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Ultracold atomic Fermi gas 

inter-particle spacing d >> range of V

In 3-dimensitons, can tune V to modify 2-body s-wave scattering length:

V depth                       large      unitarity        small


2-body scattering length     >0             infinity              <0 

physics                               molecule                        unbound

Image from D. Jin group
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inter-particle spacing d >> range of V

In 2-dimensions, always bound state -- no unitarity

Pair size vs. d:
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Expt realized            (recall tremendous precision in 3D)

  -- 2D important in condensed matter: cuprates, ....    

Ultracold atomic Fermi gas - 2D

Image from D. Jin group

inter-particle spacing d >> range of V

In 2-dimensions, always bound state -- no unitarity

Pair size vs. d:
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Image from D. Jin group

inter-particle spacing d >> range of V

In 2-dimensions, always bound state -- no unitarity

Pair size vs. d:

“Metric”:                         basically, scattering length/dx � ln(kF a)
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Ultracold atomic Fermi gas -- 2D

inter-particle spacing d >> range of V

Spin-orbit coupling has been realized  (PRL 109, 095301; PRL 109, 095302)
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inter-particle spacing d >> range of V

Spin-orbit coupling has been realized  (PRL 109, 095301; PRL 109, 095302)
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Connection to topological materials, QHE, interplay bt. SOC & pairing

Clean, tunable experiments

Theoretical work mostly at mean-field level  

Ultracold atomic Fermi gas -- 2D

inter-particle spacing d >> range of V

Spin-orbit coupling has been realized  (PRL 109, 095301; PRL 109, 095302)
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inter-particle spacing d >> range of V

Spin-orbit coupling has been realized  (PRL 109, 095301; PRL 109, 095302)
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An auxiliary-field perspective
To obtain ground state, use projection in imaginary-time: 

E.g.      

==> diffusion Monte Carlo    (GFMC)  

      (and path-integral MC)    
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e��Ĥ =
�

p(�)B(�)d�

B(�)|�� � |���
|�0� =

�

�

�0(�)|��

An auxiliary-field perspective

Auxiliary-field QMC:      

Slater determinant

To obtain ground state, use projection in imaginary-time: 

��T | H e��H ···e��He��H |�(0)�
��T | e��H ···e��He��H |�(0)�

use basis



e��Ĥ =
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e��ĤConsider the propagator

Hubbard-Stratonovich transform.:
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e��Ĥ =
�

p(�)B(�)d�

B(�)|�� � |���



e�v̂

A step advances the SD by ‘rotations’ 
MnO 

. 

.
. 
.

ψ1

ψΝ

ψ2

ψ1
ψ2

ψΝ

Path integral over AF’s by MC
Imaginary-time projection --> random walk: 

��T | H e��H ···e��He��H |�(0)�
��T | e��H ···e��He��H |�(0)�

e��Ĥ =
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The sign problem
Imaginary-time projection --> random walk: 
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B. . . B|�� � �|��  * happens whenever                        exists 
  * symmetry can prevent this - sign-problem-free cases:
       - attractive interaction, spin-balanced      ( det[ ] )^2 
       - repulsive half-filling bipartite    (particle-hole)
       - attractive, spin-balanced, w/ spin-orbit coupling 
       - a more general formulation w/ Majorana fermions

PRL 116, 250601 (2016) 
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e��Ĥ =
�

p(X)B(X)dX

B(X)|�� � |���

G(k, �) = ��0|cke��Ĥc†k|�0�
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2

given by [24]

U

t
= − 4π

ln(kF a)− ln(C
√
n)

, (2)

which is tuned, for each lattice density n ≡ N/Ns and
Fermi momentum kF =

√
2πn/∆, to produce the desired

2D scattering length a, defined as the position of the node
of the zero-energy s-wave solution of the two-body prob-
lem. The constant C in Eq. (2) depends on the dispersion
relation: CH = 0.49758 and Cq = 0.80261.
We employ two AFQMC methods to study this model:

the branching random walk approach, and an acceler-
ated Metropolis approach with a force bias. In the
first [8], we project the ground-state wave function by
importance-sampled random walks in Slater determinant
space [25, 26]. A BCS wave function, taken from the solu-
tion of the gap equation for the same discretized Hamilto-
nian, is chosen as the trial wave function, and the mixed
estimator [8, 27] is used to calculate the ground-state en-
ergy. The BCS trial wave function shortens the conver-
gence time in the imaginary-time projection, and greatly
reduces the Monte Carlo statistical fluctuations, as illus-
trated in the 3D case [8].
Our second approach is based on the ground-state

