Gluon TMDs in eA collisions

Daniël Boer

@ INT program "Probing Nucleons and Nuclei in High Energy Collisions", Seattle, November 8, 2018

university of groningen

Outline

- Gluon TMDs and their process dependence
- Sivers effect example
- Small x limit Wilson loop matrix elements
- Unpolarized gluon TMDs at small x
- Linear polarization of gluons (& the CGC) in eA
- GTMDs and odderon effects (odd harmonics)

Gluon TMDs & process dependence

Typical TMD processes

Semi-inclusive DIS is a process sensitive to the transverse momentum of quarks

D-meson pair production is sensitive to transverse momentum of gluons

$$e \, p \to e' \, D \, \bar{D} \, X$$

Gluons TMDs

The gluon correlator:

$$\Gamma_g^{\mu\nu[\mathcal{U},\mathcal{U}']}(x,k_T) \equiv \mathrm{F.T.}\langle P|\mathrm{Tr}_c\left[F^{+\nu}(0)\,\mathcal{U}_{[0,\xi]}\,F^{+\mu}(\xi)\,\mathcal{U}'_{[\xi,0]}\right]|P\rangle$$

For unpolarized protons:

 $\Gamma_{U}^{\mu\nu}(x,\boldsymbol{p}_{T}) = \frac{x}{2} \left\{ -g_{T}^{\mu\nu} (f_{1}^{g}(x,\boldsymbol{p}_{T}^{2}) + \left(\frac{p_{T}^{\mu}p_{T}^{\nu}}{M_{p}^{2}} + g_{T}^{\mu\nu} \frac{\boldsymbol{p}_{T}^{2}}{2M_{p}^{2}}\right) (h_{1}^{\perp g}(x,\boldsymbol{p}_{T}^{2})) \right\}$ linearly polarized unpolarized gluon TMD

aluan Civara TMD

Gluons inside *unpolarized* protons can be polarized!

gluon TMD

[Mulders, Rodrigues '01]

For transversely polarized protons:

$$\Gamma_T^{\mu\nu}(x, \boldsymbol{p}_T) = \frac{x}{2} \left\{ g_T^{\mu\nu} \frac{\epsilon_T^{\rho\sigma} p_{T\rho} S_{T\sigma}}{M_p} \underbrace{f_{1T}^{\perp g}(x, \boldsymbol{p}_T^2)}_{M_p} + \dots \right\}$$

Process dependence of gluon TMDs

The color flow in a process may lead to different correlators in different processes

$$\Gamma_{g}^{\mu\nu}(\mathcal{U},\mathcal{U}')(x,k_{T}) \equiv \mathrm{F.T.}\langle P|\mathrm{Tr}_{c}\left[F^{+\nu}(0)\mathcal{U}_{[0,\xi]}F^{+\mu}(\xi)\mathcal{U}_{[\xi,0]}'\right]|P\rangle$$
$$\mathcal{U}_{\mathcal{C}}[0,\xi] = \mathcal{P}\exp\left(-ig\int_{\mathcal{C}[0,\xi]}ds_{\mu}A^{\mu}(s)\right)\qquad \xi = [0^{+},\xi^{-},\xi_{T})$$

Gauge links arise from the initial and/or final state interactions (ISI/FSI) in a process [Collins & Soper, 1983; D.B. & Mulders, 2000; Brodsky, Hwang & Schmidt, 2002; Collins, 2002; Belitsky, X. Ji & F.Yuan, 2003; D.B., Mulders & Pijlman, 2003]

This has observable effects, as was first shown for quark Sivers effect asymmetries [Brodsky, Hwang & Schmidt, 2002; Collins, 2002; Belitsky, Ji & Yuan, 2003]

This even affects unpolarized gluon TMDs, as was first realized in a small-x context [Dominguez, Marquet, Xiao, Yuan, 2011]

Process dependence of Sivers TMDs

One can use parity and time reversal invariance to relate the quark Sivers TMDs $f_{1T}^{\perp q[{\rm SIDIS}]}(x,k_T^2) = -f_{1T}^{\perp q[{\rm DY}]}(x,k_T^2) \qquad \text{[Collins '02]}$

A similar sign change relation for gluon Sivers functions holds, but due to the appearance of two gauge links, there are more possibilities

For most processes of interest there are 2 link combinations to consider: [+,+] and [+,-], because [-,-] and [-,+] are related to them by P and T

More complicated structures often only enter in processes where TMD factorization is questionable anyway

Quark Sivers function on the lattice

By taking specific x and k_T integrals one can define the "Sivers shift" $\langle k_T x S_T \rangle$ (n,b_T): the average transverse momentum shift orthogonal to transverse spin S_T [D.B., Gamberg, Musch, Prokudin, 2011]

This well-defined quantity can be evaluated on the lattice [Musch, Hägler, Engelhardt, Negele & Schäfer, 2012]

This is the first `first-principle' demonstration that the Sivers function is nonzero for staple-like links. It clearly displays the sign change relation

Sign change relation for gluon Sivers TMD

$$e \, p^{\uparrow}
ightarrow e' \, Q ar{Q} \, X \qquad \gamma^* \, g
ightarrow Q ar{Q}$$
 probes [+,+]

$$p^{\uparrow} \, p \to \gamma \, \gamma \, X$$

Qiu, Schlegel, Vogelsang, 2011

In the kinematic regime where the pair rapidity is central, one effectively selects the subprocess:

