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Nuclear Physics from Lattice QCD
The structure of light nuclei at heavy pion 

mass is being determined from lattice QCD

Naive shell model good first approximation to 
nuclear physics, even at heavy pion mass

Relative large nuclear modifications of scalar matrix elements could 
be important for dark matter direct detection

Electroweak fusion and single- and double-beta 
decay reaction rates computed in lattice 
QCD (for light nuclei at heavy pion mass)

Savage, Shanahan, Tiburzi, MW, Winter, Beane, Chang, Davoudi, Detmold, Orginos, 
PRL 119 (2017)

Shanahan, Tiburzi, MW, Winter, Chang, Davoudi, Detmold, Orginos, Savage, 
PRL 119 (2017)

Beane, Chang, Detmold, Orginos, Parreno, Savage, Tiburzi, PRL 113 (2014)

Beane, Chang, Cohen, Detmold, Lin, Orginos, Parreno, Savage, Tiburzi, 
PRL 113 (2014)

Chang, Davoudi, Detmold, Gambhir, Orginos, Savage, Shanahan, Tibuzri, 
MW, Winter, PRL 120 (2018)
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The Signal-to-Noise Problem

Parisi, Phys Rept 103 (1984), Lepage, TASI (1989), NPLQCD, PRD 79 (2009), Detmold and Endres, PRD 90 (2014), … 

LQCD nuclear correlation functions have StN ratios that decrease 
exponentially with increasing baryon number
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“Noise” in Monte Carlo measurements represents quantum fluctuations 
in observables, determined by physical properties of quantum system

Late-time behavior of nucleon variance determined by lowest energy 
state with the right quantum numbers

Signal-to-noise problem:

p

p̄

p
⇡

⇡

⇡

Parisi, Phys Rept 103 (1984), Lepage, TASI (1989)

The Signal-to-Noise Problem

GN(t) = ⟨N(t)N(0)†⟩ ∼ e−MNt

GN(t) =
N

∑
i=1

CN(t; Ui) = G(t) + O(N−1/2)

Var[GN(t)] ∼ N ⟨ |N(t)N(0)† |2 ⟩
∼ N e−3mπt

⟨GN(t)⟩
Var[GN(t)]

∼ N e−(Mp− 3
2 mπ)t
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Estimating     
Sample random points 

in a square, count 
what fraction lie 
within a circle (red)

The Sign Problem

Estimating 0.05 
Subtract fractions of 

points in width 1 
(green) and width 0.95 
(purple) rectangles

⇡

No Sign Problem

Sign Problem

Error

Number of Samples
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Wrapped normal random phases

Normal random variables

Error

Number of samplesWidth 1 Width 3

Width 3Width 1

Phase Noise
Analogous sign problem appears when calculating the variance of an 

ensemble of random phases

σ2 = ⟨x2⟩

σ2 = − ln (⟨cos θ⟩2)
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An exponentially decaying average phase always has exponential StN 
degradation

Average correlators are real. Individual correlators in generic gauge fields 
are complex 

Complex phase fluctuations give path integrals representing correlators 
sign problems

GN(t) = ⟨CN(t)⟩ = ⟨eRN(t)+iθN(t)⟩

The Sign(al-to-Noise) Problem

GN(t) = ∫ 𝒟U e−S(U)+RN(t;U)+iθN(t;U) =
1
N

N

∑
i=1

eRN(t;Ui)+iθN(t;Ui)

StN(Re[eiθN(t)]) = ⟨eiθN⟩
1
2 + 1

2 ⟨e2iθN⟩ − ⟨eiθN⟩2
∼ ⟨eiθN⟩ ∼ e−Mθt

MW and Savage, PRD 96 (2016)
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Empirically, correlator magnitudes decay at a rate set by the pion mass, 
phase factors contribute remaining effective mass

MR = − ∂t ln ⟨eRN(t)⟩ ∼
3
2

mπ Mθ = − ∂t ln ⟨eiθN(t)⟩ ∼ MN −
3
2

mπ

MR Mθ

t t

Correlation Function Phases

MW and Savage, PRD 96 (2016)
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Circular random variables have different properties than random real 
numbers. Finite sample effects obstruct parameter inference unless