path integral form of AFQMC, but introduces several
advances, including accelerated sampling by a dynamic
force bias [27], which enables global moves of fields on a
time slice with acceptance ratio of over 90%, and large
reductions of the Monte Carlo variance [28]. Its main ad-
vantage over the the open-ended branching random walk
approach is the ease with which any observables can be
computed, and we use it to compute the momentum dis-
tribution and correlation functions. (Since there is no
sign problem here, no constraint is needed, which is the
primary motivation for using the open-ended branching
random walk form.) With this approach, our calcula-
tions typically have β ∼ 320 or larger (in units of t−1),
discretized with over 12,800 time-slices.
These technical advances result in orders of magnitude

improvement in sampling efficiency, which makes it pos-
sible to achieve the high numerical accuracy presented in
this work. In both approaches, the computational cost
scales as ∼ NsN2β. The linear scaling with Ns is im-
portant, as it enables calculations on large lattice sizes.
To approach the TL, we first extrapolate calculations to
the continuum limit by taking Ns → ∞ while holding N
fixed. The number of particles, N , is then increased until
convergence is reached within our statistical accuracy, as
illustrated next.
Figure 1 displays the calculated equation of state

(EOS), in units of the Fermi gas energy EFG = πnt, as
a function of the interacting strength, x ≡ ln(kF a). The
top panel illustrates the convergence to the TL, where
AFQMC energies are shown for fixed N . At each x, the
energy has been extrapolated to the continuum limit, us-
ing a 4th-order polynomial in 1/L. In the more strongly
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FIG. 1: (Color online) Calculated equation of state. The top
panel shows the energy, relative to the final AFQMC results,
for finite number of particles, N . Also shown are the DMC
results of Ref. [18], which are variational. Note the small scale
of the vertical axis. The bottom panel shows the AFQMC
(and DMC) results at the TL, relative to the BCS result. A
fit has been performed on the AFQMC results for the EOS.
The result is given in Eqs. (4-5) and shown as the solid line.
The inset in panel (b) compares the calculated pressure from
AFQMC (solid line) and DMC (dashed, taken from Ref. [29])
with experiment [29] (points) in the crossover region.

interacting cases, we take advantage of the fact that εq
k

and εH
k

produce energies which converge to a common
limit from opposite directions and perform both sets of
calculations to reduce the uncertainty in the extrapola-
tion. In the opposite regime, energies from the quadratic
dispersion shows little to no dependence on 1/L and they
are used alone. The error bar of each symbol, barely no-
ticeable in the graph, combines the QMC statistical er-
ror (negligible) at each L and a conservative estimate of
the uncertainty from the extrapolation, which typically
involves half a dozen or more data points from each dis-
persion relation, with L ranging from ∼ 15 to 45 (and
larger if necessary).

The results for different values of N show that con-
vergence is reached to within our statistical accuracy by
N ∼ 100 [30]. This is consistent with DMC results [18]
which observed no significant change between N of 26
and 98. The DMC results provide the current best esti-
mate of the EOS and are included in Fig. 1. We see that
the error from the fixed-node approximation is largest
in the crossover region, at intermediate values of x. The
maximum error is about 10% of the “correlation energy”,
the difference between the BCS and exact energies.

In addition to serving as a benchmark for theory, the
new EOS can provide validation for experiments. Exper-

Shi, Chiesa, SZ, PRA ’15                 
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given by [24]

U

t
= − 4π

ln(kF a)− ln(C
√
n)

, (2)

which is tuned, for each lattice density n ≡ N/Ns and
Fermi momentum kF =

√
2πn/∆, to produce the desired

2D scattering length a, defined as the position of the node
of the zero-energy s-wave solution of the two-body prob-
lem. The constant C in Eq. (2) depends on the dispersion
relation: CH = 0.49758 and Cq = 0.80261.
We employ two AFQMC methods to study this model:

the branching random walk approach, and an acceler-
ated Metropolis approach with a force bias. In the
first [8], we project the ground-state wave function by
importance-sampled random walks in Slater determinant
space [25, 26]. A BCS wave function, taken from the solu-
tion of the gap equation for the same discretized Hamilto-
nian, is chosen as the trial wave function, and the mixed
estimator [8, 27] is used to calculate the ground-state en-
ergy. The BCS trial wave function shortens the conver-
gence time in the imaginary-time projection, and greatly
reduces the Monte Carlo statistical fluctuations, as illus-
trated in the 3D case [8].
Our second approach is based on the ground-state

path integral form of AFQMC, but introduces several
advances, including accelerated sampling by a dynamic
force bias [27], which enables global moves of fields on a
time slice with acceptance ratio of over 90%, and large
reductions of the Monte Carlo variance [28]. Its main ad-
vantage over the the open-ended branching random walk
approach is the ease with which any observables can be
computed, and we use it to compute the momentum dis-
tribution and correlation functions. (Since there is no
sign problem here, no constraint is needed, which is the
primary motivation for using the open-ended branching
random walk form.) With this approach, our calcula-
tions typically have β ∼ 320 or larger (in units of t−1),
discretized with over 12,800 time-slices.
These technical advances result in orders of magnitude

