collinear (un)-polarized PDFs and fragmentation functions

1111111111

, I. Borsa, X. Chu, Ch. van Hulse, R.Sassot, H. Spiesberger, M. Stratmann, K. Wichmann, E.C. Aschenauer

Electron Ion Collider

The inner life of hadrons Parton distribution functions

s(x) and sbar(x) where do we stand?

NNPDF 3.1 arXiv:1706.00428

$$r_s(x,Q^2) = \frac{s(x,Q^2) + \bar{s}(x,Q^2)}{\bar{d}(x,Q^2) + \bar{u}(x,Q^2)}.$$

NNLO, Q = 100 GeV NNPDF3.1 ----- CT14 1.2 ----- MMHT2014 s (x, Q^2) / s (x, Q^2) [ref] 0.9 0.8 0.7 10⁻³ 10⁻² 10^{-4} 10⁻¹ NNLO, Q=1.38 GeV NNPDF3.1 1.6 CT14 1.4 eeeeeeee MMHT14 1.2 1, x, Q²) 8.0 B_S (x, Q²) 0.6 0.4

10⁻³

10⁻²

10-1

0.2

10-

A. Accardi et al.

Proton PDFs at high x

HOW TO ACCESS SEA QUARKS IN DIS

tärget nucleon

Charge Current:

Detect identified hadrons in coincidence to scattered lepton

- A needs fragmentation functions to correlate hadron type with parton
- \rightarrow Detector: PID over a wide range of η

W-exchange: direct access to the quark flavor no FF - complementary to SIDIS → Detector: large rapidity coverage and large Js

tag sea-quarks through the sub-processes and jet substructure

 \rightarrow Detector: large rapidity coverage and PID

INT-2018 Week-3

Observables: Charge Current in ep and eA

W-exchange:

direct access to the quark flavor

Ws are maximally parity violating → Ws couple only to one parton helicity

$$W^{-} + p \rightarrow u\overline{d}$$
$$W^{-} + n \rightarrow d\overline{u}$$

Complementary to SIDIS:

□ high Q²-scale: > 100 GeV²

- best way to measure at very high x
- extremely clean theoretically
- No Fragmentation function

→ stringent test on theory approach for SIDIS UNIVERSALITY of PDFs

EIC:

first time charge current physics in polarized ep and eA collisions

effective neutron target: (un)polarized Deuterium or /and He-3 through tagging the spectator proton(s)

Observables: Charge Current in ep

Observables: Charge Current in ep and eA

Just some of the physics opportunities:

polarized ep/en:

□ test models based on helicity retention $\Delta d/d \rightarrow 1$ (Phys.Rev.Lett. 99 (2007) 082001)

- precision test models assuming charge symmetry violation
- precision test handiness of Ws
- \Box tag charm in coincidence with CC event $\rightarrow \Delta s$

unpolarized ep/en:

- \Box impact on PDFs \rightarrow high x quark PDFs
 - > tag charm in coincidence of CC event \rightarrow s
- precision constrain on light quark weak neutral current couplings a_u, v_u, a_d v_d

unpolarized eA:

- Test Models for the EMC-effect
 - charge symmetry violation
 - Isovector EMC effect

(Cloet, Bentz, Thomas et. al., PRL 102 252301)

CC@EIC: Impact on PDFs

Generated 10 fb⁻¹ worth of ep CC events with DJANGOH for 20 GeV x 250 GeV

XFitter is used to get the impact on PDFs

good agreement between pseudo-data and prediction

Impact of CC@EIC to PDFs

$$xU = xu + xc$$

$$xD = xd + xs$$

$$x\overline{U} = x\overline{u} + x\overline{c}$$

$$x\overline{D} = x\overline{d} + x\overline{s}$$

$$xu_{v} = xU - x\overline{U}$$

$$xd_{v} = xD - x\overline{D}$$

Very strong impact on $x\overline{D}$ significant impact on xu_v Need to still understand in detail why there is impact on $x\overline{U}$

 \rightarrow very promising first results

What can an EIC Do?

Should study what NC and CC cross sections at EIC can tell us on the vector and axial-vector weak neutral current couplings

11

Ch.vanHulse, I. Borsa, R. Sassot, ECA

What can SIDIS@EIC Teach us

PDFs: flavor separation from SIDIS@EIC

Use reweighting method to define EIC SIDIS data impact on collinear unpolarized PDFs and Fragmentation functions

PDFs: flavor separation from SIDIS@EIC

Use reweighting method to define EIC SIDIS data impact on collinear unpolarized PDFs and Fragmentation functions

PDF Constrain from SIDIS@EIC

√s=45 GeV

PDF Constrain from SIDIS@EIC

√s=45 GeV

FF Constrain from SIDIS@EIC

Utilize the same method as for PDFs

Example for Jet Physics at an EIC: Unpolarized and polarized photon structure

Details: X. Chu, ECA arXiv:1705.08831

Photon Parton Structure

0.5

0.6

0.7

0.8

0.9

In high energy ep collision, two types of processes lead to the production of di-jets:

INT-201

 $\boldsymbol{x}_{\gamma}^{gen}$

0.2

0.4

0.6

0.8

x^{rec}

Aschenauer

The Holy Grail

INT-2018 Week-3

Why should we care?

Spin ideal tool to understand the dynamics of sea quarks and gluons inside the hadron

- Despite decades of QCD Spin one of the least understood quantities
- Consequence very few models, but several physics pictures, which can be tested with high precision data
- □ the pion/kaon cloud model
 - \rightarrow rooted in deeper concepts \rightarrow chiral symmetry
 - → generated q-qbar pairs (sea quarks) at small(ish)-x are predicted to be unpolarized
 - \rightarrow gluons if generated from sea quarks unpolarised \rightarrow spatial imaging
 - → a high precision measurement of the flavor separated polarized quark and gluon distributions as fct. of x is a stringent way to test.

