Can one sum up all Feynman diagrams for the unitary Fermi gas?

Kris Van Houcke

Ecole Normale Supérieure-Paris

INT, Seattle, August 17, 2018

Collaborators: Félix Werner (LKB-ENS), Riccardo Rossi (CCQ NYC), Takahiro Ohgoe (Tokyo U.) Boris Svistunov (Umass Amherst), Nikolay Prokof'ev (Umass Amherst), Evgeny Kozik (King's college)

zero-range theory cold atom experiments accurate fermionic atom, 2 internal states, Feshbach resonance **comparison** fermionic atom, 2 internal states, Feshbach resonance atom, 2 internal states, Feshbach re

Construction from Hubbard model: • $\frac{U}{t} = -7.913552...$ (appearance of 2-body bound state) \bullet thermodynamic limit • filling $\rightarrow 0$ with $\frac{T}{T_F}$ fixed (= continuum limit)

Feynman diagrams

$$
a_N = \sum_{\text{topologies } \mathcal{T}} \int dX_1 \dots dX_N \mathcal{D}(\mathcal{T}; X_1 \dots X_N) \int dX = \sum_{\vec{r}} \int_0^{\beta} d\tau
$$

Monte Carlo algorithms
• DiagMC [Van Houcke, Kozik, Prokof'ev, Svistunov, Phys. Proc. 2010]
configuration: $\mathcal{C} = (\mathcal{T}, X_1, \dots, X_N)$ probability: $P(\mathcal{C}) \propto |\mathcal{D}(\mathcal{T}; X_1 \dots X_N)|$
• CDet [Rossi, PRL 2017]
 $\mathcal{C} = (X_1, \dots, X_N)$ $P(\mathcal{C}) \propto \left| \sum_{\mathcal{T}} \mathcal{D}(\mathcal{T}; X_1 \dots X_N) \right|$

Importance sampling of the space of all possible diagram topologies and all values of internal and external variables.

Each configuration is visited with a probability proportional to the absolute value of its contribution to $\Sigma_{\sigma}({\bf p},\tau)$ as given by the Feynman rules.

This is NOT: write diagram after diagram, compute its value, sum

Importance sampling of the space of all possible diagram topologies and all values of internal and external variables.

Each configuration is visited with a probability proportional to the absolute value of its contribution to $\Sigma_{\sigma}({\bf p},\tau)$ as given by the Feynman rules.

$$
Q \triangleq \sum_{N=0}^{\infty} a_N \text{ diverges}
$$
\n
$$
Q(z) = \sum_{x \to 0^+}^{M} a_N z^N + O(z^{M+1})
$$
\n
$$
Q(z) = \sum_{x \to 0^+}^{M} a_N z^N + O(z^{M+1})
$$
\n
$$
Q(z = 1) = Q_{\text{phys}}
$$

$$
Q(z) = \frac{T}{\mathcal{V}} \ln \left\{ \# \int \mathcal{D}\varphi \, \mathcal{D}\eta \, e^{-S^{(z)}[\varphi,\eta]} \right\}
$$
\nladder scheme:

\n
$$
S^{(z)}[\varphi,\eta] = -\int dX \sum_{\sigma=\uparrow,\downarrow} \bar{\varphi}_{\sigma}(X) (G_0^{-1}\varphi_{\sigma})(X) - \int dX \bar{\eta}(X) (\Gamma_0^{-1}\eta)(X)
$$
\n
$$
+ \sqrt{z} \int dX \left[(\bar{\eta}\varphi_{\downarrow}\varphi_{\uparrow})(X) + (\bar{\varphi}_{\uparrow}\bar{\varphi}_{\downarrow}\eta)(X) \right] - z \int dX \bar{\eta}(X) (\Pi_0 \eta)(X) \prod_{\text{counterterm}} \Pi_0 = \bigcirc
$$

$$
Q \triangleq \sum_{N=0}^{\infty} a_N \text{ diverges}
$$
\n
$$
\text{bold scheme}
$$
\n
$$
\text{bold scheme}
$$
\n
$$
Q(z) = \sum_{N=0}^{M} a_N z^N + O(z^{M+1})
$$
\n
$$
Q(z) = 1) = Q_{\text{phys}}
$$