improvement in sampling efficiency, which makes it pos-
sible to achieve the high numerical accuracy presented in
this work. In both approaches, the computational cost
scales as ∼ NsN2β. The linear scaling with Ns is im-
portant, as it enables calculations on large lattice sizes.
To approach the TL, we first extrapolate calculations to
the continuum limit by taking Ns → ∞ while holding N
fixed. The number of particles, N , is then increased until
convergence is reached within our statistical accuracy, as
illustrated next.
Figure 1 displays the calculated equation of state

(EOS), in units of the Fermi gas energy EFG = πnt, as
a function of the interacting strength, x ≡ ln(kF a). The
top panel illustrates the convergence to the TL, where
AFQMC energies are shown for fixed N . At each x, the
energy has been extrapolated to the continuum limit, us-
ing a 4th-order polynomial in 1/L. In the more strongly
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FIG. 1: (Color online) Calculated equation of state. The top
panel shows the energy, relative to the final AFQMC results,
for finite number of particles, N . Also shown are the DMC
results of Ref. [18], which are variational. Note the small scale
of the vertical axis. The bottom panel shows the AFQMC
(and DMC) results at the TL, relative to the BCS result. A
fit has been performed on the AFQMC results for the EOS.
The result is given in Eqs. (4-5) and shown as the solid line.
The inset in panel (b) compares the calculated pressure from
AFQMC (solid line) and DMC (dashed, taken from Ref. [29])
with experiment [29] (points) in the crossover region.

interacting cases, we take advantage of the fact that εq
k

and εH
k

produce energies which converge to a common
limit from opposite directions and perform both sets of
calculations to reduce the uncertainty in the extrapola-
tion. In the opposite regime, energies from the quadratic
dispersion shows little to no dependence on 1/L and they
are used alone. The error bar of each symbol, barely no-
ticeable in the graph, combines the QMC statistical er-
ror (negligible) at each L and a conservative estimate of
the uncertainty from the extrapolation, which typically
involves half a dozen or more data points from each dis-
persion relation, with L ranging from ∼ 15 to 45 (and
larger if necessary).

The results for different values of N show that con-
vergence is reached to within our statistical accuracy by
N ∼ 100 [30]. This is consistent with DMC results [18]
which observed no significant change between N of 26
and 98. The DMC results provide the current best esti-
mate of the EOS and are included in Fig. 1. We see that
the error from the fixed-node approximation is largest
in the crossover region, at intermediate values of x. The
maximum error is about 10% of the “correlation energy”,
the difference between the BCS and exact energies.

In addition to serving as a benchmark for theory, the
new EOS can provide validation for experiments. Exper-

Shi, Chiesa, SZ, PRA ’15                 
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given by [24]

U

t
= − 4π

ln(kF a)− ln(C
√
n)

, (2)

which is tuned, for each lattice density n ≡ N/Ns and
Fermi momentum kF =

√
2πn/∆, to produce the desired

2D scattering length a, defined as the position of the node
of the zero-energy s-wave solution of the two-body prob-
lem. The constant C in Eq. (2) depends on the dispersion
relation: CH = 0.49758 and Cq = 0.80261.
We employ two AFQMC methods to study this model:

the branching random walk approach, and an acceler-
ated Metropolis approach with a force bias. In the
first [8], we project the ground-state wave function by
importance-sampled random walks in Slater determinant
space [25, 26]. A BCS wave function, taken from the solu-
tion of the gap equation for the same discretized Hamilto-
nian, is chosen as the trial wave function, and the mixed
estimator [8, 27] is used to calculate the ground-state en-
ergy. The BCS trial wave function shortens the conver-
gence time in the imaginary-time projection, and greatly
reduces the Monte Carlo statistical fluctuations, as illus-
trated in the 3D case [8].
Our second approach is based on the ground-state

path integral form of AFQMC, but introduces several
advances, including accelerated sampling by a dynamic
force bias [27], which enables global moves of fields on a
time slice with acceptance ratio of over 90%, and large
reductions of the Monte Carlo variance [28]. Its main ad-
vantage over the the open-ended branching random walk
approach is the ease with which any observables can be
computed, and we use it to compute the momentum dis-
tribution and correlation functions. (Since there is no
sign problem here, no constraint is needed, which is the
primary motivation for using the open-ended branching
random walk form.) With this approach, our calcula-
tions typically have β ∼ 320 or larger (in units of t−1),
discretized with over 12,800 time-slices.
These technical advances result in orders of magnitude

improvement in sampling efficiency, which makes it pos-
sible to achieve the high numerical accuracy presented in
this work. In both approaches, the computational cost
scales as ∼ NsN2β. The linear scaling with Ns is im-
portant, as it enables calculations on large lattice sizes.
To approach the TL, we first extrapolate calculations to
the continuum limit by taking Ns → ∞ while holding N
fixed. The number of particles, N , is then increased until
convergence is reached within our statistical accuracy, as
illustrated next.
Figure 1 displays the calculated equation of state