 $g \, g
ightarrow \gamma \, \gamma$ probes [-,-]

Zheng, Aschenauer, Lee, Xiao, Yin, PRD 98 (2018) 034011

f and d type gluon Sivers TMD

 $p^{\uparrow} p \to \gamma \operatorname{jet} X$

In the kinematic regime where gluons in the polarized proton dominate, one effectively selects the subprocess: $q q \rightarrow \gamma q$ probes [+,-]

This process probes a distinct, *independent* gluon Sivers function Gluon Sivers TMDs for [+,+] & [+,-] are related to the f^{abc} & d^{abc} color structures Bomhof, Mulders, 2007; Buffing, Mukherjee, Mulders, 2013

$$\Gamma^{[+,-]\,ij}(x,\boldsymbol{k}_T) \xrightarrow{x\to 0} \frac{k_T^i k_T^j}{2\pi L} \Gamma_0^{[\Box]}(\boldsymbol{k}_T) \qquad \text{a single Wilso}$$

D.B., Cotogno, van Daal, Mulders, Signori & Ya-Jin Zhou, JHEP 2016

a single Wilson loop matrix element

 $U^{[\Box]} = U^{[+]}_{[0,y]} U^{[-]}_{[y,0]}$

d-type gluon Sivers effect

The d-type gluon Sivers function $f_{1T}^{\perp g \, [+,-]}$ at small x is part of:

 $\Gamma_{(d)}^{(T-\text{odd})} \equiv \left(\Gamma^{[+,-]} - \Gamma^{[-,+]}\right) \propto \text{F.T.} \langle P, S_T | \text{Tr} \left[U^{[\Box]}(0_T, y_T) - U^{[\Box]\dagger}(0_T, y_T) \right] | P, S_T \rangle$

D.B., Echevarria, Mulders, J. Zhou, PRL 2016

At small x it can be identified with the spin-dependent odderon [J. Zhou, 2013]

In p[†]A collisions this can be probed in $\gamma^{(*)}$ -jet production in the back-to-back correlation limit, but also in backward charged hadron production for moderate p_T (as the odderon is C-odd, for gg-dominated scattering one should select final states that are not C-even)

It is the only relevant contribution to A_N in backward ($x_F < 0$) charged hadron production in $p^{\uparrow}p$ or $p^{\uparrow}A$ (in contrast to the many contributions at $x_F > 0$)

A_N is not a TMD factorizing process, but at small x one can apply a hybrid factorization (at least at one-loop order)

Chirilli, Xiao, Yuan, PRL & PRD 2012

Importance of the loop in quark TMDs

In the small-x limit of the leading twist TMD formalism there is no odderon contribution for an unpolarized proton (nor a helicity distribution)

At small x and/or for large A the Wilson loop matrix element is important For large x and for quarks we do not know, but a lattice test is possible

$$\begin{split} f_1^{[+]}(x,p_T^2) &= f_1^{[-]}(x,p_T^2) \\ f_1^{[\Box+]}(x,p_T^2) &\neq f_1^{[+]}(x,p_T^2) \end{split} \end{split} \label{eq:flucture} \text{[D.B., Buffing, Mulders, JHEP 2015]} \end{split}$$

Irrespective of whether one can isolate the function with an additional loop from experiment, one can study particular Mellin-Bessel moments of it on the lattice:

$$\frac{\tilde{f}_{1}^{1[\Box+]}(\boldsymbol{b}_{T}^{2};\mu,\zeta)}{\tilde{f}_{1}^{1[+]}(\boldsymbol{b}_{T}^{2};\mu,\zeta)} = \frac{\langle P|\overline{\psi}(0,0_{T})\gamma^{+}U_{[0,b]}^{[+]}U_{[b,0]}^{[-]}U_{[0,b]}^{[+]}\psi(0,b_{T})|P\rangle}{\langle P|\overline{\psi}(0,0_{T})\gamma^{+}U_{[0,b]}^{[+]}\psi(0,b_{T})|P\rangle}$$

At $b_T=0$ this ratio should be 1, for large b_T it should become a flat curve

This will give us information on how important the flux of $F^{\mu\nu}$ through the loop is and hence how important the process dependence effects are or can be

Unpolarized gluon TMDs

WW vs DP

For most processes of interest there are 2 relevant unpolarized gluon distributions Dominguez, Marquet, Xiao, Yuan, 2011

$$xG^{(1)}(x,k_{\perp}) = 2\int \frac{d\xi^{-}d\xi_{\perp}}{(2\pi)^{3}P^{+}} e^{ixP^{+}\xi^{-}-ik_{\perp}\cdot\xi_{\perp}} \langle P|\operatorname{Tr}\left[F^{+i}(\xi^{-},\xi_{\perp})\mathcal{U}^{[+]\dagger}F^{+i}(0)\mathcal{U}^{[+]}\right]|P\rangle \quad [+,+]$$

$$xG^{(2)}(x,k_{\perp}) = 2\int \frac{d\xi^{-}d\xi_{\perp}}{(2\pi)^{3}P^{+}} e^{ixP^{+}\xi^{-}-ik_{\perp}\cdot\xi_{\perp}} \langle P|\operatorname{Tr}\left[F^{+i}(\xi^{-},\xi_{\perp})\mathcal{U}^{[-]\dagger}F^{+i}(0)\mathcal{U}^{[+]}\right]|P\rangle \quad [+,-]$$