Avoiding finite sample effects 
requires

This will violated in a late-time 
“noise region” where 
standard estimators 
become unreliable

t

Wrapped Normal Statistics

−
ln

(⟨c
os

θ N
⟩2 )

1
N

N

∑
i=1

cos θN(Ui) ≳
1

N

N ≳ e2(MN− 3
2 )mπt

See e.g. Fisher, Statistical 
Analysis of Circular Data (1995)
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Generalized pencil-of-functions (GPoF): an interpolating operator that 
has been time evolved is still a good interpolating operator

MW and Savage (2017)

t

t+ ⌧src

Generalized GPoF (GGPoF): an interpolating 
operator time evolved with a modified 
Hamiltonian is still a good interpolating operator 

GN(t, τsrc) = ∑
x

Γαβ ⟨Nα(x, t)eHτsrcNβ(0)e−Hτsrc⟩ = GN(t + τsrc)

G(θN)
N (t, τsrc) = ∑

x

Γαβ ⟨eiθN(0)−iθN(−τsrc)Nα(x, t)Nβ(0, − τsrc)⟩
Phase fluctuations during source construction can be removed by adding 

phase reweighting to the time evolution operator used

StN [G(θN)
N (t, τsrc)] ∼ e−(MN− 3

2 mπ)tStN [GN(t, τsrc)] ∼ e−(MN− 3
2 mπ)(t+τsrc)

Aubin and Orginos AIP Conf. Proc. 1374 (2011)

Dynamical Source Construction

Zhang, Shiwei, Carlson, PRB 55 (1997)

Analogous to constrained-phase/fixed-node evolution in QMC
Wiringa, Pieper, Carlson, Pandharipande PRC 62 (2000)
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t+ ⌧src
t

⌧src = 0t,

⌧src = 0t,

t+ ⌧srct, ⌧src = 30

M✓
⇢ (t, ⌧src)

Phase Reweighted GGPoF
Noise independent of      after 

variance excited-state region
τsrc
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Meson GGPoF Results

Possible for                        to be non-zero in cases where

G(θΓ)
Γ (p, t, τsrc) = ∑

x

eip⋅x ⟨eiθΓ(0)−iθΓ(τsrc)[d̄Γu](x, t)[ūΓd](0, − τsrc)⟩ = ∑
𝔫

ZΓ
𝔫(p)ZΓ,(θN)

𝔫 (p, τsrc)e−E𝔫(p)t

Auxiliary field construction provides spectral representation for phase 
reweighting factor

ZΓ
𝔫(p)ZΓ,(θN)

𝔫 (p, τsrc) ZΓ
𝔫(p)ZΓ

𝔫(p) = 0

PRELIMINARY

ūd → eiθūd equivalent to U(1)u−d

background field: breaks 
conservation of total isospin!

Isovector mesons:

qqq → eiθqqq equivalent to U(1)B
background field: preserves all 

symmetries of interest

Baryons and nuclei:
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Scalar Signal-to-Noise Problems
Is exponential StN degradation of complex correlators inevitable? 

Toy model: free (or interacting) complex scalar field theory in (0+1)D 

S =
L−1

∑
t=0

(φ*(t + 1) − φ*(t))(φ(t + 1) − φ(t)) − M2 |φ2 |

Scalar correlators have exponential 
StN degradation set by total 
charge contained in spacetime 
volume

GQ,2P = ⟨φ(t)Q |φ(t) |2P φ*(t)Q |φ(0) |2P ⟩ ∼ e−EQ,2P t

StN[GQ,2P] ∼ e−EQ,0 t ∼ e−M|Q|t

Detmold, Kanwar, MW (2018)
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Scalar Sign(al-to-Noise) Problems

G1,0 = ⟨eℛ(t)+iΘ(t)⟩

Scalar field phase gives correlation function path integrals a sign 
problem, responsible for exponential StN problem

= ∫ 𝒟φ*𝒟φ e−S+ℛ(t)+iΘ(t)

Any correlation function with non-zero U(1) charge has phase 
fluctuations and StN problems set by size of charge

GQ,2P = ⟨e(|Q|+2P)ℛ(t)+iQΘ(t)⟩= ∫ 𝒟φ*𝒟φ e−S+(|Q|+2P)ℛ(t)+iQΘ(t)

