} \right) \delta \left(\vec{p}_{V} - \vec{p}_{\gamma} - \vec{p}_{1} - \vec{p}_{2} \right) \\ & \times & \Phi_{0}^{\beta} \left(x, \ \vec{p}_{1}, \ \vec{p}_{2} \right) \tilde{\mathcal{U}}_{12}^{\eta}. \end{array}$$

Leading twist for a longitudinally polarized meson Otherwise general kinematics, including transverse virtual photon (twist 3) contributions, and the photoproduction limit (for large t-channel momentum transfer)

ERBL evolution equation

Efremov, Radyushkin, Brodsky, Lepage evolution equation for a DA

Renormalization of the bilocal operator

 $\bar{\psi}(z)\gamma^{\mu}\psi(0)$

 \Rightarrow Evolution equation for the distribution amplitude in the \overline{MS} scheme

$$\frac{\partial \varphi(x,\mu_F^2)}{\partial \ln \mu_F^2} = \frac{\alpha_s C_F}{2\pi} \frac{\Gamma(1-\epsilon)}{(4\pi)^{\epsilon}} \left(\frac{\mu_F^2}{\mu^2}\right)^{\epsilon} \int_0^1 dz \varphi(z,\mu_F^2) \mathcal{K}(x,z),$$

 $\mathcal{K} = \mathsf{ERBL} \; \mathsf{kernel}$

ERBL evolution equation

Evolution equation for the distribution amplitude in the \overline{MS} scheme

$$\frac{\partial \varphi(x,\mu_F^2)}{\partial \ln \mu_F^2} = \frac{\alpha_s C_F}{2\pi} \frac{\Gamma(1-\epsilon)}{(4\pi)^{\epsilon}} \left(\frac{\mu_F^2}{\mu^2}\right)^{\epsilon} \int_0^1 dz \varphi(z,\mu_F^2) \mathcal{K}(x,z),$$

where we parameterize the ERBL kernel for consistency as

$$\mathcal{K}(x, z) = \frac{x}{z} \left[1 + \frac{1}{z - x} \right] \theta(z - x - \alpha)$$

+
$$\frac{1 - x}{1 - z} \left[1 + \frac{1}{x - z} \right] \theta(x - z - \alpha)$$

+
$$\left[\frac{3}{2} - \ln \left(\frac{x(1 - x)}{\alpha^2} \right) \right] \delta(z - x).$$

It is equivalent to the usual ERBL kernel It provides the right counterterm to obtain a finite amplitude

Practical use of such results for phenomenology

Practical use of such results

- Compute the upper impact factor using the effective Feynman rules
- Build non-perturbative models for the matrix elements of the Wilson line operators acting on the target states
- Solve the B-JIMWLK evolution for these matrix elements with such non-perturbative initial conditions at a typical target rapidity $\eta = Y_0$
- Evaluate the solution at a typical projectile rapidity η = Y, or at the rapidity of the slowest gluon (cf. Bertrand's talk)
- Convolute the solution and the impact factor

Residual parameter dependence

Required parameters

- Renormalization scale μ_R
- Factorization scale μ_F if assumed that $\mu_F \neq \mu_R$
- Typical target rapidity Y_0
- Typical projectile rapidity Y

In the linear BFKL limit, the cross section only depends on $Y - Y_0$, so one only needs one arbitrary parameter s_0 defined by

$$Y-Y_0=\ln\left(\frac{s}{s_0}\right).$$

Modifying any of these parameter results in a higher order (NNLO) contribution

General amplitude

Very general result

- The hard scale can be Q^2 or t
- The target can be either a proton or an ion, or another impact factor
- Finite results for $Q^2 = 0$ at large t
- One can study ultraperipheral collision in the limit $Q^2 \rightarrow 0$ at large *t*.
- Thus suited for HERA fitting, LHC UPC predictions, and perfectly suited for EIC studies

Theoretical issues

Two theoretical questions

• How to get to the BFKL limit at NLL?

