Ground-state properties, excitations, and response of the 2D Fermi gas

Shiwei Zhang *Flatiron Institute and College of William & Mary*

Outline

- Introduction: 2D FG and a condensed matter perspective
- Auxiliary-field quantum Monte Carlo calculations exact* here
- Results on spin-balanced system:
	- ground-state properties
	- pairing gaps, spectral information, response
- Comment on (e.g. spin-imbalance) cases with sign problem
- Results on optical lattices with SOC
- Summary

Collaborators:

Mingpu Qin -> Shanghai Jiaotong U

Hao Shi -> Flatiron

Peter Rosenberg -> Ettore Vitali ->
FSU MagLab Cal State Fresno

Ettore Vitali ->

Support:

- NSF
- Simons Foundation
- DOE -- SciDAC; ThChem

Simone Chiesa (Citi group)

$$
H = -\frac{\hbar^2}{2m} \left(\sum_i^{N/2} \nabla_i^2 + \sum_j^{N/2} \nabla_j^2 \right) + \sum_{i,j} V(r_{ij})
$$
\ninter-particle spacing $d \gg$ range of V

\n

 3.0

5.0

 $R(\hat{A})$

6.0

 7.0

8.0

In 3-dimensitons, can tune V to modify 2-body s-wave scattering length:

$$
H = -\frac{\hbar^2}{2m} \left(\sum_{i}^{N/2} \nabla_i^2 + \sum_{j}^{N/2} \nabla_j^2 \right) + \sum_{i,j} V(r_{ij})
$$

inter-particle spacing d >> range of V

$$
H = -\frac{\hbar^2}{2m} \left(\sum_{i}^{N/2} \nabla_i^2 + \sum_{j}^{N/2} \nabla_j^2 \right) + \sum_{i,j} V(r_{ij})
$$

inter-particle spacing d >> range of V

In **2-dimensions**, always bound state -- no unitarity Pair size vs. d:

$$
H = -\frac{\hbar^2}{2m} \left(\sum_{i}^{N/2} \nabla_i^2 + \sum_{j}^{N/2} \nabla_j^2 \right) + \sum_{i,j} V(r_{ij})
$$

inter-particle spacing $d \gg$ range of V

In **2-dimensions**, always bound state -- no unitarity Pair size vs. d:

Expt realized (recall tremendous precision in 3D) -- 2D important in condensed matter: cuprates,

$$
H = -\frac{\hbar^2}{2m} \left(\sum_{i}^{N/2} \nabla_i^2 + \sum_{j}^{N/2} \nabla_j^2 \right) + \sum_{i,j} V(r_{ij})
$$

inter-particle spacing d >> range of V

In **2-dimensions**, always bound state -- no unitarity Pair size vs. d:

 $\text{"Metric": } x \equiv \ln(k_F a)$ basically, scattering length/d

$$
H = -\frac{\hbar^2}{2m} \big(\sum_i^{N/2} \nabla_i^2 + \sum_j^{N/2} \nabla_j^2 \big) + \sum_{i,j} V(r_{ij})
$$

inter-particle spacing **d > range of V**

 -50

 -100

 3.0

 4.0

 5.0

 $R(\hat{A})$

 7.0

8.0

6.0

$$
H = -\frac{\hbar^2}{2m} \left(\sum_i^{N/2} \nabla_i^2 + \sum_j^{N/2} \nabla_j^2 \right) + \sum_{i,j} V(r_{ij})
$$

inter-particle spacing **d > range of V**

 3.0

 4.0

 5.0

 $R(\hat{A})$

 6.0

 7.0

8.0

Spin-orbit coupling has been realized (PRL 109, 095301; PRL 109, 095302)

Connection to topological materials, QHE, interplay bt. SOC & pairing

$$
H = -\frac{\hbar^2}{2m} \left(\sum_i^{N/2} \nabla_i^2 + \sum_j^{N/2} \nabla_j^2 \right) + \sum_{i,j} V(r_{ij})
$$

inter-particle spacing **d > range of V**

 3.0

 4.0

 5.0

 $R(\hat{A})$

 6.0

 7.0

8.0

Spin-orbit coupling has been realized (PRL 109, 095301; PRL 109, 095302)

Connection to topological materials, QHE, interplay bt. SOC & pairing Clean, tunable experiments

$$
H = -\frac{\hbar^2}{2m} \bigl(\sum_i^{N/2} \nabla_i^2 + \sum_j^{N/2} \nabla_j^2 \bigr) + \sum_{i,j} V(r_{ij})
$$

inter-particle spacing **d > range of V**

 3.0

 4.0

 5.0

 $R(\hat{A})$

 6.0

 7.0

8.0

Spin-orbit coupling has been realized (PRL 109, 095301; PRL 109, 095302)

