SINGUL RITIES IN TWIST-3 GPDS & PDFS

Fatma Aslan, Matthias Burkardt

OUTLINE

➤What is and why study twist-3 GPDs

Discontinuities in twist-3 GPDs

Discontinuities and DVCS factorization

Singularities in Twist-3 PDFs and quasi-PDFs

➤Conclusions

≻Outlook

What is TWIST-3?

Twist \rightarrow The order in Q^2 at which a matrix element contributes to the physical amplitude.

Leading order \rightarrow Twist 2 Next to leading order \rightarrow Twist 3

2 -particle correlations → Twist 2
3-particle correlations (such as quark-gluon-quark) → Twist 3

Twist \rightarrow Behavior under longitudinal momentum boost in the IMF

Behavior of twist-2 and twist-3 distributions under longitudinal momentum boost, P^+ .

Twist-2Twist-3Independent of
$$P^+$$
 $1/P^+$

P⁺ (Longitudinal nucleon momentum)

Why study TWIST-3 GPDs?

> Twist-3 effects may not be negligible in the measurement of DVCS amplitude at 12 GeV

Quark-gluon-quark correlations

(average) transverse force acting on a quark in a polarized nucleon

$$\int dx \, x^2 g_2(x) \, , \int dx \, x^2 \, e(x) \, \rightarrow \bot \, force$$

M. Burkardt, Transverse Force on Quarks in DIS (2008).

> There is a relation between one particular twist-3 GPD and the orbital angular momentum of quarks.

$$L_{kin}^{q} = -\int dx x G_{2}^{q}(x,\xi=0,t=0)$$

Penttinen, Polyakov, Shuvaev and Strikman, DVCS amplitude in the parton model (2000).

$$F^{[\gamma^{j}]} \longrightarrow G_{2} (twist - 3)$$

$$\Delta = 0 \qquad \text{fd}x \qquad \text{ff}$$

$$\chi \qquad 0$$

G_2 in quark target model

\widetilde{G}_2 in quark target model

 $\frac{1}{2} \int \frac{dz^-}{2\pi} e^{ixp^+z^-} \langle P', S' | \overline{q}(-\frac{z^-}{2}) \gamma^j \gamma_5 q(\frac{z^-}{2}) | P, S \rangle$ $= \frac{1}{2p^+}\overline{u}(P',S')\Big[\frac{\Delta_{\perp}^j}{2M}\gamma_5(\widetilde{E}+\widetilde{G}_1)+\gamma^j\gamma_5(\widetilde{H}+\widetilde{G}_2)+\frac{\Delta_{\perp}^j}{p^+}\gamma^+\gamma_5\widetilde{G}_3+\frac{i\epsilon_T^{jk}\Delta_{\perp}^k}{p^+}\gamma^+\widetilde{G}_4\Big]\overline{u}(P,S).$

Quark target model in a symmetric frame

 \widetilde{G}_2 too has discontinuities

FACTORIZATION

• $G_2 + \frac{1}{\xi}\tilde{G}_2$ continuous at $x = -\xi$

$$\int_{-1}^{1} dx \, \frac{G_2 - \frac{1}{\xi} \tilde{G}_2}{x - \xi + i\varepsilon}$$

•
$$G_2 - \frac{1}{\xi}\tilde{G}_2$$
 continuous at $x = \xi$

Fatma Aslan, Matthias Burkardt, Cédric Lorcé, Andreas Metz, Barbara Pasquini, Twist-3 GPDs in Deeply Virtual Compton Scattering (2018)

The behavior of the discontinuties of the twist-3 GPDs, \widetilde{G}_2 and G_2 as $\xi \to 0$ in quark target model (QTM) and scalar diquark model (SDM).