Phase fluctuations needed to project on to U(1) charge sectors

ℛ(t) = ln |φ(t) | + ln |φ(0) |
Θ(t) = θ(t) − θ(0) = arg φ(t) − arg φ(0)
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Integrating Out Phase Noise
Analytically integrating out phase fluctuations using Endres’s dual 

variables solves sign problem and Parisi-Lepage StN problem

Mild residual StN problem arises from estimating average product of many 
positive random variables

Elegant solution for interacting scalars, hard to generalize to QCD

Z = ∫
∞

0

L−1

∏
t=0

[d |φ(t) | |φ(t) |e−2|φ(t)|2−V(|φ(t)|]∫
π

−π

L−1

∏
t=0

[ dθ
π

eκ(t)cos(θ(t) − θ(t − 1))]
= 4 ∑

q∈ℤ
∫

∞

0

L−1

∏
t=0

[d |φ(t) | |φ(t) |e−2|φ(t)|2−V(|φ(t)|] I|q|(κ(t)) κ(t) = 2 |φ(t)φ(t − 1) |

Endres, PRD 75 (2006) 
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Generic real, positive correlation functions, as well as early-time nucleons 
in LQCD, are log-normally distributed 

DeGrand, PRD 86 (2012)

Beane, Detmold, Orginos, Savage, J Phys G42 (2015)

Kaplan showed large-time nucleon correlators are better described by 
heavy-tailed stable distributions

Log-normal distributions arise 
in two-body potential models 
and products of generic 
random positive numbers 

Endres, Kaplan, Lee and Nicholson, PRL 107 (2011)

Hamber, Marinari, Parisi and Rebbi, Nucl Phys B225 (1983)

Guagnelli, Marinari, and Parisi, PLB 240 (1990)

Correlation Function Statistics

Broad, symmetric large-time distributions consistent with moment 
analysis by Savage

Grabowska, Kaplan, and Nicholson, PRD 87 (2012)

Porter and Drut, PRE 93 (2016)
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Products of phase factors have different central limit theorems, approach 
“wrapped normal” and eventually uniform distributions 

Real part of nucleon correlation functions well-described by marginalization 
of “complex log-normal distribution”

PDF(R, θ) = e−(R−μR)2/(2σ2
R)

∞

∑
n=−∞

e−n2θ2/(2σ2
θ )

Re[C(t = 7)] Re[C(t = 30)]

Complex Log-Normal Distributions

MW, LATTICE 2017MW and Savage, PRD 96 (2016)
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Nucleon phase empirically well-described by wrapped-normal distribution  

Phase and log-magnitude time derivatives approach time independent, 
heavy-tailed wrapped stable distributions at late times

Large Phase Jumps



!19

Scalar Field Phase Distributions

Distribution of phase fluctuations approximately wrapped normal

PDF(Θ) =
1

2π ∑
n∈ℤ

e−inΘ
t

∏
t′�=1 [

I|n|(κ(t))
I0(κ(t)) ] ≈

1
2π ∑

n∈ℤ

e−inΘe−tn2/(2⟨κ⟩)

No magnitude fluctuations, small 
phase fluctuations

MC phase distributions show heavy-tails not present if magnitude 
fluctuations are ignored — even in free field theory!

Detmold, Kanwar, MW (2018)
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Wrapped Normal Noise
Wrapped normal approximation (ignoring magnitude fluctuations 

giving rise to large phase jumps) still has full StN problem

PDF(Θ) ≈
1

2π ∑
n∈ℤ

e−inΘe−n2Et ⟨G⟩ ≈ Z2e−Et

Var[G(t)] ≈ Z2 ⟨( 1
N ∑

i

cos(Θi))
2

⟩ − ⟨ 1
N ∑

i

cos(Θi)⟩
2

≈
Z2

2N (1 − e−2Et)

StN[G(t)] ≈ 2N
e−Et

1 − e−2Et

Exponential StN degradation is inevitable for a time series of wrapped 
normal compact random variables

Central limit theorem for compact random variables suggests 
approximately wrapped normal phases are generic
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“Phase unwrapping” maps compact random variables to real 
random variables by adding winding numbers