Connection to topological materials, QHE, interplay bt. SOC & pairing Clean, tunable experiments Theoretical work mostly at mean-field level

N/ 2 *N/* 2 *^H* ⁼ ² + 2 2 *ⁱ* + *V* (*rij*) *j* 2*m i j i,j* inter-particle spacing d >> range of V

Spin-orbit coupling has been realized (PRL 109, 095301; PRL 109, 095302)

 $\frac{1}{2}$ in algorithm the finite coupling spin $\frac{1}{2}$ Hamiltonian incl. synthetic Rashba SOC in dilute gas (and optic. latt. !)

$$
H = t \sum_{\mathbf{k}\sigma} k^2 c_{\mathbf{k}\sigma}^\dagger c_{\mathbf{k}\sigma} + U \sum_{\mathbf{i}} n_{\mathbf{i}\uparrow} n_{\mathbf{i}\downarrow} + \sum_{\mathbf{k}} \lambda (k_y - ik_x) c_{\mathbf{k}\downarrow}^\dagger c_{\mathbf{k}\uparrow} + h.c.
$$

$$
\frac{U}{t} = -\frac{4\pi}{\ln(k_F a) - \ln(C n)}, \quad n = \frac{N}{L^2}, \quad k_F = \frac{\sqrt{2\pi n}}{\Delta}
$$

Ground-state properties, excitations, and response of the 2D Fermi gas

Shiwei Zhang *Flatiron Institute and College of William & Mary*

Outline

- Introduction: 2D FG and a condensed matter perspective
- Auxiliary-field quantum Monte Carlo calculations exact* here
- Results on spin-balanced system:
	- ground-state properties
	- pairing gaps, spectral information, response
- Comment on (e.g. spin-imbalance) cases with sign problem
- Results on optical lattices with SOC
- **Summary**

To obtain **ground state**, use projection in imaginary-time:

$$
\frac{\langle \Psi_T | \, H \, e^{-\tau H} \cdots e^{-\tau H} \, e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | \, e^{-\tau H} \cdots e^{-\tau H} \, e^{-\tau H} | \Psi^{(0)} \rangle}
$$

E.g.
$$
\hat{H} = \sum \frac{\hat{p}_i^2}{2m} + \hat{V}
$$

$$
e^{-\tau \hat{p}_i^2/2m} = \int e^{-\sigma^2/2} e^{i\hat{p}_i \cdot (\gamma \sigma)} d\sigma \qquad \gamma = \sqrt{\frac{\tau}{m}}
$$

$$
e^{-\tau \hat{H}} = \int e^{-\vec{\sigma}^2/2} e^{i\hat{P} \cdot (\gamma \vec{\sigma})} d\vec{\sigma} e^{-\tau \hat{V}}
$$

translation op.

$$
e^{-\tau \hat{H}} = \int p(\sigma)B(\sigma)d\sigma
$$

$$
B(\sigma)|R\rangle \to |R'\rangle
$$

J

==> diffusion Monte Carlo (GFMC) (and path-integral MC)

$$
|R\rangle=|{\bf r}_1,{\bf r}_2,\cdots,{\bf r}_M\rangle
$$

$$
|\Psi_0\rangle = \sum_R \Psi_0(R) |R\rangle
$$

- initialize $\{|R\rangle\}$ from $\Psi^{(0)}(R)$
- random walks with $\{ |R\rangle \}$
- distribution -> $\Psi_0(R)$

To obtain **ground state**, use projection in imaginary-time:

$$
\frac{\langle \Psi_T | \, H \, e^{-\tau H} \cdots e^{-\tau H} \, e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | \, e^{-\tau H} \cdots e^{-\tau H} \, e^{-\tau H} | \Psi^{(0)} \rangle}
$$

Auxiliary-field QMC:

$$
e^{-\tau \hat{H}} = \int p(\sigma)B(\sigma)d\sigma
$$

$$
B(\sigma)|\phi\rangle \rightarrow |\phi'\rangle
$$

To obtain **ground state**, use projection in imaginary-time:

$$
\frac{\langle \Psi_T | H e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}
$$

Auxiliary-field QMC:

To obtain **ground state**, use projection in imaginary-time:

$$
\frac{\langle \Psi_T | H e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}
$$