Twist-3 GPD	QTM	SDM
G_2	Divergent	Divergent
\widetilde{G}_2	Finite	Divergent

The ERBL region of \widetilde{G}_2 behaves like a $\delta(x)$ in SDM

Now let's check the forward limit $\tilde{G}_2 \rightarrow g_2$

*Twist -3 pdf g*_T & *Twist -3 quasi-pdf g*_T^{quasi} in scalar diquark model

Twist -3 pdf g_T is calculated using LF coordinates , $(+, -, \bot)$

$$2g_T S^{\perp} = \int \frac{d^2 k_{\perp}}{(2\pi)^2} \frac{dk^-}{2\pi} \overline{u}(p) \frac{i(\not\!\!\!k+m)}{(k^2 - m^2 + i\epsilon)} \gamma^{\perp} \gamma_5 \frac{i(\not\!\!\!k+m)}{(k^2 - m^2 + i\epsilon)} u(p) \frac{i}{[(p-k)^2 - \lambda^2 + i\epsilon]}$$

Twist -3 quasi-pdf g_T^{quasi} is calculated using normal coordinates, $(0, \perp, z)$

$$2g_T^{quasi}S^{\perp} = \int \frac{d^2k_{\perp}}{(2\pi)^2} \frac{dk^0}{2\pi} \overline{u}(p) \frac{i(\not\!\!\!k+m)}{(k^2-m^2+i\epsilon)} \gamma^{\perp} \gamma_5 \frac{i(\not\!\!\!k+m)}{(k^2-m^2+i\epsilon)} u(p) \frac{i}{\left[(p-k)^2-\lambda^2+i\epsilon\right]}$$

$$g_T^{quasi} \xrightarrow{P^z \to \infty} g_T$$

Behavior of twist-2 and twist-3 distributions under longitudinal momentum boost, P^+ .

$$\xrightarrow{P^z = P^+ = 15} \qquad g_T(\mathbf{k}^+), \ g_T^{quasi}(\mathbf{k}^z)$$

$$P^{z} = P^{+} = 20$$
 $g_{T}(\mathbf{k}^{+}), g_{T}^{quasi}(\mathbf{k}^{z})$

$$g_T(\mathbf{k}^+), \ g_T^{quasi}(\mathbf{k}^Z)$$

$$P^{z} = P^{+} = 30 \qquad g_{T}(\mathbf{k}^{+}), \quad g_{T}^{quasi}(\mathbf{k}^{z})$$

Twist -3 pdf g_T & Twist -3 quasi-pdf g_T^{quasi} in scalar diquark model

There is a momentum component in the nucleon state which does not scale as the nucleon is boosted to the infinite momentum frame.

$$g_T(\mathbf{x}), g_T^{quasi}(\mathbf{x})$$

The origin of the singularities

$$2g_T S^{\perp} = \int \frac{d^2 k_{\perp}}{(2\pi)^2} \frac{dk^-}{2\pi} \overline{u}(p) \frac{i(\not\!\!k+m)}{(k^2 - m^2 + i\epsilon)} \gamma^{\perp} \gamma_5 \frac{i(\not\!\!k+m)}{(k^2 - m^2 + i\epsilon)} u(p) \frac{i}{\left[(p-k)^2 - \lambda^2 + i\epsilon\right]}$$

$$\int \frac{dk^-}{(k^2 - m^2 + i\epsilon)^2}$$

*Twist -2 pdf g*₁ & *Twist -2 quasi-pdf g*₁^{*quasi*} *in scalar diquark model*

 $\int \frac{d\lambda}{2\pi} e^{i\lambda x} \langle P, S | \overline{q}(0) \gamma^{\mu} \gamma_5 q(\lambda n) | P, S \rangle$ = $2 \{ g_1(x) \hat{p}^{\mu} (S \cdot \hat{n}) + g_T(x) S^{\mu}_{\perp} + M^2 g_3(x) \hat{n}^{\mu} (S \cdot \hat{n}) \}$

Twist -2 pdf g_1 is calculated using LF coordinates , $(+, -, \bot)$

$$2g_1S^+ = \int \frac{d^2k_\perp}{(2\pi)^2} \frac{dk^-}{2\pi} \overline{u}(p) \frac{i(\not\!\!\!k+m)}{(k^2-m^2+i\epsilon)} \gamma^+ \gamma_5 \frac{i(\not\!\!\!k+m)}{(k^2-m^2+i\epsilon)} u(p) \frac{i}{\left[(p-k)^2-\lambda^2+i\epsilon\right]}$$

