TMDs from RHIC to EIC

E.C. Aschenauer

Not covered: inclusive hadron A_N IFF → Anselm

Why p+p to access TMDs

Complementarity:

QCD has two concepts, which lay its foundation: factorization and universality

→ To tests these concepts and separate interaction dependent phenomena from intrinsic nuclear properties different complementary probes are critical Probes: high precision data from ep, pp, e+e-

Gluons:

One of the driving motivations behind an EIC is the study of gluons. Strong interactions access gluons directly (qg & gg) and are well suited for studying TMD observables like Gluon Fragmentation Functions and Gluon Linear Polarization. DIS: F_L , tag PGF (di-jets, heavy flavor)

Evolution:

TMD evolution is area of active theoretical research!

- → Proton colliders routinely access higher Q^2 and p_t than fixed target experiments (as well as some running scenarios for an EIC).
- Provides insights into the size of observables we want to measure at an EIC.

Hadron collider data critical to fully realize the scientific promise of the EIC and

lay the groundwork for the EIC, both scientifically and by refining the experimental requirements

□ Constrain TMDs over a wide x and Q² range (valence, sea-quarks & gluons)

- \rightarrow need 2 scale processes (DY, W, Z⁰, Di-jet, h[±] in jet)
- \rightarrow different $\int s \rightarrow$ different p_t at the same $x_t \rightarrow$ evolution
- \rightarrow Test non-universality of TMDs $\leftarrow \rightarrow$ SIDIS

observables as transversity can be accessed also in collinear observables (IFF)

→ test of TMD factorization & universality

 \Box observables purely sensitive (1-scale ($\pi^0/\gamma/\text{jet}$)) to the TWIST-3 formalism

 \rightarrow different $\int s \rightarrow$ evolution

Final State Initial State \Box A_N for W^{+/-}, Z⁰, DY $\Box A_{UT} \pi^{+/-} \pi^0$ azimuthal distribution in jets \rightarrow Transversity x Collins \rightarrow Sivers □ **A**_{UT} in dihadron production \Box A_N for jets \rightarrow g-Sivers in Twist-3 \rightarrow Transversity x Interference FF □ direct photons \Box A_N for π +/- and π^0 \rightarrow q-Sivers in Twist-3 \rightarrow Novel Twist-3 FF Mechanisms related through related through $-\int d^2k_{\perp} \frac{|k_{\perp}^2|}{M} f_{1T}^{\perp q}(x,k_{\perp}^2)|_{SIDIS} = T_{q,F}(x,x)$ $\hat{H}(z) = z^2 \int d^2 \vec{k}_{\perp} \frac{\vec{k}_{\perp}^2}{2M^2} H_1^{\perp}(z, z^2, \vec{k}_{\perp}^2)$ INT-Week-2 2018 E.C. Aschenauer

A GoldeN Observable: "Hadrons in Jet"

- Observable: Hadron distribution inside jet
- Study a hadron distribution inside a fully reconstructed jet

$$F(z,p_t) = \frac{d\sigma^h}{dydp_t dz} / \frac{d\sigma}{dydp_t} \qquad f(z,p_t,j_t) = \frac{d\sigma^h}{dydp_t dzdj_t} / \frac{d\sigma}{dydp_t} \qquad z = \frac{p_t^h}{p_t^{jet}}$$

W. Vogelsang et al. arXiv:1506.01415

 \mathbf{j}_{t} ; hadron transverse momentum with respect to the jet direction

The 1st observable is collinear, while the 2nd observable is a TMD

Cross section for hadrons in jet

- High sensitivity to Gluon FF
- Unique to pp

- Seems to follow the feature of p+Pb at LHC
- > Will see how energy loss picture will compare

Jets to access Transversity x Collins

 $A_{UT}^{p^{\pm}} \approx \frac{h_{1}^{q_{1}}(x_{1},k_{T}) f_{q_{2}}(x_{2},k_{T}) \hat{S}_{UT}(\hat{s},\hat{t},\hat{u}) DD_{q_{1}}^{p^{\pm}}(z,j_{T})}{f_{q_{1}}(x_{1},k_{T}) f_{q_{2}}(x_{2},k_{T}) \hat{S}_{UU} D_{q_{1}}^{p^{\pm}}(z,j_{T})}$

STAR arXiv:1708.07080 DMP: PLB 773, 300 (2017) KPRY: PLB 774, 635 (2017)