Auxiliary-field QMC:

$$
\begin{pmatrix}\n e^{-\tau \hat{H}} = \int p(\sigma)B(\sigma)d\sigma \\
 B(\sigma)|\phi\rangle \rightarrow |\phi'\rangle\n\end{pmatrix}
$$
\nSlater determinant

use basis

$$
\left\langle \qquad \qquad \right\vert \Psi_0 \rangle = \sum_{\phi} \Psi_0(\phi) \vert \phi \rangle
$$

To obtain **ground state**, use projection in imaginary-time:

$$
\frac{\langle \Psi_T | H e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}
$$

Auxiliary-field QMC:

use basis

$$
|\Psi_0\rangle = \sum_{\phi} \Psi_0(\phi) |\phi\rangle
$$

Many-body propagator --> many 1-body prop's

Consider the propagator
$$
e^{-\tau \hat{H}} = e^{-\tau \hat{H}_1} e^{-\tau \hat{H}_2} + \mathcal{O}(\tau^2)
$$

\n
$$
\hat{H} = \sum_{i,j}^{N} T_{ij} c_j^{\dagger} c_j + \sum_{i,j,k,l}^{N} V_{ijkl} c_i^{\dagger} c_j^{\dagger} c_k c_l
$$
\n
$$
\begin{aligned}\n\mathbf{e}.\mathbf{g}. \quad V_{ijkl} &= \sum_{\nu=1}^{J_{\text{max}}} L_{ij}^{\nu} L_{kl}^{\nu} \\
\hat{H}_2 &= -\sum_{\nu} \hat{v}_{\nu}^2 \qquad \qquad \hat{v}_{\nu} = \sum_{i,j} L_{ij}^{\nu} c_i^{\dagger} c_j \\
\text{Hubbard-Stratonovich transform:} \quad e^{v^2} &= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\sigma^2} e^{2\sigma v} d\sigma \\
e^{-\tau \hat{H}} &\rightarrow e^{-\tau \hat{H}_1} \int e^{-\sigma^2/2} e^{\sigma \sqrt{\tau} \hat{v}} d\sigma\n\end{aligned}
$$

$$
e^{-\tau H} = \int p(\sigma)B(\sigma)d\sigma
$$

$$
B(\sigma)|\phi\rangle \rightarrow |\phi'\rangle
$$

$$
\frac{\langle \Psi_T | H e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}
$$

$$
e^{-\tau \hat{H}} = \int p(\sigma)B(\sigma)d\sigma
$$

$$
B(\sigma)|\phi\rangle \rightarrow |\phi'\rangle
$$

Imaginary-time projection --> random walk:

$$
\frac{\langle \Psi_T | H e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}
$$

$$
e^{-\tau H} = \int p(\sigma) B(\sigma) d\sigma
$$

$$
B(\sigma) | \phi \rangle \rightarrow | \phi' \rangle
$$

Imaginary-time projection --> random walk:

$$
\frac{\langle \Psi_T | H e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}
$$

$$
e^{-\tau H} = \int p(\sigma) B(\sigma) d\sigma
$$

$$
B(\sigma) | \phi \rangle \rightarrow | \phi' \rangle
$$

$$
\begin{pmatrix} \psi_1 & \psi_1 \\ \psi_2 & \psi_2 \\ \cdot & \cdot \\ \cdot & \cdot \\ \psi_N & \psi_N \end{pmatrix}
$$

Imaginary-time projection --> random walk:

$$
\frac{\langle \Psi_T | H e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}
$$

$$
e^{-\tau H} = \int p(\sigma) B(\sigma) d\sigma
$$

$$
B(\sigma) | \phi \rangle \rightarrow | \phi' \rangle
$$

$$
\mathcal{C}^{\sigma\hat{\upsilon}}\begin{pmatrix} \psi_1 & \psi_1 \\ \psi_2 & \psi_2 \\ \cdot & \cdot \\ \psi_{\scriptscriptstyle{N}\scriptscriptstyle{I}} & \psi_{\scriptscriptstyle{N}\scriptscriptstyle{J}} \end{pmatrix}
$$

Imaginary-time projection --> random walk:

$$
\frac{\langle \Psi_T | H e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}
$$

$$
e^{-\tau H} = \int p(\sigma) B(\sigma) d\sigma
$$

$$
B(\sigma) | \phi \rangle \rightarrow | \phi' \rangle
$$

$$
e^{\sigma \hat{\psi}}\begin{pmatrix} \psi_1 & \psi_1 \\ \psi_2 & \psi_2 \\ \cdot & \cdot \\ \psi_{N} & \psi_{N} \end{pmatrix}
$$