Phase Unwrapping

Θ̃ (t) =
t

∑
t′�=1

Θ(t′�) − Θ(t′�− 1) + 2πν(t′�)

Θ̃

Θ

t

Winding number defined by 
smoothness assumption, e.g. 
single lattice site smoothness

Windowed integration: assumes 
smoothness only on “physical” 
length scales

Θ̃ (t) − Θ̃ (t − 1) < π

Θ̃ (t) −
1

min(w, t)

t−1

∑
t′ �=max(t−w,0)

Θ̃ (t′�) < π
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Unwrapped Phase Cumulants

Ẽ (nmax) = −
nmax

∑
n=1

1
n!

∂tκn (ℛ + i Θ̃ )

StN [ Θ̃ n] = N 2−n+1/4 [1 + O(N−1) + O(n−1)]

Assuming only finite moments, wrapped phase distribution can be 
recovered from cumulants of unwrapped phase

⟨eiΘ⟩ = ⟨ei Θ̃⟩ =
∞

∑
n=1

1
n!

κn( Θ̃ ) See cumulant expansion for real correlators, 

Endres, Kaplan, Lee, Nicholson, PRL 107 (2011) 

Moments of normal random variables 
avoid exponential StN problem
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Phase Unwrapping Precision

Leading-order unwrapped cumulant results avoid exponential StN 
degradation, higher-order cumulants noisier

Accuracy of leading-order result depends sensitively on definition, 
best to assume smoothness on physical scales
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Large Phase Jump Ambiguities
Large phase jumps in regions of small magnitude are not Boltzmann 

suppressed and lead to ambiguities in phase unwrapping

Different definitions lead to large numerical discrepancies for all points 
after a large phase jump, accumulation of errors problem

Heavy-tailed phase jump distributions appear in 1D scalar field 
correlators as well as LQCD baryons, generic feature of LQFT?

S = 2 |φ(t)φ(t − 1) |cos(θ(t) − θ(t − 1)) + . . .
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Adding Interactions
Phase unwrapping (and dual variable integration) can be immediately 

applied to interacting (0+1)D scalar field theory 

S =
L−1

∑
t=0

(φ*(t + 1) − φ*(t))(φ(t + 1) − φ(t)) ± M2 |φ2 | + λ |φ4 |

Large phase jump ambiguities appear for positive and negative mass

Accurate results obtained at leading order in cumulant expansion if 
integration window is (self-consistently) tuned to correlation length
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One-Dimensional Results
Leading order unwrapped 

phase cumulant 
expansion has even 
better StN than dual 
variable estimate

Higher order cumulants add noise 
(exponentially) quickly 

When systematic uncertainty 
estimates for truncation errors are 
included, phase unwrapping does 
not provide precise results
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One-Dimensional Obstacles
Ignoring magnitude fluctuations, large phase jumps become rare as the 

lattice spacing becomes smaller than physical scales

Prob[ |∂tΘ | > π − ϵ) =
2

I0(κ) ∫
π

π−ϵ

dΔ
2π

e2|φ(t)φ(t−1)|cos(Δ)

In MC data including magnitude 
fluctuations, probability of large 
phase jumps increases as the 
lattice spacing is reduced

Large phase jumps and 1D 
accumulation of errors appear 
insurmountable obstacles
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Higher Dimensional Outlook
Multidimensional phase unwrapping has been explored in signal 

processing, radar, MRI, etc. for decades 

Enforcing consistency between 
multiple unwrapping paths 
allows error correction, 
numerically robust algorithms!

Ying (2006)

Problem of estimating cumulant expansion truncation errors avoidable in 
reweighting approaches that are possible in higher dimensions

Much more to explore! Detmold, Kanwar, MW, in progress



Conclusions

Multi-dimensional phase unwrapping 
in other applications can be more 
robust, work to control LQFT 
phase unwrapping systematics in 
progress

Phase unwrapping provides correlator estimates that avoid exponential 
StN degradation but systematic errors are not fully controlled

The baryon StN problem arises from phase fluctuations

Removing phase fluctuations allows sources to be dynamically evolved 
towards the ground state without additional StN degradation

Ying (2006)