First Ins effect measurements in pp collisions are reasonably described by two recent calculations that convolute the transversity distribution from SIDIS with the Collins FF from e+e- collisions
Tests the predicted universality of the Collins FF
Kang et al, JHEP 11, 068 (2017)

TMD evolution effects appear to be small

INT-Week-2 2018

Collins effect vs jT in separate z-bins

□ 500 GeV pp results hinted the A_{UT} peak shifts to higher j_T as z increases

2017 data factor 14 more statistics

New preliminary 200 GeV pp results provide confirming evidence

What Do We Know about Gluon TMDs

INT-Week-2 2018

E.C. Aschenauer

TMDs and "QGP" in small systems

Collective flow signatures seen even in the smallest systems and at the lowest RHIC energies

TMD formalism in DIS predicts a distribution for linearly polarized gluons in an unpolarized target. This is reflected in $cos(2\varphi)$ asymmetries in dijet production

Study azimuthal anisotropy as a function of the rapidity dis-balance of the jets

Process sensitive to unpolarized and linearly polarized gluon distribution

$$xG_{ww}^{ij} = \frac{1}{2}\delta^{ij}xG^{(1)} - \frac{1}{2}\left(\delta^{ij} - \frac{2k^{i}k^{j}}{k^{2}}\right)$$

Phys.Rev. D94 (2016) no.1, 014030 Phys.Rev.Lett. 115 (2015) no.25,252301 Phys.Rev. D91 (2015) no.7, 074006 Phys.Lett. B743 (2015) 134-137

INT-Week-2 2018

E.C. Aschenauer

Sensitivity to Gluon "TMDs"

Phys.Rev. D95 (2017) 112001

Model calculations from: Koike et.al. Phys.Rev. D84 (2011) 014026

- Heavy flavor asymmetries most sensitive to Twist-3 counterpart of Gluon Sivers and tri-gluon correlator,
- no final state effects expected due to heavy quark mass
- Both contributions poorly known

Sensitivity to Gluon "TMDs"

Surprising nonzero J/Psi A_Ns seen in pAu collisions while pp Asymmetries are mostly consistent with zero

Nonzero effect only visible at the lowest available P_t

Diffractive effects as cause not very likely due to coincidence with hard collision trigger

pAl data is being analyzed

"Twist-3 Sivers" through Inclusive Jets

INT-Week-2 2018

E.C. Aschenauer

Sensitivity to Gluon "TMDs"

pp:

2018

- Improved results from 2015!
 Consistent with 0 to 3~10⁻⁴ precision level at low p_T
- constrain of gluon Sivers effect Anselmino et al, PRD 74 (2006), 094011 D'Alesio et al, JHEP 1509 (2015), 119

pA: high precision test of nuclear effects

E.C. Aschenauer

What Will Come

RUN-17: A goldmine for TMDs@STAR

Collected:

350 pb⁻¹ \rightarrow 14 times Run-11 for -1 < η < 1.8 \rightarrow A_N W^{+/-} & Z⁰, Collins,

STAR p+p 500 GeV (L = 25 pb⁻¹) $0.5 < P_{T}^{W} < 10 \ GeV/c$ <mark>⊢</mark>Ẃ→Íν run 17 proj. (L=350pb⁻¹, P=55%) -0.6 KQ - no TMD evol. EIKV - TMD evolved -0.8 3.4% beam pol. uncertainty not shown 0.5 vw

Will provide data to constrain

- \rightarrow TMD evolution,
- \rightarrow sea-quark Sivers fct
 - \rightarrow through rapidity distribution \rightarrow neg. η
- \rightarrow test of Sivers fct. non-universality

 \rightarrow Z⁰ very clean channel no corrections

INT-Week-2 2018

Mid-rapidity observables

Sivers function through TWIST-3: $A_{UT}^{sin(f_s)}$ $p^{\uparrow} + p \rightarrow jet + X$ **STAR** √s = 510 GeV 0.0 -0.01 -1 < h_{int} < -0.5 -0.5 < h_{int} < 0 $\mathsf{A}_{\mathsf{UT}}^{\mathsf{sin}(\mathsf{f}_{\mathsf{s}})}$ Stat. Uncert. 2011 Proj. Stat. 2017 -0.01 $0 < h_{iot} < 0.5$ 0.5 < h_{int} < 1 20 10 30 40 50 20 30 Particle-jet p₋ Particle-jet p_{τ} To have high precision data at different √s \rightarrow constrain TMD evolution \rightarrow fixed x and Q² \rightarrow p_T different