(EOS), in units of the Fermi gas energy EFG = πnt, as
a function of the interacting strength, x ≡ ln(kF a). The
top panel illustrates the convergence to the TL, where
AFQMC energies are shown for fixed N . At each x, the
energy has been extrapolated to the continuum limit, us-
ing a 4th-order polynomial in 1/L. In the more strongly
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FIG. 1: (Color online) Calculated equation of state. The top
panel shows the energy, relative to the final AFQMC results,
for finite number of particles, N . Also shown are the DMC
results of Ref. [18], which are variational. Note the small scale
of the vertical axis. The bottom panel shows the AFQMC
(and DMC) results at the TL, relative to the BCS result. A
fit has been performed on the AFQMC results for the EOS.
The result is given in Eqs. (4-5) and shown as the solid line.
The inset in panel (b) compares the calculated pressure from
AFQMC (solid line) and DMC (dashed, taken from Ref. [29])
with experiment [29] (points) in the crossover region.

interacting cases, we take advantage of the fact that εq
k

and εH
k

produce energies which converge to a common
limit from opposite directions and perform both sets of
calculations to reduce the uncertainty in the extrapola-
tion. In the opposite regime, energies from the quadratic
dispersion shows little to no dependence on 1/L and they
are used alone. The error bar of each symbol, barely no-
ticeable in the graph, combines the QMC statistical er-
ror (negligible) at each L and a conservative estimate of
the uncertainty from the extrapolation, which typically
involves half a dozen or more data points from each dis-
persion relation, with L ranging from ∼ 15 to 45 (and
larger if necessary).

The results for different values of N show that con-
vergence is reached to within our statistical accuracy by
N ∼ 100 [30]. This is consistent with DMC results [18]
which observed no significant change between N of 26
and 98. The DMC results provide the current best esti-
mate of the EOS and are included in Fig. 1. We see that
the error from the fixed-node approximation is largest
in the crossover region, at intermediate values of x. The
maximum error is about 10% of the “correlation energy”,
the difference between the BCS and exact energies.

In addition to serving as a benchmark for theory, the
new EOS can provide validation for experiments. Exper-

Shi, Chiesa, SZ, PRA ’15                 
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given by [24]

U

t
= − 4π

ln(kF a)− ln(C
√
n)

, (2)

which is tuned, for each lattice density n ≡ N/Ns and
Fermi momentum kF =

√
2πn/∆, to produce the desired

2D scattering length a, defined as the position of the node
of the zero-energy s-wave solution of the two-body prob-
lem. The constant C in Eq. (2) depends on the dispersion
relation: CH = 0.49758 and Cq = 0.80261.
We employ two AFQMC methods to study this model:

the branching random walk approach, and an acceler-
ated Metropolis approach with a force bias. In the
first [8], we project the ground-state wave function by
importance-sampled random walks in Slater determinant
space [25, 26]. A BCS wave function, taken from the solu-
tion of the gap equation for the same discretized Hamilto-
nian, is chosen as the trial wave function, and the mixed
estimator [8, 27] is used to calculate the ground-state en-
ergy. The BCS trial wave function shortens the conver-
gence time in the imaginary-time projection, and greatly
reduces the Monte Carlo statistical fluctuations, as illus-
trated in the 3D case [8].
Our second approach is based on the ground-state

path integral form of AFQMC, but introduces several
advances, including accelerated sampling by a dynamic
force bias [27], which enables global moves of fields on a
time slice with acceptance ratio of over 90%, and large
reductions of the Monte Carlo variance [28]. Its main ad-
vantage over the the open-ended branching random walk
approach is the ease with which any observables can be
computed, and we use it to compute the momentum dis-
tribution and correlation functions. (Since there is no
sign problem here, no constraint is needed, which is the
primary motivation for using the open-ended branching
random walk form.) With this approach, our calcula-
tions typically have β ∼ 320 or larger (in units of t−1),
discretized with over 12,800 time-slices.
These technical advances result in orders of magnitude

improvement in sampling efficiency, which makes it pos-
sible to achieve the high numerical accuracy presented in
this work. In both approaches, the computational cost
scales as ∼ NsN2β. The linear scaling with Ns is im-
portant, as it enables calculations on large lattice sizes.
To approach the TL, we first extrapolate calculations to
the continuum limit by taking Ns → ∞ while holding N
fixed. The number of particles, N , is then increased until
convergence is reached within our statistical accuracy, as
illustrated next.
Figure 1 displays the calculated equation of state