For unpolarized gluons [+,+] = [-,-] and [+,-] = [-,+]

At small x the two correspond to the Weizsäcker-Williams (WW) and dipole (DP) distributions, which are generally different in magnitude and width:

$$\begin{split} xG^{(1)}(x,k_{\perp}) &= -\frac{2}{\alpha_S} \int \frac{d^2v}{(2\pi)^2} \frac{d^2v'}{(2\pi)^2} \, e^{-ik_{\perp}\cdot(v-v')} \left\langle \operatorname{Tr}\left[\partial_i U(v)\right] U^{\dagger}(v') \left[\partial_i U(v')\right] U^{\dagger}(v) \right\rangle_{x_g} \quad \text{WW} \\ xG^{(2)}(x,q_{\perp}) &= \frac{q_{\perp}^2 N_c}{2\pi^2 \alpha_s} S_{\perp} \int \frac{d^2r_{\perp}}{(2\pi)^2} e^{-iq_{\perp}\cdot r_{\perp}} \frac{1}{N_c} \left\langle \operatorname{Tr}U(0) U^{\dagger}(r_{\perp}) \right\rangle_{x_g} \quad \text{DP} \end{split}$$

Explains Kharzeev, Kovchegov & Tuchin's "tale of two gluon distributions" (2003)

MV model

In the MV model one may not notice the difference between WW and DP:

$$xG_g^{(2)}(x,q_\perp) \stackrel{\mathsf{MV}}{\propto} q_\perp^2 \nabla_{q_\perp}^2 xG_g^{(1)}(x,q_\perp)$$

Processes involving G⁽¹⁾ (WW) [+,+] in the MV model can be expressed in terms of $G^{(2)} \sim C(k_{\perp})$, e.g.

$$\begin{split} \gamma \ A \to Q \bar{Q} \ X & \frac{\mathrm{d}\sigma_{\mathrm{T}}}{\mathrm{d}y \, \mathrm{d}k_{\perp}} = \pi R^2 \frac{2N_{\mathrm{c}}(Z\alpha)^2}{3\pi^3} \ln\left(\frac{\gamma}{2mR}\right) k_{\perp} C(k_{\perp}) \\ \text{Gelis, Peshier, 2002} & \times \left\{ 1 + \frac{4(k_{\perp}^2 - m^2)}{k_{\perp}\sqrt{k_{\perp}^2 + 4m^2}} \operatorname{arcth} \frac{k_{\perp}}{\sqrt{k_{\perp}^2 + 4m^2}} \right\} \end{split}$$

$$C(\mathbf{k}_{\perp}) = \int \mathrm{d}^2 \mathbf{x}_{\perp} \,\mathrm{e}^{\mathrm{i}\mathbf{k}_{\perp}\cdot\mathbf{x}_{\perp}} \langle U(0)U^{\dagger}(\mathbf{x}_{\perp}) \rangle$$

Heavy quark pair production in DIS probes the WW distribution For general x expressions, see Pisano, D.B., Brodsky, Buffing, Mulders, 2013

WW vs DP

Different processes probe one or the other (or a mixture)

	DIS	DY	SIDIS	$pA \to \gamma \operatorname{jet} X$	$e p \to e' Q \overline{Q} X$	$pp \to \eta_{c,b} X$	$pp \to J/\psi \gamma X$
					$e p \to e' j_1 j_2 X$	$pp \to HX$	$pp \to \Upsilon \gamma X$
$f_{1}^{g[+,+]}$ (WW)	×	×	×	×	\checkmark	\checkmark	\checkmark
$f_{1}^{g[+,-]}$ (DP)			\checkmark		×	×	×

There are sufficient processes in ep and pp collisions to test the expectations

Q: How different can the two unpolarized gluon distributions be?

The first transverse moment must coincide

$$\int d\mathbf{k}_T f_1^{g\,[+,+]}(x,\mathbf{k}_T^2) = \int d\mathbf{k}_T f_1^{g\,[+,-]}(x,\mathbf{k}_T^2)$$

Also the large- k_T tail of the functions might be expected to coincide But other than that the functions can have rather different shapes and magnitudes

More general link structures

$$\begin{array}{c} & - & F_{qg}^{1} \\ 0.3 \\ 0.4 \\ 0.4 \\ 0.4 \\ 1 \\ 2 \\ 0.1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 3 \\ 1 \\ 2 \\ 3 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ \end{array} \begin{array}{c} - & F_{qg}^{1} \\ - & F_{qg}^{2} \\ 0.4 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ \end{array} \begin{array}{c} - & F_{qg}^{1} \\ - & F_{qg}^{1} \\ - & F_{gg}^{2} \\ 0.1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ \end{array} \begin{array}{c} - & F_{qg}^{1} \\ - & F_{gg}^{2} \\ - & F_{gg}^{6} \\ 0.1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ \end{array} \begin{array}{c} - & F_{qg}^{2} \\ - & F_{gg}^{6} \\ 0.1 \\ - & F_{gg}^{6} \\ -$$