INT-Week-2 2018

Fragmentation Functions in pp and pA

Observable: hadron in jet \rightarrow pp best way to measure gluon PDFs \rightarrow direct access through qg and gg scattering

fragmentation functions in p+A/p+p at $|\eta| < 0.4$

19

world wide only access to GPD E for gluons \rightarrow J/ Ψ production in p[↑]Au /p[↑]p UPC

Statistics: 2017 p[↑]+p 400 pb⁻¹ → 1k J/Ψs → δA_{UT} +/-0.2 in 3 t-bins Run-15 pA: ~300 J/Ψ

Access to Wigner functions → Diffractive di-jets in UPC STAR di-jets results (-1 < η < 1.5): Phys.Rev. D95 (2017), 071103

p' detected in RPs Roman Pot acceptance

0.5

INT-Week-2 2018

E.C. Aschenauer

Objective:

unique program addressing several fundamental questions in QCD

\rightarrow essential to

- the mission of the RHIC physics program in cold and hot QCD
- fully realize the scientific promise of the EIC
 - > lay the groundwork for the EIC, both scientifically and by refining exp. requirements
 - > Test EIC detector technologies under real conditions, i.e SiPMs

Scientific goals:

p+p:

3-dim. characterization of the proton in momentum and spatial coordinates

p+A

Nature of initial state and hadronization in nuclear collisions

Onset and A-dependence of saturation A+A

Longitudinal medium characterization Precision flow measurements via long range correlations

Upgrade includes:

Forward Calorimeter System: EM and Hadronic Forward Tracking System: Si + sTGCs

2021+ : Forward Upgrade

Forward rapidity pp Physics

Transversity x Collins FF through hadron in jet

500 GeV: access high x (0.05 - 0.5) at high Q² (10 - 100 GeV²)

very strong constrain for tensor charge $\delta q^a = \int_0^1 \left[\delta q^a(x) - \delta \bar{q}^a(x) \right] dx$

Constraining the Gluon Sivers function at a future EIC

L. Zheng, E.C. Aschenauer, J.H. Lee, Bo-Wen Xiao, and Zhong-Bao Yin arXiv:1805.05290, Phys. Rev. D 98, 03:4011 (2018)

Accessing gluon Sivers at EIC

Single Spin Asymmetry (SSA) $A_{UT} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \propto \frac{\Delta^{N} f_{g/p^{\uparrow}}(x, k_{\perp})}{f_{1}^{g}(x_{g}, k_{\perp})}$

Final state observables

k⊤

- 1. Open charm
- 2. Charged hadron pair
- 3. Dijet pair

- Tag signal process PGF
 Vector sum of p_{T1} and p_{T2} reconstruct the gluon k_T in γ*p c.m.s frame.
- Design kinematic cuts to suppress the quark contributions.

Back-to-back limit:

 $P_{T}' = |P_{T}^{h1} - P_{T}^{h2}|/2$ $k_{T}' = |P_{T}^{h1} + P_{T}^{h2}|$ $k_{T}' \le P_{T}'$

Event weighting method

Inputs to the model calculation

$$\begin{split} &\Delta^N f_{a/p^{\uparrow}}(x,k_{\perp}) = 2\mathcal{N}_a(x) f_{a/p}(x,k_{\perp}) h(k_{\perp}) \\ &w = \frac{\Delta^N f_{a/p^{\uparrow}}(x,k_{\perp},Q^2)}{2f_{a/p}(x,k_{\perp},Q^2)} \\ &A_{UT} = R_g \frac{\sum_i^{N_g} w_i}{N_g} + R_q \frac{\sum_i^{N_q} w_i}{N_q} \end{split}$$

Quark Sivers: u and d quarks JHEP 04(2017) Anselmino et. al.

Gluon Sivers:

u, d + Kretzer FF (SIDIS1) JHEP 09 (2015) 119 D' Alesio et. al.

Positivity bound ansatz:

Dilution of parton level asymmetry

Fragmentation momenta smearing and resonance decay contribution accounts for the parton to hadron level asymmetry dilution at COMPASS energy.

