

Accelerating QMC on quantum computers

Matthias Troyer

International Journal of Theoretical Physics, Vol. 21, Nos. 6/7, 1982

Simulating Physics with Computers

Richard P. Feynman

Department of Physics, California Institute of Technology, Pasadena, California 91107

Received May 7, 1981

6. NEGATIVE PROBABILITIES

Now, for many interacting spins on a lattice we can give a "probability" (the quotes remind us that there is still a question about whether it's a probability) for correlated possibilities:

 $F(s_1, s_2, \dots, s_N) \qquad (s_i \in \{++, +-, -+, --\})$

Feynman proposed to use quantum computers to simulate quantum physics

Simulating quantum computers on classical computers

Simulating a quantum gate acting on N qubits needs $O(2^N)$ memory and operations

Qubits	Memory	Time for one operation
10	16 kByte	microseconds on a smartwatch
20	16 MByte	milliseconds on smartphone
30	16 GByte	seconds on laptop
40	16 TByte	seconds on cluster
50	16 PByte	minutes on top supercomputers?
60	16 EByte	hours on exascale supercomputer?
70	16 ZByte	days on hypothetical future supercomputer?
		•••
250	size of visible universe	age of the universe

Quantum Physics

0.5 Petabyte Simulation of a 45-Qubit Quantum Circuit

Thomas Häner, Damian S. Steiger

(Submitted on 4 Apr 2017)

Preparing the ground state

On a classical computer

Imaginary time projection

Power method or other iterative eigensolver

$$\left|\Psi_{GS}\right\rangle = \lim_{\tau \to \infty} e^{-\tau H} \left|\Psi_{T}\right\rangle$$
$$\left|\Psi_{GS}\right\rangle = \lim_{n \to \infty} (H - \Lambda)^{n} \left|\Psi_{T}\right\rangle$$

On a quantum computer

Imaginary time evolution

Power-method

Unitary operations + measurements:

prepare trial state

projectively measure energy

obtain the ground state if

the ground state energy was measured

 $\begin{aligned} \left| \Psi_{T} \right\rangle \\ \left| \Psi_{T} \right\rangle \rightarrow \left| \phi_{n} \right\rangle \text{ with } H \left| \phi_{n} \right\rangle = E_{n} \left| \phi_{n} \right\rangle \\ \left| \phi_{n} \right\rangle \text{ picked with propability } \left| \left\langle \phi_{n} \right| \Psi_{T} \right\rangle \right|^{2} \end{aligned}$

Quantum phase estimation

Energy can be measured through the phase of a wave function after unitary time evolution

$$U\left|\phi_{n}\right\rangle = e^{-iHt}\left|\phi_{n}\right\rangle = e^{-iE_{n}t}\left|\phi_{n}\right\rangle = e^{-i\phi}\left|\phi_{n}\right\rangle$$

We can only measure relative phases, thus do a controlled evolution $|\mathbf{0}\rangle|\phi_n\rangle \rightarrow \frac{1}{\sqrt{2}}(|\mathbf{0}\rangle+|\mathbf{1}\rangle)|\phi_n\rangle \rightarrow \frac{1}{\sqrt{2}}(|\mathbf{0}\rangle|\phi_n\rangle+U|\mathbf{1}\rangle|\phi_n\rangle) = \frac{1}{\sqrt{2}}(|\mathbf{0}\rangle+e^{-i\phi}|\mathbf{1}\rangle)|\phi_n\rangle \rightarrow \frac{1}{2}((1+e^{-i\phi})|\mathbf{0}\rangle+(1-e^{-i\phi})|\mathbf{1}\rangle)|\phi_n\rangle$

Measure the ancilla qubit to obtain the phase

Solving quantum chemistry on a quantum computer

1. Select a finite (generally non-orthogonal) basis set

 Perform a Hartree-Fock calculation to get an approximate solution get an orthogonal basis set

3. Find the true ground state of the Hamiltonian in this new basis set

$$H = \sum_{pq} t_{pq} c_p^{\dagger} c_q + \sum_{pqrs} V_{pqrs} c_p^{\dagger} c_q^{\dagger} c_r c_r$$

exact classical approach: full-configuration interaction exponential complexity!

Solving quantum chemistry on a quantum computer

1. Select a finite (generally non-orthogonal) basis set

 Perform a Hartree-Fock calculation to get an approximate solution get an orthogonal basis set

3. Find the true ground state of the Hamiltonian in this new basis set

$$H = \sum_{pq} t_{pq} c_p^{\dagger} c_q + \sum_{pqrs} V_{pqrs} c_p^{\dagger} c_q^{\dagger} c_r c_r$$

4. Prepare a good guess for the ground state

5. Perform quantum phase estimation to get the ground state wave function and energy

Representing fermion terms by quantum circuits

Map the occupation of each spin-orbital to the states of one qubit

$$|0\rangle = |\uparrow\rangle \qquad |1\rangle = |\downarrow\rangle$$

Density operators get mapped to Pauli matrices

$$n_i = \frac{1}{2} \left(1 - \sigma_i^z \right)$$

Hopping terms get mapped to spin flips with Jordan-Wigner strings

$$C_p^{\dagger}C_q = \sigma_p^{-1} \prod_{i=p+1}^{q-1} \sigma_i^z \sigma_p^{-1}$$