Imaginary-time projection --> random walk:

$$
\frac{\langle \Psi_T | H e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}
$$

$$
e^{-\tau H} = \int p(\sigma) B(\sigma) d\sigma
$$

$$
B(\sigma) | \phi \rangle \rightarrow | \phi' \rangle
$$

$$
e^{\sigma \hat{\mathbf{v}}}_{\mathbf{v}}\begin{pmatrix} \psi_1 & \psi_1 \\ \psi_2 & \psi_2 \\ \vdots & \vdots \\ \psi_{N} & \psi_{N} \end{pmatrix}
$$

AF variable -- sample

Imaginary-time projection --> random walk:

$$
\frac{\langle \Psi_T | H e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}
$$

$$
e^{-\tau H} = \int p(\sigma) B(\sigma) d\sigma
$$

$$
B(\sigma) | \phi \rangle \rightarrow | \phi' \rangle
$$

$$
\mathcal{C}^{\sigma\hat{\upsilon}}\begin{pmatrix} \psi_1 & \psi_1 \\ \psi_2 & \psi_2 \\ \cdot & \cdot \\ \psi_{\scriptscriptstyle{N}\scriptscriptstyle{I}} & \psi_{\scriptscriptstyle{N}\scriptscriptstyle{J}} \end{pmatrix}
$$

Imaginary-time projection --> random walk:

$$
\frac{\langle \Psi_T | H e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}
$$

$$
e^{-\tau H} = \int p(\sigma) B(\sigma) d\sigma
$$

$$
B(\sigma) | \phi \rangle \rightarrow | \phi' \rangle
$$

$$
e^{\sigma \hat{v}} \begin{pmatrix} \psi_1 & \psi_1 \\ \psi_2 & \psi_2 \\ \vdots & \vdots \\ \psi_N & \psi_N \end{pmatrix}
$$
 N is size of 'basis'

Imaginary-time projection --> random walk:

$$
\frac{\langle \Psi_T | H e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}
$$

$$
e^{-\tau H} = \int p(\sigma) B(\sigma) d\sigma
$$

$$
B(\sigma) | \phi \rangle \rightarrow | \phi' \rangle
$$

Imaginary-time projection --> random walk:

$$
\frac{\langle \Psi_T | H e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}
$$

$$
e^{-\tau H} = \int p(\sigma) B(\sigma) d\sigma
$$

$$
B(\sigma) | \phi \rangle \rightarrow | \phi' \rangle
$$

$$
\mathcal{C}^{\sigma\hat{\upsilon}}\begin{pmatrix} \psi_1 & \psi_1 \\ \psi_2 & \psi_2 \\ \cdot & \cdot \\ \psi_{\scriptscriptstyle{N}\scriptscriptstyle{I}} & \psi_{\scriptscriptstyle{N}\scriptscriptstyle{J}} \end{pmatrix}
$$

Imaginary-time projection --> random walk:

$$
\frac{\langle \Psi_T | H e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}
$$

$$
e^{-\tau H} = \int p(\sigma) B(\sigma) d\sigma
$$

$$
B(\sigma) | \phi \rangle \rightarrow | \phi' \rangle
$$

$$
e^{\sigma \hat{v}} \begin{pmatrix} \psi_1 & \psi_1 \\ \psi_2 & \psi_2 \\ \cdot & \cdot \\ \psi_N & \psi_N \end{pmatrix} \longrightarrow \begin{pmatrix} \psi'_1 & \psi'_1 \\ \psi'_2 & \psi'_2 \\ \cdot & \cdot \\ \psi'_N & \psi'_N \end{pmatrix}
$$

The sign problem

Imaginary-time projection --> random walk:

$$
\frac{\langle \Psi_T | H e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}
$$
\n
$$
e^{-\tau H} = \int p(\sigma) B(\sigma) d\sigma
$$