(EOS), in units of the Fermi gas energy EFG = πnt, as
a function of the interacting strength, x ≡ ln(kF a). The
top panel illustrates the convergence to the TL, where
AFQMC energies are shown for fixed N . At each x, the
energy has been extrapolated to the continuum limit, us-
ing a 4th-order polynomial in 1/L. In the more strongly
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FIG. 1: (Color online) Calculated equation of state. The top
panel shows the energy, relative to the final AFQMC results,
for finite number of particles, N . Also shown are the DMC
results of Ref. [18], which are variational. Note the small scale
of the vertical axis. The bottom panel shows the AFQMC
(and DMC) results at the TL, relative to the BCS result. A
fit has been performed on the AFQMC results for the EOS.
The result is given in Eqs. (4-5) and shown as the solid line.
The inset in panel (b) compares the calculated pressure from
AFQMC (solid line) and DMC (dashed, taken from Ref. [29])
with experiment [29] (points) in the crossover region.

interacting cases, we take advantage of the fact that εq
k

and εH
k

produce energies which converge to a common
limit from opposite directions and perform both sets of
calculations to reduce the uncertainty in the extrapola-
tion. In the opposite regime, energies from the quadratic
dispersion shows little to no dependence on 1/L and they
are used alone. The error bar of each symbol, barely no-
ticeable in the graph, combines the QMC statistical er-
ror (negligible) at each L and a conservative estimate of
the uncertainty from the extrapolation, which typically
involves half a dozen or more data points from each dis-
persion relation, with L ranging from ∼ 15 to 45 (and
larger if necessary).

The results for different values of N show that con-
vergence is reached to within our statistical accuracy by
N ∼ 100 [30]. This is consistent with DMC results [18]
which observed no significant change between N of 26
and 98. The DMC results provide the current best esti-
mate of the EOS and are included in Fig. 1. We see that
the error from the fixed-node approximation is largest
in the crossover region, at intermediate values of x. The
maximum error is about 10% of the “correlation energy”,
the difference between the BCS and exact energies.

In addition to serving as a benchmark for theory, the
new EOS can provide validation for experiments. Exper-

Shi, Chiesa, SZ, PRA ’15                 
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given by [24]

U

t
= − 4π

ln(kF a)− ln(C
√
n)

, (2)

which is tuned, for each lattice density n ≡ N/Ns and
Fermi momentum kF =

√
2πn/∆, to produce the desired

2D scattering length a, defined as the position of the node
of the zero-energy s-wave solution of the two-body prob-
lem. The constant C in Eq. (2) depends on the dispersion
relation: CH = 0.49758 and Cq = 0.80261.
We employ two AFQMC methods to study this model:

the branching random walk approach, and an acceler-
ated Metropolis approach with a force bias. In the
first [8], we project the ground-state wave function by
importance-sampled random walks in Slater determinant
space [25, 26]. A BCS wave function, taken from the solu-
tion of the gap equation for the same discretized Hamilto-
nian, is chosen as the trial wave function, and the mixed
estimator [8, 27] is used to calculate the ground-state en-
ergy. The BCS trial wave function shortens the conver-
gence time in the imaginary-time projection, and greatly
reduces the Monte Carlo statistical fluctuations, as illus-
trated in the 3D case [8].
Our second approach is based on the ground-state

path integral form of AFQMC, but introduces several
advances, including accelerated sampling by a dynamic
force bias [27], which enables global moves of fields on a
time slice with acceptance ratio of over 90%, and large
reductions of the Monte Carlo variance [28]. Its main ad-
vantage over the the open-ended branching random walk
approach is the ease with which any observables can be
computed, and we use it to compute the momentum dis-
tribution and correlation functions. (Since there is no
sign problem here, no constraint is needed, which is the
primary motivation for using the open-ended branching
random walk form.) With this approach, our calcula-
tions typically have β ∼ 320 or larger (in units of t−1),
discretized with over 12,800 time-slices.
These technical advances result in orders of magnitude

improvement in sampling efficiency, which makes it pos-
sible to achieve the high numerical accuracy presented in
this work. In both approaches, the computational cost
scales as ∼ NsN2β. The linear scaling with Ns is im-
portant, as it enables calculations on large lattice sizes.
To approach the TL, we first extrapolate calculations to
the continuum limit by taking Ns → ∞ while holding N
fixed. The number of particles, N , is then increased until
convergence is reached within our statistical accuracy, as
illustrated next.
Figure 1 displays the calculated equation of state