The large-k_T tails indeed coincide, except for $\mathcal{F}_{gg}^{(2)}$ that vanishes

$$\mathcal{F}_{qg}^{(1)}, \mathcal{F}_{qg}^{(2)}, \mathcal{F}_{gg}^{(1)}, \mathcal{F}_{gg}^{(6)} \simeq \frac{N_c S_{\perp} Q_s^2}{4\pi^3 \alpha_s k_t^2} + \mathcal{O}\left(\frac{Q_s^4}{k_t^4} \log \frac{k_t^2}{\Lambda^2}\right), \\ \mathcal{F}_{gg}^{(2)} \simeq \mathcal{O}\left(\frac{Q_s^4}{k_t^4} \log \frac{k_t^2}{\Lambda^2}\right).$$
2015 & 2016

Kotko, Kutak, Marquet, Petreska, Sapeta, van Hameren, 2015 & 2016

Although there are in principle infinitely many gauge link structures possible, the p_T^2 average consists of 5 independent terms in a *calculable* combination (similar to the f and d pieces for the first p_T -moment of the Sivers TMD)

$$\int d^2 p_T \; \frac{p_T^{\alpha} p_T^{\beta}}{M^2} \, \Gamma^{\mu\nu[U,U']}(x,p_T) = \Gamma^{\mu\nu;\alpha\beta}_{\quad \partial\partial}(x) + \sum_{c=1}^4 C^{[U,U']}_{GG,c} \, \Gamma^{\mu\nu;\alpha\beta}_{\quad GG,c}(x)$$

D.B., Buffing, Mulders, 2015

 $F^{(i)}(x_{k}k_{t}^{2}/Q_{c}^{2})$

Linearly polarized gluon TMDs

Gluon polarization inside unpolarized protons

Linearly polarized gluons can exist in **unpolarized** hadrons

[Mulders, Rodrigues, 2001]

It requires nonzero transverse momentum: TMD

For $h_1^{\perp g} > 0$ gluons prefer to be polarized along k_T, with a $\cos 2\phi$ distribution of linear polarization around it, where $\phi = \angle (k_T, \varepsilon_T)$

an interference between ±1 helicity gluon states

$$\Gamma_U^{\mu\nu}(x, \boldsymbol{p}_T) = \frac{x}{2} \left\{ -g_T^{\mu\nu} f_1^g(x, \boldsymbol{p}_T^2) + \left(\frac{p_T^{\mu} p_T^{\nu}}{M_p^2} + g_T^{\mu\nu} \frac{\boldsymbol{p}_T^2}{2M_p^2} \right) h_1^{\perp g}(x, \boldsymbol{p}_T^2) \right\}$$

For linearly polarized gluons also [+,+] = [-,-] and [+,-] = [-,+]

Probes of linear gluon polarization

 $h_1^{\perp g}$ is more difficult to extract, as it cannot be probed in DIS, DY, SIDIS, nor in inclusive hadron or γ +jet production in pp or pA collisions

Processes that probe the WW or DP linearly polarized gluon TMD:

	$pp \to \gamma \gamma X$	$pA \to \gamma^* \operatorname{jet} X$	$e \ p \to e' \ Q \ \overline{Q} \ X$ $e \ p \to e' \ j_1 \ j_2 \ X$	$pp \to \eta_{c,b} X$ $pp \to H X$	$pp \to J/\psi \gamma X$ $pp \to \Upsilon \gamma X$
$h_1^{\perp g [+,+]} $ (WW)	\checkmark	×	\checkmark	\checkmark	\checkmark
$h_1^{\perp g [+,-]} (\mathrm{DP})$	×	\checkmark	×	×	×

% level or less at RHIC Qiu, Schlegel, Vogelsang, 2011
5% level at RHIC
D.B., Mulders, Zhou, Zhou, 2017

10% level or less at EIC D.B., Brodsky, Pisano, Mulders, 2011; Dumitru, Lappi, Skokov, 2015; D.B., Pisano, Mulders, J. Zhou, 2016

10% level for η_Q and
% level for Higgs at LHC
D.B. & den Dunnen, 2014;
Echevarria, Kasemets,
Mulders, Pisano, 2015

Higgs and $0^{\pm+}$ quarkonium production uses the angular independent p_T distribution

All other suggestions use angular modulations

Open heavy quark electro-production

Unpolarized open heavy quark production allows to probe linearly polarized gluons in *unpolarized* hadrons

[D.B., Brodsky, Mulders & Pisano, 2010]

It gives rise to an angular distributions: a cos 2($\phi_T - \phi_{\perp}$) asymmetry, where $\phi_{T/\perp}$ are the angles of $K_{\perp}^Q \pm K_{\perp}^{\bar{Q}}$

 $h_1^{\perp g}$ appears by itself, so effects could be significant, especially towards smaller x It is expected to keep up with the growth of the unpolarized gluons as $x \rightarrow 0$

Linear gluon polarization at small x

There is no theoretical reason why $h_1^{\perp g}$ should be small, especially at small x DGLAP evolution: $h_1^{\perp g}$ has the same 1/x growth as f_1

$$\tilde{h}_{1}^{\perp g}(x,b^{2};\mu_{b}^{2},\mu_{b}) = \frac{\alpha_{s}(\mu_{b})C_{A}}{2\pi} \int_{x}^{1} \frac{d\hat{x}}{\hat{x}} \left(\frac{\hat{x}}{x}-1\right) f_{g/P}(\hat{x};\mu_{b}) + \mathcal{O}(\alpha_{s}^{2})$$