• What about end-point singularities for the power-suppressed $\gamma_T \rightarrow \rho_L$ contribution?

The shockwave formalism Collinear factorization Open parton production Dijet production ρ_I production Applications Comparison with previous results: JIMWLK/BFKL equivalence

In the forward t = 0 limit and in the linear BFKL limit, the $\gamma_L \rightarrow \rho_L$ impact factor was computed at NLO [Ivanov, Kotsky, Papa].

JIMWLK convolution

BFKL convolution

0000000000

$$\int d^d p_1 d^d p_2 \Phi_{CGC}(p_1, p_2) \tilde{\mathcal{U}}(p_1, p_2)$$

$$\int d^d q_1 d^d q_2 \Phi_{BFKL}(q_1,q_2) R(q_1) R(q_2)$$

 $\hat{\mathcal{U}}(p_1, p_2)$ dipole scattering operator

R(q) Reggeon field

Defining the Reggeon field in the CGC as the logarithm of a Wilson line [Caron-Huot]

$$R^{a}(x) \equiv \frac{f^{abc}}{gC_{A}} \left(\ln U_{x}^{adj} \right)^{bc}$$

$$U_x = 1 + igt^a R^a(x) - rac{g^2}{2} t^a t^b R^a(x) R^b(x) + O(g^3)$$

Such fields are Reggeized by the JIMWLK Hamiltonian, satisfy the BFKL equation and satisfy bootstrap equations.

JIMWLK/BFKL equivalence

Linear limit of diffractive CGC impact factors

$$\int d^{2} p_{1} d^{2} p_{2} \varphi (p_{1}, p_{2}) \tilde{\mathcal{U}} (p_{1}, p_{2})$$

$$= \frac{g^{2}}{4N_{c}} \int d^{2} q_{1} d^{2} q_{2} R^{*} (q_{1}) R^{*} (q_{2}) [2\varphi (q_{1}, q_{2}) - \varphi (q_{1} + q_{2}, 0) - \varphi (0, q_{1} + q_{2})]$$

This matches our result to the leading order BFKL result.

At NLL accuracy, things are interestingly worse due to the ambiguity of distribution of radiative corrections between impact factors and kernels.

Equivalence with BFKL at NLL accuracy

Linear limit: usual k_t -factorization (BFKL framework)

s-channel discontinuity of $A + B \rightarrow A' + B'$ scattering amplitudes

$$\delta(p_{A'}+p_{B'}-p_{A}-p_{B})Disc_{s}\mathcal{A}_{AB}^{A'B'} \propto \Phi(A',A)\otimes \mathcal{K}\otimes \Phi(B',B)$$

For any non-singular operator \mathcal{O} this discontinuity is invariant under

$$\Phi(A',A) o \Phi(A',A) \mathcal{O}, \quad \mathcal{K} o \mathcal{O}^{-1}\mathcal{K}\mathcal{O}, \quad \Phi(B',B) o \mathcal{O}^{-1}\Phi(B',B)$$

i.e. there is an ambiguity of distribution of corrections between the impact factors and the kernel. In the linear approximation of BK there exists an operator ${\cal O}$ such that

$$\Phi_{BK} \otimes \mathcal{K}_{BK} \otimes \Phi_{BK} = (\Phi_{BFKL} \otimes \mathcal{O}) \otimes (\mathcal{O}^{-1} \otimes \mathcal{K}_{BFKL} \otimes \mathcal{O}) \otimes (\mathcal{O}^{-1} \otimes \Phi_{BFKL})$$

The expression for \mathcal{O} to make the kernels explicitly equivalent at NLO accuracy under such a change of variables is known [Fadin, Fiore, Grabovsky, Papa] Comparing our NLL CGC impact factor with the NLL BFKL impact factor should confirm this expression.

End point singularities and factorization

End point singularities?