(EOS), in units of the Fermi gas energy EFG = πnt, as
a function of the interacting strength, x ≡ ln(kF a). The
top panel illustrates the convergence to the TL, where
AFQMC energies are shown for fixed N . At each x, the
energy has been extrapolated to the continuum limit, us-
ing a 4th-order polynomial in 1/L. In the more strongly
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FIG. 1: (Color online) Calculated equation of state. The top
panel shows the energy, relative to the final AFQMC results,
for finite number of particles, N . Also shown are the DMC
results of Ref. [18], which are variational. Note the small scale
of the vertical axis. The bottom panel shows the AFQMC
(and DMC) results at the TL, relative to the BCS result. A
fit has been performed on the AFQMC results for the EOS.
The result is given in Eqs. (4-5) and shown as the solid line.
The inset in panel (b) compares the calculated pressure from
AFQMC (solid line) and DMC (dashed, taken from Ref. [29])
with experiment [29] (points) in the crossover region.

interacting cases, we take advantage of the fact that εq
k

and εH
k

produce energies which converge to a common
limit from opposite directions and perform both sets of
calculations to reduce the uncertainty in the extrapola-
tion. In the opposite regime, energies from the quadratic
dispersion shows little to no dependence on 1/L and they
are used alone. The error bar of each symbol, barely no-
ticeable in the graph, combines the QMC statistical er-
ror (negligible) at each L and a conservative estimate of
the uncertainty from the extrapolation, which typically
involves half a dozen or more data points from each dis-
persion relation, with L ranging from ∼ 15 to 45 (and
larger if necessary).

The results for different values of N show that con-
vergence is reached to within our statistical accuracy by
N ∼ 100 [30]. This is consistent with DMC results [18]
which observed no significant change between N of 26
and 98. The DMC results provide the current best esti-
mate of the EOS and are included in Fig. 1. We see that
the error from the fixed-node approximation is largest
in the crossover region, at intermediate values of x. The
maximum error is about 10% of the “correlation energy”,
the difference between the BCS and exact energies.

In addition to serving as a benchmark for theory, the
new EOS can provide validation for experiments. Exper-
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FIG. 4: (Color online) Condensate fraction and pairing cor-
relation functions. In the main graph, the uncertainty in the
QMC data (from extrapolation to the TL) is estimated by
multiple runs with different sizes and is indicated by the thick-
ness of the line. Also shown are BCS results and, in the BEC
limit, Bogoliubov results for Bose gas for reference. In the
inset, the pairing correlation function C(r) is plotted vs. r
for three interaction strengths (from top to bottom, the same
parameters as in (a), (b), and (c) of Fig. 3). The dashed lines
are from BCS and solid lines are QMC results (error bars
smaller than symbol size).
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Shi, Chiesa, SZ, PRA ’15                 



��†
k�k��2D -- ‘condensate fraction‘     (diagonalize            )

real-space ‘pair wave function’

Ultracold atomic Fermi gas -- 2D

5

0.00

0.20

0.40

0.60

0.80

1.00

-1  0  1  2  3  4  5  6  7

Co
nd

en
sa

tio
n 

Fr
ac

tio
n

ln(a kF)

Pairing Correlation

QMC
BCS

Bogoliubov

0.008
0.009
0.010
0.011

Pairing Correlation

0.001
0.002
0.003
0.004

Pairing Correlation

0.0000

0.0002

0.0004

 0  5  10  15  20  25  30
r

Pairing Correlation

FIG. 4: (Color online) Condensate fraction and pairing cor-
relation functions. In the main graph, the uncertainty in the
QMC data (from extrapolation to the TL) is estimated by
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relation functions. In the main graph, the uncertainty in the
QMC data (from extrapolation to the TL) is estimated by
multiple runs with different sizes and is indicated by the thick-
ness of the line. Also shown are BCS results and, in the BEC
limit, Bogoliubov results for Bose gas for reference. In the
inset, the pairing correlation function C(r) is plotted vs. r
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QMC data (from extrapolation to the TL) is estimated by
multiple runs with different sizes and is indicated by the thick-
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FIG. 1. Pairing gap as a function of interacting strength, ln(kF a).
The gap values have been shifted by the binding energy, εb. DMC
results are from Refs. [30] (circles) and [31] (triangles). BCS mean-
field result is also shown for reference.

approximation which gives an upper bound on the computed
energy. It is reasonable to expect that the trial wave function
used for FN is of higher quality for the spin-balanced system
compared to that for the (Np ± 1) systems, which would lead
to an overestimation of the pairing gap. Our results on the
BCS side are consistent with the rescaled BCS results "BCS/e
from the theory by Gorkov and Melik-Barkhudarov, which is
expected to be exact in the BCS limit ln(kF a) ≫ 1 [63,64].