The small-x limit of the DP correlator in the TMD formalism:

$$\Gamma^{[+,-]\,ij}(x,\boldsymbol{k}_T) \xrightarrow{x \to 0} \frac{k_T^i k_T^j}{2\pi L} \Gamma_0^{[\Box]}(\boldsymbol{k}_T) \qquad U^{[\Box]} = U_{[0,y]}^{[+]} U_{[y,0]}^{[-]}$$

$$\Gamma_U^{ij}(x,\boldsymbol{k}_T) = \frac{x}{2} \left[-g_T^{ij} f_1(x,\boldsymbol{k}_T^2) + \frac{k_T^{ij}}{M^2} h_1^{\perp}(x,\boldsymbol{k}_T^2) \right] \xrightarrow{x \to 0} \frac{k_T^i k_T^j}{2M^2} e(\boldsymbol{k}_T^2)$$

$$\lim_{x \to 0} x f_1(x, \boldsymbol{k}_T^2) = \frac{\boldsymbol{k}_T^2}{2M^2} \lim_{x \to 0} x h_1^{\perp}(x, \boldsymbol{k}_T^2) = \frac{\boldsymbol{k}_T^2}{2M^2} e(\boldsymbol{k}_T^2)$$

In the TMD formalism the DP $h_1^{\perp g}$ becomes maximal when $x \rightarrow 0$ D.B., Cotogno, van Daal, Mulders, Signori, Zhou, 2016

Polarization of the CGC

MV model calculations show the CGC gluons are in fact linearly polarized

 $h_{1,WW}^{\perp g} \ll f_{1,WW}^{\perp g} \quad \text{for } k_{\perp} \ll Q_s, \qquad h_{1,WW}^{\perp g} = 2f_{1,WW}^{\perp g} \quad \text{for } k_{\perp} \gg Q_s$ $xh_{1,DP}^{\perp g}(x,k_{\perp}) = 2xf_{1,DP}^g(x,k_{\perp})$

Metz, Zhou '11

The WW $h_1^{\perp g}$ is (moderately) suppressed for small transverse momenta:

$$\frac{h_{1\,WW}^{\perp\,g}}{f_{1\,WW}} \propto \frac{1}{\ln Q_s^2/k_{\perp}^2}$$

The CGC can be 100% polarized, but its observable effects depend on the process

The " k_T -factorization" approach (CCFM) yields maximum polarization too (but no process dependence):

$$\Gamma_g^{\mu\nu}(x, \boldsymbol{p}_T)_{\text{max pol}} = \frac{p_T^{\mu} p_T^{\nu}}{\boldsymbol{p}_T^2} x f_1^g$$

Catani, Ciafaloni, Hautmann, 1991

Maximum asymmetries in heavy quark pair production

 $ep \to e'Q\bar{Q}X$ $R = bound on |\langle \cos 2(\phi_T - \phi_\perp) \rangle|$

[Pisano, D.B., Brodsky, Buffing & Mulders, JHEP 10 (2013) 024]

Maximal asymmetries can be substantial (for any Q^2 and for both charm & bottom)

Asymmetries in heavy quark pair production

But this process probes the WW distributions, which is not maximal at small x

The WW $h_1^{\perp g}$ is (moderately) suppressed for small transverse momenta:

$$\frac{h_1^{\perp g}}{f_{1WW}} \propto \frac{1}{\ln Q_s^2/k_{\perp}^2}$$

D.B., Pisano, Mulders, Zhou, 2016

Still sizeable asymmetries result

Dijet production at EIC

 $h_1^{\perp g}$ (WW) is accessible in dijet production in eA collisions at a high-energy EIC [Metz, Zhou 2011; Pisano, D.B., Brodsky, Buffing, Mulders, 2013; D.B., Pisano, Mulders, Zhou, 2016]

Polarization shows itself through a $cos2\phi$ distribution

Quarkonia

 $e p^{\uparrow} \to e' \mathcal{Q} X$ with \mathcal{Q} either a J/ψ or a Υ meson

[Godbole, Misra, Mukherjee, Rawoot, 2012/3; Godbole, Kaushik, Misra, Rawoot, 2015; Mukherjee, Rajesh, 2017; Rajesh, Kishore, Mukherjee, 2018]

One either uses the Color Evaporation Model or NRQCD for Color Octet (CO) states

$$A^{\sin(\phi_S - \phi_T)} = \frac{|\boldsymbol{q}_T|}{M_p} \frac{f_{1T}^{\perp g}(x, \boldsymbol{q}_T^2)}{f_1^g(x, \boldsymbol{q}_T^2)}$$

Other asymmetries depend on the quite uncertain CO NRQCD LDMEs, but one can consider ratios of asymmetries to cancel them out