$$\begin{aligned} Twist - 2 \ quasi-pdf \ g_1^{quasi} \ \text{is calculated using normal coordinates, } (0, \perp, z) \\ (\frac{P^z}{P^0} - 1)g_1^{quasi}S^z &= \int \frac{d^2k_{\perp}}{(2\pi)^2} \frac{dk^0}{2\pi} \overline{u}(p) \frac{i(\not k+m)}{(k^2 - m^2 + i\epsilon)} \gamma^z \gamma_5 \frac{i(\not k+m)}{(k^2 - m^2 + i\epsilon)} u(p) \frac{i}{[(p-k)^2 - \lambda^2 + i\epsilon]} \\ g_1^{quasi} \frac{P^z}{P^z} \rightarrow & g_1 \\ \\ Behavior \ of \ twist - 2 \ and \ twist - 3 \ distributions \\ under \ longitudinal \ momentum \ boost, \ P^+. \\ \hline Twist - 2 \ Twist - 3 \\ \hline Twist - 3 \ twist - 3 \ twist - 3 \\ \hline Twist - 3 \ twist - 3 \\ \hline Twist - 3 \ twist - 3 \ twist - 3 \\ \hline Twist - 3 \ twist - 3 \ twist - 3 \ twist - 3 \\ \hline Twist - 3 \ twist - 3$$

-10

-5

-15

0

5

 $k^{+}(k^{z})$

10

15

20

25

30

Twist-2 pdf	Scalar diquark model
f_1	×
g 1	×
h1	×

Twist-2 pdf	Scalar diquark model	Quark target model
f_{1}	×	×
g 1	×	×
h1	×	×

Twist-3 pdf	Scalar diquark model	Quark target model
е	\checkmark	\checkmark
h∟	\checkmark	\checkmark
g _T (g ₂)	\checkmark	×

AT TWIST-3 THERE IS SOMETHING THAT DOES NOT EXIST IN TWIST-2: THERE ARE DELTA FUNCTIONS

✓: There is $\delta(x)$ ★: There is no $\delta(x)$

Twist-3 pdf	Scalar diquark model	Quark target model
е	\checkmark	\checkmark
h∟	\checkmark	\checkmark
<i>g</i> ₇ (<i>g</i> ₂)	\checkmark	×

We identify these delta functions with momentum components in the nucleon state that do not scale as the nucleon is boosted to the infinite momentum.

Without PV Regularization

$$2g_T S^{\perp} = \int \frac{d^2 k_{\perp}}{(2\pi)^2} \frac{dk^-}{2\pi} \overline{u}(p) \frac{i(\not\!\!\!k+m)}{(k^2 - m^2 + i\epsilon)} \gamma^{\perp} \gamma_5 \frac{i(\not\!\!\!k+m)}{(k^2 - m^2 + i\epsilon)} u(p) \frac{i}{[(p-k)^2 - \lambda^2 + i\epsilon]}$$

$$2g_T(x) = \frac{1}{4\pi p^+} (x + \frac{m}{M}) \Big\{ M(m+M)(1-x) - \lambda^2 \Big\} \frac{1}{(k_{\perp}^2 + \omega)} \Big|_0^{K^2} + \frac{1}{4\pi p^+} (2x - 1 + \frac{m}{M}) \Big\{ \frac{\omega}{k_{\perp}^2 + \omega} + \ln(k_{\perp}^2 + \omega) \Big\} \Big|_0^{K^2} - \frac{1}{4\pi} (x + \frac{m}{M}) \frac{1}{(1-x)} \ln\left(\frac{K^2 + m^2}{m^2}\right) \delta(x)$$

$$\omega = -x(1-x)M^2 + (1-x)m^2 + x\lambda^2$$

With PV Regularization

$$2g_T S^{\perp} = \int \frac{d^2 k_{\perp}}{(2\pi)^2} \frac{dk^-}{2\pi} \overline{u}(p) \frac{i(\not\!\!\!k+m)}{(k^2 - m^2 + i\epsilon)} \gamma^{\perp} \gamma_5 \frac{i(\not\!\!\!k+m)}{(k^2 - m^2 + i\epsilon)} u(p) \left\{ \frac{i}{\left[(p-k)^2 - \lambda^2 + i\epsilon\right]} - \frac{i}{\left[(p-k)^2 - \Lambda^2 + i\epsilon\right]} \right\}$$