Leading order impact factor for, respectively, $\gamma_L^* \to V_L$ and $\gamma_T^* \to V_L$ transitions:

$$\begin{split} \Phi_{L}^{(0)} &= \frac{2x\bar{x}p_{V}^{+}Q}{(\bar{x}\vec{p}_{1}-x\vec{p}_{2})^{2}+x\bar{x}Q^{2}}, \\ \Phi_{T}^{(0)} &= -\frac{(x-\bar{x})p_{V}^{+}(\bar{x}\vec{p}_{1\perp}-x\vec{p}_{2\perp})\cdot\vec{\varepsilon}_{\gamma_{T}}}{(\bar{x}\vec{p}_{1}-x\vec{p}_{2})^{2}+x\bar{x}Q^{2}} \end{split}$$

No end point singularity, even for a transverse photon and even in the photoproduction limit and even at NLO.

With null transverse momenta in the *t* channel, one could encounter $x \in \{0, 1\}$ end point singularities as $\frac{1}{x\bar{x}Q^2}$ thus breaking collinear factorization.

Twist 3 production

Production of a transverse light vector meson

Non-forward and non-dilute extension of [Anikin, Besse, Ivanov, Pire, Szymanowski, Wallon]

What changes in the CGC rules

Effective CGC Feynman rules for fields

The recursion to exponentiate slow gluon scatterings into a Wilson line only starts at order $g_{\scriptscriptstyle S}$

$$\begin{split} A^{\mu}_{eff}(z_{0})|_{z_{0}^{+}<0} &= A^{\mu}(z_{0}) - 2i \int d^{D}z_{3} \,\delta\left(z_{3}^{+}\right) \,G^{\mu}_{\sigma_{\perp}}(z_{30}) \left(U^{ba}_{\vec{z}_{3}} - \delta^{ba}\right) F^{+\sigma_{\perp}}(z_{3}) \\ \overline{\psi}_{eff}(z_{0})|_{z_{0}^{+}<0} &= \overline{\psi}(z_{0}) + \int d^{D}z_{1} \,\delta\left(z_{1}^{+}\right) \overline{\psi}(z_{1}) \left(U_{\vec{z}_{1}} - 1\right) \gamma^{+} G\left(z_{10}\right) \\ \psi_{eff}(z_{0})|_{z_{0}^{+}<0} &= \psi(z_{0}) - \int d^{D}z_{2} \delta\left(z_{2}^{+}\right) G\left(z_{02}\right) \gamma^{+} \psi\left(z_{2}\right) \left(U^{\dagger}_{\vec{z}_{2}} - 1\right) \end{split}$$

$$\mathcal{A}_{q\bar{q}}^{2b} = \int d^2 \vec{z}_1 d^2 \vec{z}_2 \, \Phi_{q\bar{q}}^{2b}(\vec{z}_1, \vec{z}_2) \, \text{Tr}[(U_1 - 1)(U_2^{\dagger} - 1)]$$

Contains monopole contributions

Antiquark monopole 2-body diagram

$$\mathcal{A}_{ar{q}}^{2b} = \int d^2 ec{z}_2 \,\, \Phi_{ar{q}}^{2b} \, (ec{z}_2) \, {
m Tr}[(U_2^{\dagger} - 1)]$$

$$\mathcal{A}_{q\bar{q}g}^{3b} = \int d^2 \vec{z}_1 d^2 \vec{z}_2 d^2 \vec{z}_3 \,\, \Phi_{q\bar{q}g}^{3b} \left(\vec{z}_1, \vec{z}_2, \vec{z}_3 \right) \text{Tr}[(U_1 - 1)t^b (U_2^{\dagger} - 1)t^a] (U_3^{ab} - \delta^{ab})$$

Contains dipole and monopole contributions

Double-dipole term even at tree level \Rightarrow Great sensitivity to saturation