$$
Q \triangleq \sum_{N=0}^{\infty} a_N \text{ diverges}
$$
\n
$$
= \text{bold scheme}
$$
\n
$$
Q(z) = \sum_{N=0}^{M} a_N z^N + O(z^{M+1})
$$
\n
$$
= Q(z) = 1) = Q_{\text{phys}}
$$

$$
\{a_N\} \longrightarrow Q(z=1) = Q_{\text{phys}}
$$

 $|a_N| < C^N$ • naive approach [Van Houcke et al., Nature Phys. 2012]: assuming

$$
Q(z=1) = \lim_{\epsilon \to 0^+} \sum_{N=0}^{\infty} a_N e^{-\epsilon N \ln N} \qquad \text{(Lindelöf)}
$$

• serious approach [Rossi, Ohgoe, KVH, Werner, PRL 2018.]

- \bullet $a_N \sim (N!)^{1/5}$
- \bullet series resummable by conformal-Borel

compute the sum of all diagrams of order n in the large n limit

using the functional integral representation and the saddle-point method

> Bosonic field theories (ϕ^4): Lipatov Brézin, Le Guillou, Zinn-Justin

> Fermionic theories (QED): Parisi, Itzykson, Zuber, Balian

$$
Q(z) = \int \mathcal{D}\eta \underbrace{\int \mathcal{D}\varphi \ e^{-S(z)[\eta,\varphi]}}_{e^{-S_B^{(z)}[\eta]}}
$$

quasi-local approximation for $|\eta| \to \infty$, $z \to 0$

$$
\frac{\delta S_B^{(z)}[\eta]}{\delta \eta}=0 \qquad \qquad \text{instanton} \qquad
$$

$$
\text{Disc } Q(z) \underset{|z| \to 0}{\sim} \exp\left[-\left(\frac{A}{|z|}\right)^5\right] = \dots \sum_{k=1}^{\infty} \frac{4\pi}{5}
$$

 $a_N \underset{N \to \infty}{\sim} (N/5)! A^{-N} \cos \left(\frac{4\pi}{5} N \right)$ Conformal Borel transformationBorel transform : $B(z) := \sum_{n=0}^{\infty} \frac{a_N}{(N/5)!} z^N$ $|z| < A$ inverse Borel transform : $Q(1) \frac{?}{} \int_0^\infty dz \, z^4 e^{-z^5} B(z)$ Yes, because [Ramis • $Q(z)$ analytic in theorem]: \bullet $\frac{1}{N!} \left| \frac{d^N Q(z)}{dz^N} \right| \lesssim (N/5)!$ in $W(Ae^{\frac{4\pi i}{5}})$ conformal mapping ∞_1 $z \mapsto w(z)$ $\int_0^\infty dz = \int_0^1 dw$ $w(\infty_2)$ $w(\infty_1)$ ∞ ₂ A $e^{\frac{4\pi i}{5}}$ $W(A e^{-\frac{4\pi i}{5}})$

applicable not only for $Q = P$

but also
$$
Q = \begin{cases} G \text{ or } \Gamma \\ \Sigma \text{ or } \Pi \end{cases}
$$
 (ladder scheme)

bold scheme

Equation of state and $4th$ virial coefficient

Order Parameter Susceptibility $\chi = -\Gamma(\mathbf{p} = \mathbf{0}, \Omega_n = 0)$

conclusion:

controlled summation of diagrammatic series with zero convergence radius for a strongly correlated fermionic field theory

Outlook:

Precise and controlled theoretical study of unitary Fermi gas and BEC-BCS crossover

 $Spectral function \Rightarrow Fermi liquid / pseudogap regimes$

 T_c vs. polarisation and scattering length

2D

 $\frac{1}{4}$ -leg diagrams \Rightarrow p-wave superfluid transition, transport properties (shear viscosity) superfluid phases (anomalous propagators)

other fermionic models in continuous-space (electron gas) ?

new MC algorithms → higher orders? R. Rossi, PRL 2017. $a_n =$ z
Z dX \sum $T \in \mathcal{S}_n$ $\mathcal{D}(\mathcal{T},X)$