$$2g_T(x) = \frac{1}{4\pi p^+} \left(x + \frac{m}{M}\right) \left\{ M(m+M)(1-x) - \lambda^2 \right\} \frac{1}{k_\perp^2 + \omega(\lambda)} \Big|_0^{K^2} + \frac{1}{4\pi p^+} \left(2x - 1 + \frac{m}{M}\right) \left\{ \frac{\omega(\lambda)}{k_\perp^2 + \omega(\lambda)} + \ln(k_\perp^2 + \omega(\lambda)) \right\} \Big|_0^{K^2} + \frac{1}{4\pi p^+} \left(2x - 1 + \frac{m}{M}\right) \left\{ \frac{\omega(\lambda)}{k_\perp^2 + \omega(\lambda)} + \ln(k_\perp^2 + \omega(\lambda)) \right\} \Big|_0^{K^2} + \frac{1}{4\pi p^+} \left(2x - 1 + \frac{m}{M}\right) \left\{ \frac{\omega(\lambda)}{k_\perp^2 + \omega(\lambda)} + \ln(k_\perp^2 + \omega(\lambda)) \right\} \Big|_0^{K^2} + \frac{1}{4\pi p^+} \left(2x - 1 + \frac{m}{M}\right) \left\{ \frac{\omega(\lambda)}{k_\perp^2 + \omega(\lambda)} + \ln(k_\perp^2 + \omega(\lambda)) \right\} \Big|_0^{K^2} + \frac{1}{4\pi p^+} \left(2x - 1 + \frac{m}{M}\right) \left\{ \frac{\omega(\lambda)}{k_\perp^2 + \omega(\lambda)} + \ln(k_\perp^2 + \omega(\lambda)) \right\} \Big|_0^{K^2} + \frac{1}{4\pi p^+} \left(2x - 1 + \frac{m}{M}\right) \left\{ \frac{\omega(\lambda)}{k_\perp^2 + \omega(\lambda)} + \ln(k_\perp^2 + \omega(\lambda)) \right\} \Big|_0^{K^2} + \frac{1}{4\pi p^+} \left(2x - 1 + \frac{m}{M}\right) \left\{ \frac{\omega(\lambda)}{k_\perp^2 + \omega(\lambda)} + \ln(k_\perp^2 + \omega(\lambda)) \right\} \Big|_0^{K^2} + \frac{1}{4\pi p^+} \left(2x - 1 + \frac{m}{M}\right) \left\{ \frac{\omega(\lambda)}{k_\perp^2 + \omega(\lambda)} + \ln(k_\perp^2 + \omega(\lambda)) \right\} \Big|_0^{K^2} + \frac{1}{4\pi p^+} \left(2x - 1 + \frac{m}{M}\right) \left\{ \frac{\omega(\lambda)}{k_\perp^2 + \omega(\lambda)} + \ln(k_\perp^2 + \omega(\lambda)) \right\} \Big|_0^{K^2} + \frac{1}{4\pi p^+} \left(2x - 1 + \frac{m}{M}\right) \left\{ \frac{\omega(\lambda)}{k_\perp^2 + \omega(\lambda)} + \ln(k_\perp^2 + \omega(\lambda)) \right\} \Big|_0^{K^2} + \frac{1}{4\pi p^+} \left(2x - 1 + \frac{m}{M}\right) \left\{ \frac{\omega(\lambda)}{k_\perp^2 + \omega(\lambda)} + \ln(k_\perp^2 + \omega(\lambda)) \right\} \Big|_0^{K^2} + \frac{1}{4\pi p^+} \left(2x - 1 + \frac{m}{M}\right) \left\{ \frac{\omega(\lambda)}{k_\perp^2 + \omega(\lambda)} + \ln(k_\perp^2 + \omega(\lambda)) \right\} \Big|_0^{K^2} + \frac{1}{4\pi p^+} \left(2x - 1 + \frac{m}{M}\right) \left\{ \frac{\omega(\lambda)}{k_\perp^2 + \omega(\lambda)} + \ln(k_\perp^2 + \omega(\lambda)) \right\} \Big|_0^{K^2} + \frac{1}{4\pi p^+} \left(2x - 1 + \frac{m}{M}\right) \left\{ \frac{\omega(\lambda)}{k_\perp^2 + \omega(\lambda)} + \ln(k_\perp^2 + \omega(\lambda)) \right\} \Big|_0^{K^2} + \frac{1}{4\pi p^+} \left(2x - 1 + \frac{m}{M}\right) \left\{ \frac{\omega(\lambda)}{k_\perp^2 + \omega(\lambda)} + \ln(k_\perp^2 + \omega(\lambda)) \right\} \Big|_0^{K^2} + \frac{1}{4\pi p^+} \left(2x - 1 + \frac{m}{M}\right) \left\{ \frac{\omega(\lambda)}{k_\perp^2 + \omega(\lambda)} + \frac{1}{4\pi p^+} \left(2x - 1 + \frac{m}{M}\right) \right\} \Big|_0^{K^2} + \frac{1}{4\pi p^+} \left(2x - 1 + \frac{m}{M}\right) \left\{ \frac{\omega(\lambda)}{k_\perp^2 + \omega(\lambda)} + \frac{1}{4\pi p^+} \left(2x - 1 + \frac{m}{M}\right) \right\} \Big|_0^{K^2} + \frac{1}{4\pi p^+} \left(2x - 1 + \frac{m}{M}\right) \left\{ \frac{\omega(\lambda)}{k_\perp^2 + \omega(\lambda)} + \frac{1}{4\pi p^+} \left(2x - 1 + \frac{m}{M}\right) \right\} \Big|_0^{K^2} + \frac{1}{4\pi p^+} \left(2x - 1 + \frac{m}{M}\right) \left\{ \frac{\omega(\lambda)}{k_\perp^2 + \omega(\lambda)} + \frac{1}{4\pi p^+} \left(2x - 1 + \frac{m}{M}\right) \right\} \Big|_0^{K^2} + \frac{1}{4\pi p^+} \left(2x - 1 + \frac{m}{M}\right) \left\{ \frac{\omega(\lambda)}{k_\perp^2 + \omega(\lambda)} + \frac{\omega(\lambda)}{k_\perp^2 + \omega(\lambda)} \right\} \right\}$$