□ the chiral quark-soliton model

- → sea quarks are generated from a "Dirac sea" with a rich dynamical structure but excludes gluons at its starting scale
- \rightarrow sea quarks are polarized \rightarrow asymmetry $\Delta \bar{u} \neq \Delta d$
- A high precision measurement of the flavor separated polarized quark as fct. of x is a stringent way to test

stringent test of lattice calculations

- the relative importance of lattice graphs
- Probe quark is connected to the proton wave function or is created from the 'gluon soup' inside the proton

What we have now: $\int \Delta g(x)$

Impact in NNPDF

only STAR jets included

INT-2018 Week-3

 Q^2 -Dependence

Why is separating quark flavors important?

Why is separating quark flavors important?

- nuclear structure is encoded in parton distribution functions
- understand dynamics of the guark-antiguark fluctuations
- flavor asymmetry in the light quark sea in the proton unpolarized: ubar < dbar Helicity: Aubar > Adbar TMDs: ?????
 - shape of polarized sea-quark PDFs critical for quark contribution to spin

present vs EIC kinematic coverage

INT-2018 Week-3

What forms the Spin of the Proton

Spin is more than the number $\frac{1}{2}$! It is the interplay between the intrinsic properties and interactions of quarks and gluons

INT-2018 Week-3

How to decompose the Spin of the Proton

To determine the contribution of quarks and gluons to the spin of the proton, one needs to measure the cross section difference g_1 as function of x and Q^2

M.Stratmann, R. Sassot, ECA: arXiv:1206.6014 & 1509.06489

INT-2018 Week-3

scaling violations at small x

rough small-x approximation to Q^2 -evolution:

 $\frac{dg_1}{d\log(Q^2)} \propto -\Delta g(x,Q^2) \bigcap_{\text{spread in } \Delta g(x,Q^2) \text{ translates into}} \text{spread of scaling violations for } g_1(x,Q^2)$

need x-bins with a least two Q² values to compute derivative (limits x reach somewhat)

What forms the Spin of the Proton

The pollarized SF $g_1(x, Q^2)$ as measured text ELCEFT for tour bound of \sqrt{s}

Only with the center-of-mass energies available at EIC the different contributions to the spin of the proton can be disentangled

Where does the Spin of the proton hide

SIDIS@EIC: HELICITY PDFs

Can cover the same kinematics for $g_1^{\pi,K}$ as for $g_1 \rightarrow \text{ will constrain } \Delta q$

34

probing a possible asymmetry in the polarized sea

- \Box current SIDIS data not sensitive to $\Delta \bar{\mathbf{u}}(\mathbf{x}) \Delta \bar{\mathbf{d}}(\mathbf{x})$ (known to be sizable for unpol. PDFs)
- **many models predict sizable asymmetry** [large N_c, chiral quark soliton, meson cloud, Pauli blocking]

Observables: Charge Current in polarized ep Polarized CC cross section

Approximate behavior of the LO single spin asymmetry

Details: Th. Burton, T. Martini, H. Spiesberger, M. Stratmann, ECA, arXiv:13095327 PRD 88 (2013) 114025

More work to be done on unpolarized PDF and FF constrains

- > but EIC will be critical for PDF and FF constrains
- ➢ did not discuss inclusive DIS and F₂^C→ but coverage better then for eA arXiv:1708.05654
- EIC at high Js the only machine to unravel the different components to the spin of the proton
 - critical for low-x behaviour
- CC important observable for flavor separation and testing limitations of SIDIS
- Questions to be answered before an EIC
- \Box effective neutron target: $\int s$ Deuterium: 100 GeV Helium-3: 166 GeV
 - ➢ He-3 larger x coverage proton equivalent √s: 250 GeV
 - > what is the better choice with respect to nuclear effects
- What are the limiting theoretical factors to determine high-x PDFs?
 > what is the golden observable to constrain g(x,Q²) at high x
- How can we measure Lq and Lg from Jaffe-Manohar
- What are the golden observables to learn about hadronization
 Correlations between different rapidity ranges and distributions inside jets?

INT-2018 Week-3

Inclusive Cross-Sections in eA

arXiv:1708.05654

DESY 2017

Direct Access to Gluons in eA

For Details: arXiv:1708.05654

opportunity to benchmark different GM-VFNS schemes with an unprecedented precision.

EIC: Impact on the Knowledge of 1D Nuclear PDFs

Ratio of PDF of Pb over Proton

- Without EIC, large uncertainties
 - → With EIC significantly reduced uncertainties
- Complementary to RHIC and LHC pA data. Provides information on initial state for heavy ion collisions.
- Does the nucleus behave like a proton at low-x?
 - → relevant to very high-energy cosmic ray studies
 - \rightarrow critical input to AA
- submitted to PRD arXiv:1708.05654

probes of nucleon helicity structure

guiding principle: factorization

annue

e.g. DIS
$$d\Delta\sigma = \sum_{f=q,ar{q},g}\int dx\;\Delta f(x,Q^2)\;d\Delta\hat{\sigma}_{\gamma^*f}(xP,lpha_s(Q^2))$$

essential: QCD corrections $d\Delta\hat{\sigma} = d\Delta\hat{\sigma}^{LO} + \alpha_s d\Delta\hat{\sigma}^{NLO} + \dots$

need DIS + SIDIS + pp to constrain all aspects of PDFs (a way to test factorization)