The sign problem $B(\sigma)|\phi\rangle \rightarrow |\phi'\rangle$

- * happens whenever $B...B|\phi\rangle \rightarrow -|\phi\rangle$ exists
- * symmetry can prevent this sign-problem-free cases:
	- attractive interaction, spin-balanced (det[])^2
	- repulsive half-filling bipartite (particle-hole)
	- attractive, spin-balanced, w/ spin-orbit coupling
	- a more general formulation w/ Majorana fermions PRL 116, 250601 (2016)

$$
\frac{\langle \Psi_T | H e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}
$$

$$
e^{-\tau \hat{H}} = \int p(X)B(X)dX
$$

$$
B(X)|\phi\rangle \to |\phi'\rangle
$$

$$
\frac{\langle \Psi_T | \mathbf{H} e^{-\tau H} \cdot \hat{\mathcal{V}} e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}
$$

$$
e^{-\tau \hat{H}} = \int p(X)B(X)dX
$$

$$
B(X)|\phi\rangle \to |\phi'\rangle
$$

$$
\frac{\langle \Psi_T | \mathbf{H} e^{-\tau H} \cdot \hat{\mathcal{C}} e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} \cdots e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}
$$

$$
e^{-\tau \hat{H}} = \int p(X)B(X)dX
$$

$$
B(X)|\phi\rangle \to |\phi'\rangle
$$

$$
\frac{\langle \Psi_T | \mathbf{H} e^{-\tau H} \cdot \hat{\mathcal{C}} e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} \cdot \mathcal{C} e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}
$$
\n
$$
\frac{\hat{\mathcal{C}}}{\langle \psi_T | \psi_T | \psi_R \rangle}
$$
\n
$$
\hat{\mathcal{C}} = \frac{\langle \psi_L | \mathbf{V} | \psi_R \rangle}{\langle \psi_T | \psi_R \rangle}
$$
\n
$$
\hat{\mathcal{C}} = \frac{\langle \psi_L | \psi_R | \psi_R \rangle}{\langle \psi_R | \psi_R \rangle}
$$
\n
$$
\hat{\mathcal{C}} = \frac{\langle \psi_L | \psi_R | \psi_R \rangle}{\langle \psi_R | \psi_R \rangle}
$$

Note \boldsymbol{e}

> • Apply force bias - importance sampling - much more efficient than "standard algorithm"
Equal-time correlations and observables

Note \boldsymbol{e}

- Apply force bias importance sampling much more efficient than "standard algorithm"
- Infinite variance for sign-problem-free cases (Hao Shi talk)

Equal-time correlations and observables

Note \boldsymbol{e}

- Apply force bias importance sampling much more efficient than "standard algorithm"
- Infinite variance for sign-problem-free cases (Hao Shi talk)
- If sign problem, apply constraint in forward direction. In that case back-propagation is required

Imaginary-time projection --> random walk:

$$
\frac{\langle \Psi_T | \mathit{He}^{-\tau H} .. \overset{\hat{\rho}}{\mathit{e}^{-\tau H}} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | \, e^{-\tau H} ... e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}
$$

Equal-time GFs:

$$
e^{-\tau \hat{H}} = \int p(X)B(X)dX
$$

$$
B(X)|\phi\rangle \to |\phi'\rangle
$$

Imaginary-time projection --> random walk:

$$
\frac{\langle \Psi_T | \mathit{He}^{-\tau H} .. \overset{\hat{Q}}{e}^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | \, e^{-\tau H} ... e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}
$$

Equal-time GFs:

$$
e^{-\tau \hat{H}} = \int p(X)B(X)dX
$$

$$
B(X)|\phi\rangle \to |\phi'\rangle
$$

Imaginary-time GFs: <code>naainary-time</code> <code>GFS:</code> $\qquad \qquad \mathsf{u}(\mathsf{A},\mathsf{U})$ -

$$
G(k,\tau) = \langle \Psi_0 | c_k e^{-\tau \hat{H}} c_k^{\dagger} | \Psi_0 \rangle
$$

Imaginary-time projection --> random walk:

$$
\frac{\langle \Psi_T | \mathit{He}^{-\tau H} .. \overset{\hat{Q}}{e}^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | \, e^{-\tau H} ... e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}
$$

Equal-time GFs:

$$
e^{-\tau \hat{H}} = \int p(X)B(X)dX
$$

$$
B(X)|\phi\rangle \to |\phi'\rangle
$$

 $G(k,\tau) = \langle \Psi_0 | c_k e^{-\tau \hat{H}} c_k^{\dagger} | \Psi_0 \rangle$ Imaginary-time GFs: α ₍₁) <code>naainary-time</code> <code>GFS:</code> $\qquad \qquad \mathsf{u}(\mathsf{A},\mathsf{U})$ -

Standard algorithm: commutators, (basis size)^{^3} Vitali et al, PRB '16

Imaginary-time projection --> random walk:

$$
\frac{\langle \Psi_T | \mathit{He}^{-\tau H} .. \overset{\hat{Q}}{e}^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | \, e^{-\tau H} ... e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}
$$