$$-\frac{1}{4\pi p^{+}}\left(x+\frac{m}{M}\right)\left\{M(m+M)(1-x)-\Lambda^{2}\right\}\frac{1}{k_{\perp}^{2}+\omega(\Lambda)}\Big|_{0}^{K^{2}}-\frac{1}{4\pi p^{+}}\left(2x-1+\frac{m}{M}\right)\left\{\frac{\omega(\Lambda)}{k_{\perp}^{2}+\omega(\Lambda)}+\ln(k_{\perp}^{2}+\omega(\Lambda))\right\}\Big|_{0}^{K^{2}}-\frac{1}{4\pi p^{+}}\left(2x-1+\frac{m}{M}\right)\left(2x-1+\frac$$

$$2g_T(x) = \frac{1}{4\pi p^+} (x+1)(1-2x) \frac{1}{k_\perp^2 + \omega(\lambda=1)} |_0^{K^2} + \frac{1}{4\pi p^+} (2x) \Big\{ \frac{\omega(\lambda=1)}{k_\perp^2 + \omega(\lambda=1)} + \ln(k_\perp^2 + \omega(\lambda=1)) \Big\} |_0^{K^2} - \frac{1}{4\pi p^+} (x+1) \Big\{ 2(1-x) - \Lambda^2 \Big\} \frac{1}{k_\perp^2 + \omega(\Lambda)} |_0^{K^2} - \frac{1}{4\pi p^+} (2x) \Big\{ \frac{\omega(\Lambda)}{k_\perp^2 + \omega(\Lambda)} + \ln(k_\perp^2 + \omega(\Lambda)) \Big\} |_0^{K^2}$$

