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6. NEGATIVE PROBABILITIES

‘ Now, for many interacting spins on a lattice we can give a “probability”
(the quotes remind us that there is still a question about whether it's a
probability) for corrclated possibilitics:
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Feynman proposed to use guantum
computers to simulate guantum physics




Simulating guantum computers on classical computers

Simulating a quantum gate acting on N qubits needs O(2N) memory and operations

Qubits____Memory ________|Time for one operation

10
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16 kByte
16 MByte
16 GByte

16 PByte
16 EByte

16 ZByte

size of visible universe

microseconds on a smartwatch
milliseconds on smartphone

seconds on laptop
minutes on top supercomputers?
hours on exascale supercomputer?

days on hypothetical future supercomputer?

age of the universe
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Quantum Physics

0.5 Petabyte Simulation of a 45-Qubit Quantum Circuit

Thomas Haner, Damian S. Steiger

(Submitted on 4 Apr 2017)
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DOE Supercomputer Achieves Record 45-Qubit
Quantum Simulation

By Tiffary Trader




Preparing the ground state

On a classical computer

Imaginary time projection |q165>=lime"” ‘PT>
Power method or other iterative eigensolver
)=ty v,

On a quantum computer
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Unitary operations + measurements: 1IIT>
prepare trial state IPT>%|¢n> with H’¢n>=En‘¢n>
projectively measure energy 2
¢n> picked with propability ‘<¢n“PT>

obtain the ground state if
the ground state energy was measured




Quantum phase estimation

Energy can be measured through the phase of a wave function after
unitary time evolution
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We can only measure relative phases, thus do a controlled evolution
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Measure the ancilla qubit to obtain the phase
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Solving quantum chemistry on a quantum computer

1. Select a finite (generally non-orthogonal) basis set

2. Perform a Hartree-Fock calculation to
get an approximate solution

get an orthogonal basis set

3. Find the true ground state of the Hamiltonian in this new basis set

Hztcc+2 c'c’c ¢
pqrs p q r r

pqrs

exact classical approach: full-configuration interaction



Solving quantum chemistry on a quantum computer

1. Select a finite (generally non-orthogonal) basis set

2. Perform a Hartree-Fock calculation to
get an approximate solution

get an orthogonal basis set

3. Find the true ground state of the Hamiltonian in this new basis set

Hztcc+z c'c’c ¢
pqrs p q r r

pqrs

4. Prepare a good guess for the ground state

5. Perform quantum phase estimation to

get the ground state wave function and energy



Representing fermion terms by quantum circuits

Map the occupation of each spin-orbital to the states of one qubit

DRUBEUED
Density operators get mapped to Pauli matrices

n;%(l—af)

Hopping terms get mapped to spin flips with Jordan-Wigner strings

q-1
c’'c =0~ HO’.ZO' ¥
p q 14 1 14

i=p+1

Time evolution gets mapped to circuits built from unitary gates




Simulating time evolution on quantum computers

There are O(N4) interaction terms in an N-electron system

H= Et cc +E s pcqcrc _EH

pqrs

We need to evolve separately under each of them e =TTe

Efficient circuits available for each of the N4 terms

Runtime estimates turn out to be O(NM2) = O(N?)



he polynomial time quantum shock

Estimates for a benchmark molecule: FezS, with 118 spin-orbitals

Gate count 1018

Parallel circuit depth 1017

Run time @ 100ns gate time 300 years

We cannot declare victory proving the existence of
polynomial time algorithms



he result of quantum software optimization

Estimates for a benchmark molecule: FezS, with 118 spin-orbitals

Gate count 1018 Reduced gate count 101

Parallel circuit depth 1017 Parallel circuit depth 1010

Run time @ 100ns gate time 300 years Run time @ 100ns gate time 20 minutes

Attempting to reduce the horrendous runtime estimates we achieved

Reuse of computations: O(N) reduction in gates
Parallelization of terms: O(N) reduction in circuit depth
Optimizing circuits: 4x reduction in gates

Smart interleaving of terms: 10x reduction in time steps
Multi-resolution time evolution: 10x reduction in gates

Better phase estimation algorithms: 4x reduction in rotation gates



Improvements in algorithms

Phase




Guessing a good trial state

Mean field approximation
Hartree-Fock
Density functional theory

Variational approaches: fit parameters in variational ansatz

Configuration-Interaction
Variational Monte Carlo McMillan, Phys. Rev (1965)

Tensor network methods (e.g. DMRG)  White, Phys. Rev. Lett. (1992)
Neural network states Carleo & Troyer, Science (2017)



Preparing a good trial state

Adiabatic evolution from a simple initial Hamiltonian Ho with known ground
state to the desired Hamiltonian Hj

H(5)=(7—5)/—/0 +SH.

Good starting Hamiltonians
Mean-field approximation (with right broken symmetry)
Non-interacting particles (in the right symmetry sector)



Variational guantum eigensolvers

Perform variational quantum Monte Carlo on wave functions
orepared by a quantum circuit

¥)=U(4,,.2,)|0)

Allows classes of wave functions to be efficiently evaluated that
are hard to evaluate classically, such as unitary coupled cluster



Reducing sampling errors

Error in Monte Carlo sampling o b
J

Error in guantum phase estimation (QPE) oL
t

Quantum amplitude estimation uses QPE to measure o
expectation values. ()= (]| a]) ‘

Encode distribution to be samples in the wave function



Accelerating Monte Carlo through Quantum Walks

Markov processes can be implemented as guantum walks with quadratic and
sometimes exponential acceleration in the mixing times.

probability

L

V‘v fhy Mool | . WM \

p09Uon

\\

—



Szegedy's guantum walk for MCMC

Map a Markov process with transition matrix 7, into a quantum circuit

5)o)= 27, ]}
The quantum walk operator W has the equilibrium distribution as
eigenvector with eigenvalue 1

W = X"PXPRPX'PXR

Plx)ly)=|y)x)

R=|1d-|0)(0| |®1Id



Solving the sign problem in QMC

Monte Carlo sampling with the quantum Metropolis algorithm
Use a unitary update + phase estimation to propose a new energy eigenstate
Accept or reject according to the Metropolis algorithm
Solves the sign problem of QMC by working with energy eigenstates



[t is time to start writing quantum software

nvent new quantum algorithms
Fxplore quantum applications

Determine resources and optimize guantum code

Co-design quantum hardware and software