Equal-time GFs:

$$
e^{-\tau \hat{H}} = \int p(X)B(X)dX
$$

$$
B(X)|\phi\rangle \to |\phi'\rangle
$$

 $G(k,\tau) = \langle \Psi_0 | c_k e^{-\tau \hat{H}} c_k^{\dagger} | \Psi_0 \rangle$ Imaginary-time GFs: α ₍₁) <code>naainary-time</code> <code>GFS:</code> $\qquad \qquad \mathsf{u}(\mathsf{A},\mathsf{U})$ -

Standard algorithm: commutators, (basis size)^3 New: linear^{*}N^2 (important in FG — dilute) Vitali et al, PRB '16

Imaginary-time projection --> random walk:

$$
\frac{\langle \Psi_T | \mathbf{H} e^{-\tau H} .. \hat{\mathbf{e}}^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} ... e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}
$$

Equal-time GFs:

Imaginary-time density/spin corr: naainary-time density/spin corr: $e^{-\tau \hat{H}} =$ $p(X)B(X)dX$ $B(X)|\phi\rangle \rightarrow |\phi'\rangle$

$$
\langle \Psi_0|\hat{n}_{i,\sigma}e^{-\tau\hat{H}}\hat{n}_{j,\sigma'}|\Psi_0\rangle
$$

Imaginary-time projection --> random walk:

$$
\frac{\langle \Psi_T | \mathbf{H} e^{-\tau H} .. \hat{\mathbf{e}}^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} ... e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}
$$

Equal-time GFs:

Imaginary-time density/spin corr: naainary-time density/spin corr:

$$
e^{-\tau \hat{H}} = \int p(X)B(X)dX
$$

$$
B(X)|\phi\rangle \to |\phi'\rangle
$$

$$
\langle \Psi_0|\hat{n}_{i,\sigma}e^{-\tau\hat{H}}\hat{n}_{j,\sigma'}|\Psi_0\rangle
$$

$$
\hat{n}_{i,\sigma} = \frac{e^{\hat{n}_{i,\sigma}} - 1}{e - 1}
$$

Imaginary-time projection --> random walk:

$$
\frac{\langle \Psi_T | \mathbf{H} e^{-\tau H} .. \hat{\mathbf{e}}^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} ... e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}
$$

Equal-time GFs:

Imaginary-time density/spin corr: naginary-time density/spin corr:

$$
e^{-\tau \hat{H}} = \int p(X)B(X)dX
$$

$$
B(X)|\phi\rangle \rightarrow |\phi'\rangle
$$

$$
\langle \Psi_0|\hat{n}_{i,\sigma} e^{-\tau \hat{H}} \hat{n}_{j,\sigma'}|\Psi_0\rangle
$$

$$
\hat{n}_{i,\sigma} = \frac{e^{\hat{n}_{i,\sigma}} - 1}{e - 1}
$$

Imaginary-time projection --> random walk:

$$
\frac{\langle \Psi_T | \mathbf{H} e^{-\tau H} .. \hat{\mathbf{e}}^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}{\langle \Psi_T | e^{-\tau H} ... e^{-\tau H} e^{-\tau H} | \Psi^{(0)} \rangle}
$$

Equal-time GFs:

Imaginary-time density/spin corr: naginary-time density/spin corr:

$$
e^{-\tau \hat{H}} = \int p(X)B(X)dX
$$

$$
B(X)|\phi\rangle \to |\phi'\rangle
$$

$$
\langle \Psi_0|\hat{n}_{i,\sigma} e^{-\tau \hat{H}} \hat{n}_{j,\sigma'}|\Psi_0\rangle
$$

$$
\hat{n}_{i,\sigma} = \frac{e^{\hat{n}_{i,\sigma}} - 1}{e - 1}
$$

Standard algorithm: commutators, (basis size)^3 New: linear*N^2 (important in FG – dilute)

Ground-state properties, excitations, and response of the 2D Fermi gas

Shiwei Zhang *Flatiron Institute and College of William & Mary*

Outline

- Introduction: 2D FG and a condensed matter perspective
- Auxiliary-field quantum Monte Carlo calculations exact* here
- Results on spin-balanced system:
	- ground-state properties
	- pairing gaps, spectral information, response
- Comment on (e.g. spin-imbalance) cases with sign problem
- Results on optical lattices with SOC
- Summary