3-body $(\bar{q}g)$ -dipole diagram

$$\mathcal{A}_{\bar{q}g}^{3b} = \int d^2 \vec{z}_2 d^2 \vec{z}_3 \,\, \Phi_{\bar{q}g}^{3b} \, (\vec{z}_2, \vec{z}_3) \, \mathrm{Tr}[t^b (U_2^{\dagger} - 1) t^a] (U_3^{ab} - \delta^{ab})$$

3-body $(q\bar{q})$ -dipole diagram

$$\mathcal{A}_{q\bar{q}}^{3b} = \int d^2 \vec{z}_1 d^2 \vec{z}_2 \,\, \Phi_{q\bar{q}}^{3b} \left(\vec{z}_1, \vec{z}_2 \right) \text{Tr}[(U_1 - 1)t^b (U_2^{\dagger} - 1)t^a] \delta^{ab}$$

3-body (q)-monopole diagram

$$\mathcal{A}_q^{3b} = \int d^2 \vec{z}_1 \Phi_q^{3b}\left(\vec{z}_1\right) \operatorname{Tr}[(U_1 - 1)t^b t^a] \delta^{ab}$$

3-body (g)-monopole diagram

$$\mathcal{A}_{g}^{3b} = \int d^{2}\vec{z_{3}} \, \Phi_{g}^{3b}(\vec{z_{3}}) \, \mathrm{Tr}[t^{b}t^{a}](U_{3}^{ab} - \delta^{ab})$$

Cancelling the 2-body monopoles

Antiquark monopole part of the natural CGC diagram

• Monopole part of the quark line

$$\overline{\psi}_{eff}\left(z_{0}\right)|_{z_{0}^{+}<0}=\bar{\psi}\left(z_{0}\right)+\int\!d^{D}z_{1}\,\delta\left(z_{1}^{+}\right)\overline{\psi}\left(z_{1}\right)\left(U_{\vec{z}_{1}}\!-\!1\right)\gamma^{+}G\left(z_{10}\right)$$

Simple algebra allows one to get

$$\int d^{D} z_{1} \int \frac{d^{D} q}{\left(2\pi\right)^{D}} \delta\left(z_{1}^{+}\right) \left(\frac{-i\bar{\psi}\left(z_{1}\right)}{\left(q^{-}-\frac{\bar{q}^{2}-i0}{2q^{+}}\right)} + \frac{\bar{\psi}\left(z_{1}\right)\overleftarrow{\partial}\gamma^{\mu}\gamma^{+}}{2q^{+}\left(q^{-}-\frac{\bar{q}^{2}-i0}{2q^{+}}\right)}\right) e^{-i(q\cdot z_{10})}$$

• Thus one term contributes to a 2-body monopole contribution, and (Dirac equation) the other term contributes to a 3-body monopole contribution.

2-body diagrams

Sum of the 2-body antiquark monopoles

Using the fact that the non-perturbative collinear matrix elements do not depend on z^+ variables at twist 3 accuracy ...[censored technicalities]... we get the sum between the natural 2-body antiquark monopole diagram and the 2-body antiquark monopole part of the natural CGC diagram

Sum of the 2-body antiquark monopoles

Using the fact that the non-perturbative collinear matrix elements are at most linear in z_{\perp} , the sum cancels iff