[Bacchetta, D.B., Pisano, Taels, arXiv: 1809.02056]

$$\frac{A^{\cos 2\phi_T}}{A^{\sin(\phi_S + \phi_T)}} = \frac{q_T^2}{M_p^2} \frac{h_1^{\perp g}(x, q_T^2)}{h_1^g(x, q_T^2)}$$
$$\frac{A^{\cos 2\phi_T}}{A^{\sin(\phi_S - 3\phi_T)}} = -\frac{1}{2} \frac{h_1^{\perp g}(x, q_T^2)}{h_{1_T}^{\perp g}(x, q_T^2)}$$
$$\frac{A^{\sin(\phi_S - 3\phi_T)}}{A^{\sin(\phi_S + \phi_T)}} = -\frac{q_T^2}{2M_p^2} \frac{h_{1_T}^{\perp g}(x, q_T^2)}{h_1^g(x, q_T^2)}$$

CO NRQCD LDMEs @ EIC

But one can also consider ratios where the TMDs cancel out and one can obtain new experimental information on the CO NRQCD LDMEs

This requires a comparison of $e\,p o e'\,\mathcal{Q}\,X$ and $ep o e'Q\bar{Q}X$

$$\mathcal{R}^{\cos 2\phi} = \frac{\int d\phi_T \cos 2\phi_T \, d\sigma^{\mathcal{Q}}(\phi_S, \phi_T)}{\int d\phi_T \, d\phi_\perp \cos 2\phi_T \, d\sigma^{Q\overline{Q}}(\phi_S, \phi_T, \phi_\perp)}$$
$$\mathcal{R} = \frac{\int d\phi_T \, d\sigma^{\mathcal{Q}}(\phi_S, \phi_T)}{\int d\phi_T \, d\phi_\perp \, d\sigma^{Q\overline{Q}}(\phi_S, \phi_T, \phi_\perp)}$$

Two observables depending on two unknowns: $\mathcal{O}_{8}^{S} \equiv \langle 0 | \mathcal{O}_{8}^{\mathcal{Q}}({}^{1}S_{0}) | 0 \rangle$ $\mathcal{R}^{\cos 2\phi_{T}} = \frac{27\pi^{2}}{4} \frac{1}{M_{Q}} \left[\mathcal{O}_{8}^{S} - \frac{1}{M_{Q}^{2}} \mathcal{O}_{8}^{P} \right]$ $\mathcal{O}_{8}^{P} \equiv \langle 0 | \mathcal{O}_{8}^{\mathcal{Q}}({}^{3}P_{0}) | 0 \rangle$ $\mathcal{R} = \frac{27\pi^{2}}{4} \frac{1}{M_{Q}} \frac{[1 + (1 - y)^{2}] \mathcal{O}_{8}^{S} + (10 - 10y + 3y^{2}) \mathcal{O}_{8}^{P} / M_{Q}^{2}}{26 - 26y + 9y^{2}}$

[Bacchetta, D.B., Pisano, Taels, arXiv: 1809.02056]

Plus similar (but different) equations for polarized quarkonium production

GTMDs

GTMDs

GTMD = off-forward TMD = Fourier transform of a Wigner distribution

$$G(x, \boldsymbol{k}_T, \boldsymbol{\Delta}_T) \xleftarrow{FT} W(x, \boldsymbol{k}_T, \boldsymbol{b}_T)$$

Meißner, Metz, Schlegel, 2009

Ji, 2003; Belitsky, Ji & Yuan, 2004

Wigner distributions can display distortions in the b_T plane depending on k_T and vice versa, that vanish upon b_T or k_T integration

Lorce & Pasquini, 2011

Quark orbital angular momentum can be expressed as integrals over a Wigner distribution Lorce, Pasquini, Xiong, Yuan, 2012

Analogously, gluon Wigner distributions and gluon GTMDs can be defined

See recent review: More, Mukherjee, Nair, Eur.Phys.J. C78 (2018)

Gluon GTMDs

First suggestion to measure gluon GTMDs: hard diffractive dijet production in eA

Altinoluk, Armesto, Beuf, Rezaeian, 2016; Hatta, Xiao, Yuan, 2016

Extension of an earlier suggestion to probe gluon GPDs Braun, Ivanov, 2005

For unpolarized hadrons there are 4 independent (complex valued) gluon GTMDs For [+,-] there is only one gluon GTMD in the limit $x \rightarrow 0$ (at leading twist)

This is again a Wilson loop matrix element, with the imaginary part corresponding to the odderon operator, which for an unpolarized proton vanishes in the forward limit

D.B., van Daal, Mulders, Petreska, 2018

Gluon GTMDs

Ph.D, thesis by Tom van Daal, 2018

$$W^{[\Box]}(\boldsymbol{b}, \boldsymbol{k}) = \int d^2 \boldsymbol{\Delta} \ e^{-i \boldsymbol{\Delta} \cdot \boldsymbol{b}} \ G^{[\Box]}(\boldsymbol{k}, \boldsymbol{\Delta})$$

The cos $2(\phi_b - \phi_k)$ part (of \mathcal{F}_1 or \mathcal{E}) is called the "elliptic" Wigner distribution Hatta, Xiao, Yuan, 2016; J. Zhou, 2016

At finite x there can be such an "elliptic" piece in any of the 4 Wigner functions

$$\begin{aligned} xW(x,\boldsymbol{b},\boldsymbol{k}) &= x\mathcal{W}_0(x,\boldsymbol{b}^2,\boldsymbol{k}^2) + 2\cos(\phi_b - \phi_k) x\mathcal{W}_1(x,\boldsymbol{b}^2,\boldsymbol{k}^2) \\ &+ 2\cos 2(\phi_b - \phi_k) x\mathcal{W}_2(x,\boldsymbol{b}^2,\boldsymbol{k}^2) + \dots \end{aligned}$$