Gluon-Sivers: D-Mesons

- Branching ratio: 3.9% $D^{0}(c\bar{u}) \rightarrow \pi^{+}(u\bar{d})K^{-}(s\bar{u})$ $\bar{D}^{0}(\bar{c}u) \rightarrow \pi^{-}(\bar{u}d)K^{+}(u\bar{s})$
- Acceptance for PID is assumed to be |η|<3.5</p>
- Decay products from D mesons are mostly less than 10 GeV in mid-rapidity.
- Decay products p_T>0.2 GeV.

Gluon-Sivers: Open Charm

Assumptions on D^0 reconstruction:

D->K + pi (3.9%) Acceptance: |n|^{pi/K}<3.5 p_T^{pi/K}>0.2 GeV, p_T^D>0.7 GeV, z^D>0.1 ∫Ldt = 10 fb⁻¹

- Sensitive to gluon kinematics
- D⁰-pair statistically challenging
- 10% positivity can be distinguished in single D⁰ probe

Gluon-Sivers: Di-Hadrons

Assumptions on h-Pair reconstruction:

Pairs of π , K,p Acceptance: $|n|^{h1h2}$, 4.5 p_T , 1.4 GeV, z_h , 0.1 Back-to-Back limit: k_T , 0.7 p_T , $\int Ldt = 10 \text{ fb}^{-1}$

- Gluon initiated process account for a large fraction of events at small $x_{\rm B}$
- Parton asymmetry dilution larger than open charm
- Statistically more favored than open charm, resolve 5% positivity bound gluon Sivers size

Gluon-Sivers: Di-Hadrons

Single out the asymmetry amplitude

$$A_{UT}^{\sin(\phi_{kS})} = \frac{\int d\phi_{kS} (d\sigma^{\uparrow} - d\sigma^{\downarrow}) \sin(\phi_{kS})}{\int d\phi_{kS} (d\sigma^{\uparrow} + d\sigma^{\downarrow})}$$

- Asymmetry size dependence on x_B, Q² can be identified with 5% positivity bound
- No significant Q² trend as missing TMD evolution.
- x_B sensitive to the x dependence of input Sivers function

Gluon-Sivers: Di-Jets

Assumptions on di-jet reconstruction:

Anti- k_T , R=1 jet constituents: p_T >250 MeV, $\pi/K/p/\gamma$, $|\eta|<4.5$ $p_T^{jet1}>4.5$ GeV, $p_T^{jet2}>4$ GeV $\int Ldt = 10 \text{ fb}^{-1}$

- Gluon initiated process dominant at small
 x_B
- Stronger correlation between final state observable to parton level kinematics
- Resolution down to 5% positivity bound gluon Sivers size

— 5% pos

parton level

• 5% pos

SIDIS1

- Strong correlation of jet momentum to its mother parton
- Direct handle on parton kinematics put stronger constraint such as x_{parton}
- Large statistics allow to explore SSA in multidimensional analysis.

$$x_{parton}^{rec} = (p_T^{jet1} e^{-\eta^{jet1}} + p_T^{jet2} e^{-\eta^{jet2}})/W.$$

10⁻¹

X_B

X^{rec} parton

Dilution of parton level asymmetry: Di-jets

- Hadron fragmentation momentum smearing and resonance decay are important

Unique RHIC forward and midrapidity pp/pA/AA program addressing several fundamental questions in QCD

Hadron-Hadron collider data are crucial to test all aspects of TMDs

Gluon TMDs at EIC good example that it is critical to confront ideas with measurement reality

E.C. Aschenauer

INT-Week-2 2018

E.C. Aschenauer

37

38

E.C. Aschenauer

D^o as charm quark proxy

D meson takes a large fraction of the charm quark energy, serves as a proxy to the charm jet information.

Charged hadron vs kaon spectrum

INT-Week-2 2018

D⁰ from D* decay similar to the directly generated D⁰s, therefore all D⁰s are analyzed.

INT-Week-2 2018

Di-hadron pair selection

Assumptions on h-Pair reconstruction:

Pairs of π ,K,p Acceptance: $|\eta|^{h_{1h_2}}$ 4.5 p_T >1.4 GeV, z_h >0.1 Back-to-Back limit: k_T '<0.7 p_T ' \int Ldt = 10 fb⁻¹

- Gluon Sivers function and other TMDs is an ingredient of complete 3D imaging of nucleon.
- It can be uniquely accessible and constrained in a wide kinematic range at EIC.
- Dihadron and dijet methods are more statistically favored compared to the open charm production.
- Different probes are complementary to each other at EIC.