Exact EOS obtained, fit provided

- BCS trial wf; Variance control; sampling tricks; √n) , (2) $\frac{1}{2}$ $\overline{}$

DMC: prev. best (var) Bertaina & Giorgini, PRL '11 importance-sampled random walks in Slater determinant nian, is chosen as the trial wave function, and the mixed wave function, and the mixed wave function, and the m

Exact EOS obtained, fit provided

- BCS trial wf; Variance control; sampling tricks; √n) , (2) $\frac{1}{2}$ $\overline{}$
- \sim careful extran to TI - careful extrap to TDL

DMC: prev. best (var) Bertaina & Giorgini, PRL '11 importance-sampled random walks in Slater determinant nian, is chosen as the trial wave function, and the mixed wave function, and the mixed wave function, and the m

Exact EOS obtained, fit provided

- BCS trial wf; Variance control; sampling tricks; √n) , (2) $\frac{1}{2}$ $\overline{}$
- \sim careful extran to TI - careful extrap to TDL

DMC: prev. best (var) Bertaina & Giorgini, PRL '11 importance-sampled random walks in Slater determinant nian, is chosen as the trial wave function, and the mixed wave function, and the mixed wave function, and the m

2D -- 'condensate fraction' (diagonalize $\langle \Delta_k^{\dagger} \Delta_{k'} \rangle$)

Shi, Chiesa, SZ, PRA '15

2D -- 'condensate fraction' (diagonalize $\langle \Delta_k^{\dagger} \Delta_{k'} \rangle$) real-space 'pair wave function'

Shi, Chiesa, SZ, PRA '15

2D -- 'condensate fraction' (diagonalize $\langle \Delta_k^{\dagger} \Delta_{k'} \rangle$) real-space 'pair wave function'

Shi, Chiesa, SZ, PRA '15

2D -- 'condensate fraction' (diagonalize $\langle \Delta_k^{\dagger} \Delta_{k'} \rangle$) real-space 'pair wave function'

Shi, Chiesa, SZ, PRA '15

2D -- 'condensate fraction' (diagonalize $\langle \Delta_k^{\dagger} \Delta_{k'} \rangle$) real-space 'pair wave function'

Shi, Chiesa, SZ, PRA '15

Ground-state properties, excitations, and response of the 2D Fermi gas

Shiwei Zhang *Flatiron Institute and College of William & Mary*

Outline

- Introduction: 2D FG and a condensed matter perspective
- Auxiliary-field quantum Monte Carlo calculations exact* here
- Results on spin-balanced system:
	- ground-state properties
	- pairing gaps, spectral information, response
- Comment on (e.g. spin-imbalance) cases with sign problem
- Results on optical lattices with SOC
- Summary

Pairing gap

$$
G^{p}(\mathbf{k},\tau) = \langle \hat{c}_{\mathbf{k}} e^{-\tau(\hat{H}-\mu\hat{N})} \hat{c}_{\mathbf{k}}^{\dagger} \rangle \longrightarrow \omega^{+}(\mathbf{k}) = -\lim_{\tau \to +\infty} \frac{\log\left(G^{p}(\mathbf{k},\tau)\right)}{\tau}
$$

Similarly for holes quasi-particle dispersion

Pairing gap

$$
G^{p}(\mathbf{k},\tau) = \langle \hat{c}_{\mathbf{k}} e^{-\tau(\hat{H}-\mu\hat{N})} \hat{c}_{\mathbf{k}}^{\dagger} \rangle \longrightarrow \omega^{+}(\mathbf{k}) = -\lim_{\tau \to +\infty} \frac{\log\left(G^{p}(\mathbf{k},\tau)\right)}{\tau}
$$

VISUALIZING THE BEC-BCS CROSSOVER IN A TWO- . . . PHYSICAL REVIEW A **96** , 061601(R) (2017)

Similarly for holes quasi-particle dispersion

Pairing gap

 $G^p(\mathbf{k},\tau)=\langle \hat{c}_{\mathbf{k}}\,e^{-\tau(\hat{H}-\mu\hat{N})}\,\hat{c}_{\mathbf{k}}^\dagger\rangle\longrightarrow\quad\omega^+(\mathbf{k})=-\lim_{\tau\to+\infty}$ $\log(G^p(\mathbf{k},\tau))$ τ

VISUALIZING THE BEC-BCS CROSSOVER IN A TWO- . . . PHYSICAL REVIEW A **96** , 061601(R) (2017)