$$\begin{aligned} \frac{1}{p_{\gamma}^{-} - \frac{\left(\vec{p}_{\gamma} - \vec{q}\right)^{2}}{2\left(p_{\gamma}^{+} - q^{+}\right)} - \frac{\vec{q}^{2}}{2q^{+}}} - \frac{1}{p_{\gamma}^{-} - \frac{\left(\vec{p}_{\gamma} - \vec{q}\right)^{2}}{2\left(p_{\gamma}^{+} - q^{+}\right)}} \bigg|_{\vec{q} = \vec{0}} = 0 \\ \frac{\partial}{\partial q_{\perp}^{\mu}} \left(\frac{1}{p_{\gamma}^{-} - \frac{\left(\vec{p}_{\gamma} - \vec{q}\right)^{2}}{2\left(p_{\gamma}^{+} - q^{+}\right)} - \frac{\vec{q}^{2}}{2q^{+}}} - \frac{1}{p_{\gamma}^{-} - \frac{\left(\vec{p}_{\gamma} - \vec{q}\right)^{2}}{2\left(p_{\gamma}^{+} - q^{+}\right)}} \right) \bigg|_{\vec{q} = \vec{0}} = 0 \end{aligned}$$
Cancelling the 3-body unnatural dipoles and monopoles

3-body diagrams

"Unnatural" 3-body diagrams

$$\begin{split} \Phi_{qg}\left(\vec{z}_{1},\vec{z}_{3}\right) &= \int d^{2}\vec{z}_{2} \,\Phi_{q\bar{q}g}\left(\vec{z}_{1},\vec{z}_{2},\vec{z}_{3}\right) + \text{Twist } 4\\ \Phi_{\bar{q}g}\left(\vec{z}_{2},\vec{z}_{3}\right) &= \int d^{2}\vec{z}_{1} \,\Phi_{q\bar{q}g}\left(\vec{z}_{1},\vec{z}_{2},\vec{z}_{3}\right) + \text{Twist } 4\\ \Phi_{q\bar{q}}\left(\vec{z}_{1},\vec{z}_{2}\right) &= \int d^{2}\vec{z}_{3} \,\Phi_{q\bar{q}g}\left(\vec{z}_{1},\vec{z}_{2},\vec{z}_{3}\right) + \text{Twist } 4\\ \Phi_{g}\left(\vec{z}_{3}\right) &= \int d^{2}\vec{z}_{1} d^{2}\vec{z}_{2} \,\Phi_{q\bar{q}g}\left(\vec{z}_{1},\vec{z}_{2},\vec{z}_{3}\right) + \text{Twist } 4\\ \Phi_{q}\left(\vec{z}_{1}\right) &= \int d^{2}\vec{z}_{2} d^{2}\vec{z}_{3} \,\Phi_{q\bar{q}g}\left(\vec{z}_{1},\vec{z}_{2},\vec{z}_{3}\right) + \text{Twist } 4 \end{split}$$

Hence the 3-body total from 3-body diagrams

$$\begin{split} \mathcal{A}_{3}^{3b} &= \int d^{2}\vec{z_{1}}d^{2}\vec{z_{2}}d^{2}\vec{z_{3}} \, \Phi_{q\bar{q}g}^{3b}\left(\vec{z_{1}},\vec{z_{2}},\vec{z_{3}}\right) \\ &\times [\mathrm{Tr}(U_{1}t^{b}U_{2}^{\dagger}t^{a})U_{3}^{ab} - \mathrm{Tr}(t^{b}U_{2}^{\dagger}t^{a}\delta^{ab})] \end{split}$$

3-body diagrams

Total from 3-body diagrams

$$\begin{split} \mathcal{A}^{3b} &= \int d^2 \vec{z}_1 d^2 \vec{z}_2 d^2 \vec{z}_3 \, \Phi^{3b}_{q \bar{q} g} \left(\vec{z}_1, \vec{z}_2, \vec{z}_3 \right) \\ &\times \left[\text{Tr}(U_1 t^b U_2^{\dagger} t^a) U_3^{ab} - \text{Tr}(t^b U_2^{\dagger} t^a \delta^{ab}) \right] \end{split}$$

"3-body" antiquark monopole from the natural 2-body diagram

$$\Phi_2^{3b}(\vec{z}_2) = \int d^2 \vec{z}_1 d^2 \vec{z}_3 \, \Phi_{q\bar{q}g}(\vec{z}_1, \vec{z}_2, \vec{z}_3) + \text{Twist } 4$$