Gluon GTMDs in a nucleus

$$G(x, \boldsymbol{k}_T, \boldsymbol{\Delta}_T) \xleftarrow{FT} W(x, \boldsymbol{k}_T, \boldsymbol{b}_T)$$

In a nucleus there are two sources of Δ_T :

- the position of the operator w.r.t. the "center"
- the nuclear profile

$$\mathbf{R}_{\perp}^{CM} \equiv \sum_{i} x_{i} \mathbf{r}_{\perp i}$$
$$T(\mathbf{b}) = \int_{-\infty}^{\infty} dz \ \rho_{A} \left(\sqrt{\mathbf{b}^{2} + z^{2}} \right)$$

The latter leads to an odderon contribution, present even in the forward limit This can lead to odd harmonics in forward two-particle production in pA D.B., van Daal, Mulders, Petreska, 2018

Similar to elliptic flow arising from the color-dipole orientation in pp/pA collisions lancu, Rezaeian, 2017

The contribution comes primarily from the edge of the nucleus No azimuthal anisotropy needed, just inhomogeneity in |b|

Azimuthal anisotropy can also lead to odd harmonics Dumitru, Giannini, 2015; Lappi, Schenke, Schlichting, Venugopalan, 2016

Conclusions

Conclusions

- All TMDs are process dependent, with observable and testable effects
- At small x the unpolarized WW and DP gluon TMDs both matter and there are sufficient processes in ep/eA and pp collisions to test the expectations
- Same applies to the linear polarization of gluons inside unpolarized hadrons, which can lead to sizeable effects for cos2φ asymmetries in eA processes
- At small x the dipole gluon TMD correlator becomes a Wilson loop correlator leading to relations among the TMDs: maximal linear gluon polarization
- J/ ψ or Y production in ep/eA collisions allows to probe gluon TMDs, but also two LO CO NRQCD LDMEs that are still poorly known
- The four complex valued [+,-] gluon GTMDs for unpolarized hadrons reduce to one in the small-x limit. This allows for a nuclear odderon contribution, which only has odd harmonic contributions (elliptic is cos 2φ)

Back-up slides

Wilson loop correlator

$$\Gamma^{[+,-]\,ij}(x,\boldsymbol{k}_T) \xrightarrow{x \to 0} \frac{k_T^i k_T^j}{2\pi L} \Gamma_0^{[\Box]}(\boldsymbol{k}_T) \qquad \text{a single Wilson loop matrix element}$$

 $U^{[\Box]} = U^{[+]}_{[0,y]} U^{[-]}_{[y,0]}$

D.B., Cotogno, van Daal, Mulders, Signori & Ya-Jin Zhou, JHEP 2016

$$k_{T}^{i}k_{T}^{j}\Gamma_{0}^{[\Box]}(\boldsymbol{k}_{T}) = 4\int \frac{d^{2}\xi_{T}}{(2\pi)^{2}} e^{ik_{T}\cdot\xi_{T}} \langle P|G_{T}^{i}(0)U_{[0,\xi]}^{[+]}G_{T}^{j}(\xi)U_{[\xi,0]}^{[-]}|P\rangle \Big|_{\boldsymbol{\xi}\cdot\boldsymbol{n}=0}$$

$$= \int \frac{d\eta\cdot P \,d\eta'\cdot P \,d^{2}\xi_{T}}{(2\pi)^{2}} e^{ik_{T}\cdot\xi_{T}} \langle P|F^{ni}(\eta')U_{[\eta',\eta]}^{[+]}F^{nj}(\eta)U_{[\eta,\eta']}^{[-]}|P\rangle \Big|_{\eta'\cdot\boldsymbol{n}=\eta\cdot\boldsymbol{n}=0,}$$

$$\eta'_{T}=0_{T},\eta_{T}=\xi_{T}$$

$$= 2\pi L \int \frac{d\boldsymbol{\xi}\cdot P \,d^{2}\xi_{T}}{(2\pi)^{3}} e^{ik\cdot\xi} \langle P|F^{ni}(0)U_{[0,\xi]}^{[+]}F^{nj}(\xi)U_{[\xi,0]}^{[-]}|P\rangle \Big|_{\boldsymbol{\xi}\cdot\boldsymbol{n}=k\cdot\boldsymbol{n}=0}$$

$$= 2\pi L \Gamma^{[+,-]ij}(0,\boldsymbol{k}_{T}), \qquad (3.1)$$

$p^{\uparrow}p \rightarrow h^{\pm} X \text{ at } x_F < 0$

$\alpha_s P' \otimes f_1$ Size of the effect $\overline{\alpha_s P \otimes f_1}$ 1.0 Amount of linear gluon polarization: 0.8 P_{max} 0.6 D.B., Den Dunnen, Pisano, Schlegel '13 Ρ 0.4 --- P_{min} 0.2 $\frac{1}{100} p_T \,[\text{GeV}]$ 60 80 20 40

Ratio of large- k_T tails of h_1^{\perp} and f_1 is large, does **not** mean large effects at large Q_T (observables involve **integrals** over all partonic k_T)