Similarly for holes quasi-particle dispersion

Dynamical structure factors

$$
S^{\hat{O}}(\vec{k},\omega) = \langle \hat{O}_{\vec{k}} \, \delta(\omega - \hat{H}) \, \hat{O}_{-\vec{k}} \rangle
$$

Dynamical structure factors

$$
S^{\hat{O}}(\vec{k},\omega) = \langle \hat{O}_{\vec{k}} \, \delta(\omega - \hat{H}) \, \hat{O}_{-\vec{k}} \rangle
$$

$$
\langle \Psi_0|\hat{n}_{i,\sigma}e^{-\tau\hat{H}}\hat{n}_{j,\sigma'}|\Psi_0\rangle
$$

Dynamical structure factors

$$
S^{\hat{O}}(\vec{k}, \omega) = \langle \hat{O}_{\vec{k}} \delta(\omega - \hat{H}) \hat{O}_{-\vec{k}} \rangle
$$

$$
\langle \Psi_0 | \hat{n}_{i, \sigma} e^{-\tau \hat{H}} \hat{n}_{j, \sigma'} | \Psi_0 \rangle
$$

Dynamical structure factors

$$
S^{\hat{O}}(\vec{k},\omega) = \langle \hat{O}_{\vec{k}} \delta(\omega - \hat{H}) \hat{O}_{-\vec{k}} \rangle
$$

Analytic cont.^{*}

$$
\langle \Psi_0 | \hat{n}_{i,\sigma} e^{-\tau \hat{H}} \hat{n}_{j,\sigma'} | \Psi_0 \rangle
$$

Ground-state properties, excitations, and response of the 2D Fermi gas

Shiwei Zhang *Flatiron Institute and College of William & Mary*

Outline

- Introduction: 2D FG and a condensed matter perspective
- Auxiliary-field quantum Monte Carlo calculations exact* here
- Results on spin-balanced system:
	- ground-state properties
	- pairing gaps, spectral information, response
- Comment on (e.g. spin-imbalance) cases with sign problem
- Results on optical lattices with SOC
- Summary

Imaginary-time correlation under constraint

Test in repulsive Hubbard, sign problem (preliminary)

Equal-time quantities have been extensively benchmarked — high accuracy
Test in repulsive Hubbard, sign problem (preliminary)

Test in repulsive Hubbard, sign problem (preliminary)

 $4x4$ 5u5d U/t=4 (relatively easy, closed shell): essentially exact

Equal-time quantities have been extensively benchmarked — high accuracy

Test in repulsive Hubbard, sign problem (preliminary)

Test in repulsive Hubbard, sign problem (preliminary)

Green function

 $4x4$ 4u4d U/t=4 ("typical" molecule or solid level of difficulty): good accuracy

Test in repulsive Hubbard, sign problem (preliminary)

density correlation function

 $4x4$ 4u4d U/t=4 ("typical" molecule or solid level of difficulty): good accuracy

Hubbard dispersion, half-filling

Hubbard dispersion, half-filling

Attractive interaction, U<0

Hubbard dispersion, half-filling

Attractive interaction, U<0

Supersolid phase:

Hubbard dispersion, half-filling

Attractive interaction, U<0

Supersolid phase:

- charge density wave

Hubbard dispersion, half-filling

Attractive interaction, U<0

Supersolid phase:

- charge density wave
- superfluid order

Hubbard dispersion, half-filling

Attractive interaction, U<0

Hubbard dispersion, half-filling

Attractive interaction, U<0

Hubbard dispersion, half-filling

Summary

- 2D Fermi gas
	- Clean & tunable; exciting new possibilities, especially useful to CM
- We use auxiliary-field QMC to carry out exact simulations in large systems (>120 particles, > 3000 sites, large beta)
	- Metropolis with force bias to accelerate sampling and improve acceptance ratio (Note standard deteminantal MC has infinite variance)
	- Method to compute gaps and imaginary-time correlations
- 2D: equation of state; n(k); pairing wf; cond frac. ..
- Pairing gaps, spectral info, and response (analytic cont)
- Rashba spin-orbit coupling in 2D optical lattice: super solid phase, singlet vs triplet pairing, topological signatures

Example: gaps from imaginary-time GFs <u>Example: gaps from mia</u>

Example - charge gap in the Hubbard model at half-filling

-
- Can work with real
	- space or k-space GF
- k-space (k near FS)

wave vector works better at low U

$$
G(k,\tau) = \langle \Psi_0 | c_k e^{-\tau \hat{H}} c_k^{\dagger} | \Psi_0 \rangle
$$