$$2g_{T}(x) = \frac{1}{4\pi p^{+}}(x+1)(1-2x)\frac{1}{k_{\perp}^{2}+\omega(\lambda=1)}|_{0}^{K^{2}} + \frac{1}{4\pi p^{+}}(2x)\left\{\frac{\omega(\lambda=1)}{k_{\perp}^{2}+\omega(\lambda=1)} + \ln(k_{\perp}^{2}+\omega(\lambda=1))\right\}|_{0}^{K^{2}} - \frac{1}{4\pi p^{+}}(x+1)\left\{2(1-x)-\Lambda^{2}\right\}\frac{1}{k_{\perp}^{2}+\omega(\Lambda)}|_{0}^{K^{2}} - \frac{1}{4\pi p^{+}}(2x)\left\{\frac{\omega(\Lambda)}{k_{\perp}^{2}+\omega(\Lambda)} + \ln(k_{\perp}^{2}+\omega(\Lambda))\right\}|_{0}^{K^{2}}$$

$$2g_{T}(x) = \frac{1}{4\pi p^{+}}(x+1)(1-2x)\frac{1}{k_{\perp}^{2}+\omega(\lambda=1)}|_{0}^{K^{2}} + \frac{1}{4\pi p^{+}}(2x)\left\{\frac{\omega(\lambda=1)}{k_{\perp}^{2}+\omega(\lambda=1)} + \ln(k_{\perp}^{2}+\omega(\lambda=1))\right\}|_{0}^{K^{2}} - \frac{1}{4\pi p^{+}}(x+1)\left\{2(1-x)-\Lambda^{2}\right\}\frac{1}{k_{\perp}^{2}+\omega(\Lambda)}|_{0}^{K^{2}} - \frac{1}{4\pi p^{+}}(2x)\left\{\frac{\omega(\Lambda)}{k_{\perp}^{2}+\omega(\Lambda)} + \ln(k_{\perp}^{2}+\omega(\Lambda))\right\}|_{0}^{K^{2}}$$

$$2g_{T}(x) = \frac{1}{4\pi p^{+}}(x+1)(1-2x)\frac{1}{k_{\perp}^{2}+\omega(\lambda=1)}|_{0}^{K^{2}} + \frac{1}{4\pi p^{+}}(2x)\left\{\frac{\omega(\lambda=1)}{k_{\perp}^{2}+\omega(\lambda=1)} + \ln(k_{\perp}^{2}+\omega(\lambda=1))\right\}|_{0}^{K^{2}} - \frac{1}{4\pi p^{+}}(x+1)\left\{2(1-x)-\Lambda^{2}\right\}\frac{1}{k_{\perp}^{2}+\omega(\Lambda)}|_{0}^{K^{2}} - \frac{1}{4\pi p^{+}}(2x)\left\{\frac{\omega(\Lambda)}{k_{\perp}^{2}+\omega(\Lambda)} + \ln(k_{\perp}^{2}+\omega(\Lambda))\right\}|_{0}^{K^{2}}$$

$$2g_{T}(x) = \frac{1}{4\pi p^{+}}(x+1)(1-2x)\frac{1}{k_{\perp}^{2}+\omega(\lambda=1)}|_{0}^{K^{2}} + \frac{1}{4\pi p^{+}}(2x)\left\{\frac{\omega(\lambda=1)}{k_{\perp}^{2}+\omega(\lambda=1)} + \ln(k_{\perp}^{2}+\omega(\lambda=1))\right\}|_{0}^{K^{2}} - \frac{1}{4\pi p^{+}}(x+1)\left\{2(1-x)-\Lambda^{2}\right\}\frac{1}{k_{\perp}^{2}+\omega(\Lambda)}|_{0}^{K^{2}} - \frac{1}{4\pi p^{+}}(2x)\left\{\frac{\omega(\Lambda)}{k_{\perp}^{2}+\omega(\Lambda)} + \ln(k_{\perp}^{2}+\omega(\Lambda))\right\}|_{0}^{K^{2}}$$

Sum rules involving twist-3 distributions are violated if we do not take the $\delta(x)$ into account.