What matters is the small-b behavior of the Fourier transformed TMD:

$$\tilde{f}_1^g(x,b^2;\mu_b^2,\mu_b) = f_{g/P}(x;\mu_b) + \mathcal{O}(\alpha_s)$$

$$\tilde{h}_{1}^{\perp g}(x,b^{2};\mu_{b}^{2},\mu_{b}) = \frac{\alpha_{s}(\mu_{b})C_{A}}{2\pi} \int_{x}^{1} \frac{d\hat{x}}{\hat{x}} \left(\frac{\hat{x}}{x}-1\right) f_{g/P}(\hat{x};\mu_{b}) + \mathcal{O}(\alpha_{s}^{2})$$

[Nadolsky, Balazs, Berger, C.-P.Yuan, 2007; Catani, Grazzini, 2010; P. Sun, B.-W. Xiao, F.Yuan, 2011]

The linear polarization starts at order α s, leading to a **suppression** w.r.t. f₁

Maximum asymmetries in heavy quark production There are also angular asymmetries w.r.t. the lepton scattering plane, whose maxima are large at smaller $|K_{\perp}|$

 $ep \to e'Q\bar{Q}X$ $R' = \text{bound on } |\langle \cos 2(\phi_{\ell} - \phi_T) \rangle|$

[Pisano, D.B., Brodsky, Buffing & Mulders, 2013]

Heavy quark pair production at EIC

GPDs

Theoretical description involves Generalized Parton Distributions (GPDs)

GPDs are off-forward matrix elements ($P' \neq P$)

GPDs provide information about the spatial distribution of quarks inside nucleons

Functions of b_T , which is *not* the Fourier conjugate of k_T (which gives the transverse "size" distribution of quarks), rather it gives the transverse spatial distance of quarks w.r.t. the "center" of the proton

$$\mathbf{R}_{\perp}^{CM} \equiv \sum_{i} x_i \mathbf{r}_{\perp i}$$

The transverse center of longitudinal momentum [Burkardt 2000; Soper 1977]

Gluon GTMDs

$$\begin{split} G^{[U,U']\,ij}(x,\boldsymbol{k},\xi,\boldsymbol{\Delta}) &= x \left(\delta_{T}^{ij} \,\mathcal{F}_{1} + \frac{k_{T}^{ij}}{M^{2}} \,\mathcal{F}_{2} + \frac{\Delta_{T}^{ij}}{M^{2}} \,\mathcal{F}_{3} + \frac{k_{T}^{[i} \Delta_{T}^{j]}}{M^{2}} \,\mathcal{F}_{4} \right) \\ G^{[+,-]\,ij}(\boldsymbol{k},\boldsymbol{\Delta}) &= \frac{2N_{c}}{\alpha_{s}} \left[\frac{1}{2} \left(\boldsymbol{k}^{2} - \frac{\boldsymbol{\Delta}^{2}}{4} \right) \delta_{T}^{ij} + k_{T}^{ij} - \frac{\Delta_{T}^{ij}}{4} - \frac{k_{T}^{[i} \Delta_{T}^{j]}}{2} \right] G^{[\Box]}(\boldsymbol{k},\boldsymbol{\Delta}) \end{split}$$

where

 $xW_g^T(x, \vec{q}_\perp; \vec{b}_\perp)$

$$G^{[\Box]}(\boldsymbol{k}, \boldsymbol{\Delta}) \equiv \int rac{d^2 \boldsymbol{x} \, d^2 \boldsymbol{y}}{(2\pi)^4} \; e^{-i \boldsymbol{k} \cdot (\boldsymbol{x} - \boldsymbol{y}) + i \boldsymbol{\Delta} \cdot rac{\boldsymbol{x} + \boldsymbol{y}}{2}} \; rac{\langle p' | \, S^{[\Box]}(\boldsymbol{x}, \boldsymbol{y}) \, | p
angle \Big|_{\mathrm{LF}}}{\langle P | P
angle},$$

$$\lim_{x,\xi\to 0} x\mathcal{F}_1 = \lim_{x,\xi\to 0} x\mathcal{F}_2^{(1)} = -4\lim_{x,\xi\to 0} x\mathcal{F}_3^{(1)} = -2\lim_{x,\xi\to 0} x\mathcal{F}_4^{(1)} = \mathcal{E}^{(1)}$$

$$\mathcal{F}_{i}^{(n)} \equiv [(m{k}^2 - m{\Delta}^2/4)/(2M^2)]^n \, \mathcal{F}_{i}$$

D.B., van Daal, Mulders, Petreska, 2018

$$= \int \frac{d\xi^{-} d^{2} \xi_{\perp}}{(2\pi)^{3} P^{+}} \int \frac{d^{2} \Delta_{\perp}}{(2\pi)^{2}} e^{-ixP^{+}\xi^{-}-iq_{\perp}\cdot\xi_{\perp}} \\ \times \left\langle P + \frac{\Delta_{\perp}}{2} \left| F^{+i} \left(\vec{b}_{\perp} + \frac{\xi}{2} \right) F^{+i} \left(\vec{b}_{\perp} - \frac{\xi}{2} \right) \right| P - \frac{\Delta_{\perp}}{2} \right\rangle$$

Hatta, Xiao, Yuan, 2016