Figure 2 plots the computed quasiparticle peaks as a
function of k ≡|k⃗|, together with the spectral function, for
four values of the interaction parameter. The zero of the
energy is set equal to the chemical potential, which we can
compute exactly [29]. We will refer to the function A(k⃗,ω) as
the particle and hole spectral function respectively for ω > µ
and ω < µ. The particle spectral function originates from
the first term on the right in Eq. (6), physically representing
states available for additional particles injected into the system,
while the hole spectral function, originating from the second
term, contains information about states occupied by the
particles in the system, which are thus accessible by the
creation of holes. In each panel, we show also the mean-
field prediction for the quasiparticle energies [65]: E± (k⃗) =
±

√
(h̄2k2/2m − µBCS)

2 + "2
BCS, where "BCS is the gap and

µBCS the chemical potential in BCS theory. The noninteracting
spectral function, A0(k⃗,ω) = δ(ω − (h̄2k2/2m − εF )), is also
shown for reference. In the AFQMC spectral functions
obtained from the GIFT analysis, shown in the color plot,
quasiparticle peaks are still visible, which are broadened from
many-body correlations, resulting in a nonzero imaginary
part of the self-energy, and are renormalized with respect
to the BCS dispersion relations. The quasiparticle peaks
computed directly from AFQMC are shown by symbols.
These were obtained following the procedure described above.
Results from different system sizes are shown, which indicate
convergence to the bulk limit within numerical resolution.
(Separate calculations were also carried out to verify that these
densities are indistinguishable from the dilute limit [29].)
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FIG. 2. Computed quasiparticle peaks and spectral functions. The
four panels are for different values of the interaction parameter:
ln(kF a) = 0 (top left), ln(kF a) = 0.5 (top right), ln(kF a) = 1 (bottom
left), ln(kF a) = 1.5 (bottom right). Energies are measured in units of
the Fermi energy εF = h̄2k2

F /2m and momenta in units of the Fermi
momentum kF . The zero of the energy is set to the chemical potential.
The BCS-theory predictions for the quasiparticle energies E± (k⃗) are
shown by solid lines, while the noninteracting spectral function is
given by the dotted line. The symbols are the quasiparticle peaks
directly computed by AFQMC at the given momentum, for systems
of 18 particles on a 25×25 lattice (orange filled squares), 26 particles
on a 35×35 lattice (pink empty circles), 42 particles on a 39×39
lattice (gold filled circles), and 50 particles on a 41×41 lattice (empty
triangles). Error bars are shown but some are smaller than symbol size.
The light dashed lines are interpolations in the neighborhood of the
minimum. The color plots give the computed spectral functions, in
arbitrary units.

The behavior of the spectral function provides a clear
visualization of the BEC-BCS crossover. In the BEC regime
at ln(kF a) = 0, a large gap, of the order of the energy
needed to break a molecule, separates the two branches,
which are roughly momentum-independent for k ! kF . A
smooth evolution of the spectral function is observed. In
the BCS regime at ln(kF a) = 1.5, it starts to resemble the
noninteracting behavior, where a gap is still present at the
Fermi momentum, as in conventional superconductors. The
intermediate values of the interaction show a smooth crossover
between the two regimes. Viewed in the reverse direction,
gradual and significant departures from the BCS results are
seen as the interaction strength is increased.

We also compute two-body dynamical correlations in imag-
inary time, which can again be obtained using our method with
computational cost linear in Ns [49]. From these, we apply
analytic continuation to obtain the density and spin dynamical
structure factors, Sρ(k⃗,ω) and SS(k⃗,ω), which can be measured
experimentally using two-photon Bragg spectroscopy [45]. In
particular, the high-momentum behavior is very interesting as
it provides a highly sensitive probe of the BEC-BCS crossover.
We focus our attention on k = 4kF , close to the value recently
investigated experimentally in three dimensions [45].
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to an overestimation of the pairing gap. Our results on the
BCS side are consistent with the rescaled BCS results "BCS/e
from the theory by Gorkov and Melik-Barkhudarov, which is
expected to be exact in the BCS limit ln(kF a) ≫ 1 [63,64].