If there is a $\delta(x)$ and if it is not included: Lorentz invariance of twist-3 GPDs $\int_{-1}^{1} dx G_i(x,\xi,\Delta) = 0 \quad \Longrightarrow \quad \lim_{\epsilon \to 0} \int_{-1}^{\epsilon} dx G_i(x,\xi=0,\Delta) + \lim_{\epsilon \to 0} \int_{\epsilon}^{1} dx G_i(x,\xi=0,\Delta) \stackrel{\mathbf{v}}{\neq} 0,$ $\int_{-1}^{1} dx \widetilde{G}_{i}(x,\xi,\Delta) = 0 \quad \Longrightarrow \quad \lim_{\epsilon \to 0} \int_{-1}^{\epsilon} dx \widetilde{G}_{i}(x,\xi=0,\Delta) + \lim_{\epsilon \to 0} \int_{\epsilon}^{1} dx \widetilde{G}_{i}(x,\xi=0,\Delta) \neq 0$ $\int_{-1}^{1} dx g_1(x) = \int_{-1}^{1} dx g_T(x) \qquad \qquad \int_{-1}^{1} dx h_1(x) = \int_{-1}^{1} dx h_L(x)$ $\int_{-1}^{1} dx e(x) = \frac{1}{2M} \langle p | \overline{\psi}(0) \psi(0) | p \rangle = \frac{d}{dm} M \quad \Longrightarrow \quad \lim_{\epsilon \to 0} \int_{-1}^{\epsilon} dx e(x) + \lim_{\epsilon \to 0} \int_{\epsilon}^{1} dx e(x) \neq \frac{d}{dm} M$

If one tries to confirm these sum rules experimentally by drawing conclusions from the smooth behavior <u>near x=0</u> about the behavior at x=0 they would claim that the sum rules are violated.

> There is a $\delta(x)$ in twist -3 PDFs.

\succ Corresponding twist -3 GPDs have discontinuities at $x = \pm \xi$.

➤ No issues with DVCS factorization for twist – 3.

> $\delta(x)$ functions are related to the wave function components that do not scale in when the nucleon is boosted to the infinite momentum frame.

> Not taking the $\delta(x)$ functions into account imply apparent violations of sum rules.

OUTLOOK

- Calculation of twist-3 GPDs in models with dynamical chiral symmetry breaking. Current quark $\rightarrow \delta(x)$ Dressed quark \rightarrow ?
- $\text{Decomposition of twist 3.} \quad \begin{array}{c} g_2(x) = g_2^{WW}(x) + g_2^{-m}(x) + g_2^{-3}(x) \\ & & & \\ \end{array} \\ g_2^{WW}(x) = -g_1(x) + \int_x^1 \frac{dy}{y} g_1(y) \\ & & \\ \end{array} \\ \begin{array}{c} \text{Quark mass term} \\ \text{potentially contains} \\ \text{a } \delta(x) \text{ function} \end{array} \\ \begin{array}{c} \text{Genuine twist-3 term} \\ \text{potentially contains} \\ \text{a } \delta(x) \text{ function} \end{array} \\ \begin{array}{c} \text{Genuine twist-3 term} \\ \text{potentially contains} \\ \text{a } \delta(x) \text{ function} \end{array}$

$$h_L(x) = h_L^{WW}(x) + h_L^m(x) + h_L^3(x)$$

We remark that the above calculation indicates that the $\delta(x)$ term appears not only in h_L^m but also in h_L^3 . Furthermore they do not cancel but add up to give rise to $-\delta(x)$ in $h_L(x, Q^2)$ itself.

Burkardt & Koike, Violation of Sum Rules for Twist-3 Parton Distributions in QCD, 2001

> Using the x^2 moments of genuine twist-3 GPDs we can map out the transverse force acting on a quark in a polarized nucleon. (Aslan, Burkardt, Schlegel)

OUTLOOK

Upon boosting the system to infinite momentum the partons would all become very far from $\eta = 0$, where η is the fraction of the particle's longitudinal momentum carried by the parton. Since all the vacuum activity takes place at $\eta = 0$, it seems very curious how these partons (at finite η) could "feel" what is going on at $\eta = 0$.

The right way to think about spontaneous breaking of chiral symmetry on the LC is that it somehow manifests itself through interactions between partons at finite η and $\eta = 0$ (the vacuum). The problem or puzzle with this is that matrixelements connecting states which are separated by a large distance in rapidity¹ are suppressed. So ho how could the valence quarks possibly feel what is going on at $\eta = 0$?

Leonard Susskind, Matthias Burkardt A Model of Mesons based on χ SB in the Light-Front Frame (1994)

There is a momentum component in the nucleon state which does not scale as the nucleon is boosted to the infinite momentum frame.

Thank you for listening