Sums up to a gauge invariant amplitude

$$\begin{split} \mathcal{A}^{3b} &= \int d^2 \vec{z}_1 d^2 \vec{z}_2 d^2 \vec{z}_3 \, \Phi^{3b}_{q\bar{q}g} \left(\vec{z}_1, \vec{z}_2, \vec{z}_3 \right) \\ &\times \left[\mathrm{Tr} (U_1 t^b U_2^\dagger t^a) U_3^{ab} - C_F \right] \end{split}$$

QCD gauge invariance

Final amplitude

$$\begin{split} \mathcal{A} &= \int d^{2} \vec{z}_{1} d^{2} \vec{z}_{2} \, \Phi_{q\bar{q}}^{2b} \left(\vec{z}_{1}, \vec{z}_{2} \right) \left[\operatorname{Tr} \left(U_{1} U_{2}^{\dagger} \right) - N_{c} \right] \\ &+ \int d^{2} \vec{z}_{1} d^{2} \vec{z}_{2} d^{2} \vec{z}_{3} \, \Phi_{q\bar{q}g}^{3b} \left(\vec{z}_{1}, \vec{z}_{2}, \vec{z}_{3} \right) \left[\operatorname{Tr} \left(U_{1} t^{b} U_{2}^{\dagger} t^{a} \right) U_{3}^{ab} - C_{F} \right] \end{split}$$

Expansion in Reggeons in the dilute limit: (Reggeon momenta q_1, q_2)

$$\begin{split} \Phi_{BFKL} &= \int d^2 \vec{z}_1 d^2 \vec{z}_2 \, \Phi_{q\bar{q}}^{2b} \left(\vec{z}_1, \vec{z}_2 \right) \left(e^{i(\vec{q}_1 \cdot \vec{z}_2)} - e^{i(\vec{q}_1 \cdot \vec{z}_1)} \right) \left(e^{i(\vec{q}_2 \cdot \vec{z}_1)} - e^{i(\vec{q}_2 \cdot \vec{z}_2)} \right) \\ &- \int d^2 \vec{z}_1 d^2 \vec{z}_2 d^2 \vec{z}_3 \Phi_{q\bar{q}g}^{3b} \left(\vec{z}_1, \vec{z}_2, \vec{z}_3 \right) \left[N_c \left(e^{i(\vec{q}_1 \cdot \vec{z}_3)} - e^{i(\vec{q}_1 \cdot \vec{z}_1)} \right) \left(e^{i(\vec{q}_2 \cdot \vec{z}_3)} - e^{i(\vec{q}_2 \cdot \vec{z}_2)} \right) \right. \\ &- \left(\frac{N_c^2 - 1}{2N_c} \right) \left(e^{i(\vec{q}_1 \cdot \vec{z}_2)} - e^{i(\vec{q}_1 \cdot \vec{z}_1)} \right) \left(e^{i(\vec{q}_2 \cdot \vec{z}_1)} - e^{i(\vec{q}_2 \cdot \vec{z}_2)} \right) \right] \end{split}$$

Obviously gauge invariant in the BFKL sense: $\Phi_{BFKL} = 0$ for $q_1 = 0$ or $q_2 = 0$. In the dilute, forward limit, our result matches the previous BFKL results

Conclusion

- We provided the full computation of the impact factors for two exclusive diffractive processes at NLO accuracy, as well as the impact factor for a twist 3 process.
- In the linear limit, our NLO result will provide the consistency check of the JIMWLK/BFKL correspondence
- The computation can be adapted for twist 3 NLO production in the Wandzura-Wilczek approximation, removing factorization breaking end-point singularities even at NLO
- Exclusive diffractive processes are perfectly suited for precision saturation physics and gluon tomography with b_{\perp} dependence at the EIC. Dijets probe the dipole Wigner distribution at small x [Hatta, Xiao, Yuan], ρ meson probes gluon GPDs at small x.