Figure 2 plots the computed quasiparticle peaks as a
function of k ≡|k⃗|, together with the spectral function, for
four values of the interaction parameter. The zero of the
energy is set equal to the chemical potential, which we can
compute exactly [29]. We will refer to the function A(k⃗,ω) as
the particle and hole spectral function respectively for ω > µ
and ω < µ. The particle spectral function originates from
the first term on the right in Eq. (6), physically representing
states available for additional particles injected into the system,
while the hole spectral function, originating from the second
term, contains information about states occupied by the
particles in the system, which are thus accessible by the
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shown for reference. In the AFQMC spectral functions
obtained from the GIFT analysis, shown in the color plot,
quasiparticle peaks are still visible, which are broadened from
many-body correlations, resulting in a nonzero imaginary
part of the self-energy, and are renormalized with respect
to the BCS dispersion relations. The quasiparticle peaks
computed directly from AFQMC are shown by symbols.
These were obtained following the procedure described above.
Results from different system sizes are shown, which indicate
convergence to the bulk limit within numerical resolution.
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four panels are for different values of the interaction parameter:
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F /2m and momenta in units of the Fermi
momentum kF . The zero of the energy is set to the chemical potential.
The BCS-theory predictions for the quasiparticle energies E± (k⃗) are
shown by solid lines, while the noninteracting spectral function is
given by the dotted line. The symbols are the quasiparticle peaks
directly computed by AFQMC at the given momentum, for systems
of 18 particles on a 25×25 lattice (orange filled squares), 26 particles
on a 35×35 lattice (pink empty circles), 42 particles on a 39×39
lattice (gold filled circles), and 50 particles on a 41×41 lattice (empty
triangles). Error bars are shown but some are smaller than symbol size.
The light dashed lines are interpolations in the neighborhood of the
minimum. The color plots give the computed spectral functions, in
arbitrary units.

The behavior of the spectral function provides a clear
visualization of the BEC-BCS crossover. In the BEC regime
at ln(kF a) = 0, a large gap, of the order of the energy
needed to break a molecule, separates the two branches,
which are roughly momentum-independent for k ! kF . A
smooth evolution of the spectral function is observed. In
the BCS regime at ln(kF a) = 1.5, it starts to resemble the
noninteracting behavior, where a gap is still present at the
Fermi momentum, as in conventional superconductors. The
intermediate values of the interaction show a smooth crossover
between the two regimes. Viewed in the reverse direction,
gradual and significant departures from the BCS results are
seen as the interaction strength is increased.

We also compute two-body dynamical correlations in imag-
inary time, which can again be obtained using our method with
computational cost linear in Ns [49]. From these, we apply
analytic continuation to obtain the density and spin dynamical
structure factors, Sρ(k⃗,ω) and SS(k⃗,ω), which can be measured
experimentally using two-photon Bragg spectroscopy [45]. In
particular, the high-momentum behavior is very interesting as
it provides a highly sensitive probe of the BEC-BCS crossover.
We focus our attention on k = 4kF , close to the value recently
investigated experimentally in three dimensions [45].
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��0|n̂i,�e��Ĥ n̂j,�� |�0�



Response functions 

can be measured by 
scattering expt

Dynamical structure factors

��0|n̂i,�e��Ĥ n̂j,�� |�0�
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��0|n̂i,�e��Ĥ n̂j,�� |�0�

Analytic cont. *   “GIFT” (Vitali ’10)

• main: density    
inset: spin

• at 4*k_F



Response functions 

can be measured by 
scattering expt

Dynamical structure factors

��0|n̂i,�e��Ĥ n̂j,�� |�0�
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Imaginary-time correlation under constraint 

• 4x4 4u4d U/t=4 
(“typical” molecule 
or solid level of 
difficulty): good 
accuracy 

Test in repulsive Hubbard, sign problem (preliminary)      
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Rashbba SOC in 2D optical lattice

Hubbard dispersion, half-filling       

Rosenberg Shi, SZ, PRL ’17                  

Supersolid phase:
- charge density wave
- superfluid order
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ky

Attractive interaction, U<0       
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Rashbba SOC in 2D optical lattice

Hubbard dispersion, half-filling       

- n(k) - spin
- pairing wfs 

kx

ky

Attractive interaction, U<0       

Rosenberg, Shi, SZ, PRL ’17                  



Rashbba SOC in 2D optical lattice

Edge currents:       

Rosenberg, Shi, SZ, PRL ’17                  
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Summary
• 2D Fermi gas 


– Clean & tunable; exciting new possibilities, especially useful to CM

• We use auxiliary-field QMC to carry out exact simulations in large 

systems (>120 particles, > 3000 sites, large beta)

– Metropolis with force bias to accelerate sampling and improve 

acceptance ratio (Note standard deteminantal MC has infinite variance)


– Method to compute gaps and imaginary-time correlations  

• 2D: equation of state; n(k); pairing wf; cond frac. ..         

• Pairing gaps, spectral info, and response (analytic cont)

• Rashba spin-orbit coupling in 2D optical lattice: super solid phase,  

singlet vs triplet pairing, topological signatures



G(k, �) = ��0|cke��Ĥc†k|�0�

Example: gaps from imaginary-time GFs
Example - charge gap in the Hubbard model at half-filling

Vitali et al, PRB, ’16

Real	space or	momentum space?
How	large	can	be	the	imaginary time?
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U/t=0.5 • Gap is slope at large tau


• Can work with real-
space or k-space GF


• k-space (k near FS) 
works better at low U