Time evolution gets mapped to circuits built from unitary gates

$$e^{-i\theta\left(c_{p}^{\dagger}c_{q}+c_{q}^{\dagger}c_{p}\right)} =$$

Simulating time evolution on quantum computers

There are $O(N^4)$ interaction terms in an N-electron system

$$H = \sum_{pq} t_{pq} c_p^{\dagger} c_q + \sum_{pqrs} V_{pqrs} c_p^{\dagger} c_q^{\dagger} c_r c_r \equiv \sum_{m=1}^{M} H_m$$

We need to evolve separately under each of them

Efficient circuits available for each of the N^4 terms

 $e^{-i\Delta tH} \approx \prod e^{-i\Delta \tau H_m}$

Runtime estimates turn out to be $O(NM^2) = O(N^9)$ It's efficient since it's polynomial!

The polynomial time quantum shock

Estimates for a benchmark molecule: Fe₂S₂ with 118 spin-orbitals

Gate count	10 ¹⁸
Parallel circuit depth	10 ¹⁷
Run time @ 100ns gate time	300 years

We cannot declare victory proving the existence of polynomial time algorithms

We need quantum software engineers to develop better algorithms and implementations

The result of quantum software optimization

Estimates for a benchmark molecule: Fe₂S₂ with 118 spin-orbitals

Gate count	10 ¹⁸	Reduced gate count	10 ¹¹
Parallel circuit depth	10 ¹⁷	Parallel circuit depth	10 ¹⁰
Run time @ 100ns gate time	300 years	Run time @ 100ns gate time	20 minutes

Attempting to reduce the horrendous runtime estimates we achieved Wecker *et al.*, PRA (2014), Hastings *et al.*, QIC (2015), Poulin *et al.*, QIC (2015)

Reuse of computations:O(N) reduction in gatesParallelization of terms:O(N) reduction in circuit depthOptimizing circuits:4x reduction in gatesSmart interleaving of terms:10x reduction in time stepsMulti-resolution time evolution:10x reduction in gatesBetter phase estimation algorithms:4x reduction in rotation gates

Improvements in algorithms

Original circuit

mproved circuit

Guessing a good trial state

Mean field approximation Hartree-Fock Density functional theory

Variational approaches: fit parameters in variational ansatz
Configuration-Interaction
Variational Monte CarloMcMillan, Phys. Rev (1965)Tensor network methods (e.g. DMRG)White, Phys. Rev. Lett. (1992)Neural network statesCarleo & Troyer, Science (2017)

Preparing a good trial state

Adiabatic evolution from a simple initial Hamiltonian H_0 with known ground state to the desired Hamiltonian H_1

$$H(s) = (1 - s)H_0 + sH_1$$

Good starting Hamiltonians

Mean-field approximation (with right broken symmetry) Non-interacting particles (in the right symmetry sector)

Variational quantum eigensolvers

Perform variational quantum Monte Carlo on wave functions prepared by a quantum circuit

$$|\Psi\rangle = U(\lambda_1, ..., \lambda_N)|0\rangle$$

Allows classes of wave functions to be efficiently evaluated that are hard to evaluate classically, such as unitary coupled cluster

Peruzzo et al, Nature Comm. (2014)

Reducing sampling errors

Error in Monte Carlo sampling

Error in quantum phase estimation (QPE)

Quantum amplitude estimation uses QPE to measure expectation values. (Brassard *et al*, 2002) $\langle A \rangle = \langle \Psi | A | \Psi \rangle$

 $\mathcal{E} \sim \frac{1}{\sqrt{t}}$

 $\mathcal{E} \sim \frac{1}{t}$

 $\mathcal{E} \sim \frac{1}{t}$

Encode distribution to be samples in the wave function

Accelerating Monte Carlo through Quantum Walks

Markov processes can be implemented as quantum walks with quadratic and sometimes exponential acceleration in the mixing times.

Szegedy's quantum walk for MCMC

Map a Markov process with transition matrix T_{xy} into a quantum circuit

$$X|x\rangle|0\rangle = \sum_{y} \sqrt{T_{xy}}|x\rangle|y\rangle$$

The quantum walk operator W has the equilibrium distribution as eigenvector with eigenvalue 1

 $W = X^{\dagger} P X P R P X^{\dagger} P X R$ $P |x\rangle |y\rangle = |y\rangle |x\rangle$ $R = \left[Id - |0\rangle \langle 0| \right] \otimes Id$

Solving the sign problem in QMC

Monte Carlo sampling with the quantum Metropolis algorithm Use a unitary update + phase estimation to propose a new energy eigenstate Accept or reject according to the Metropolis algorithm Solves the sign problem of QMC by working with energy eigenstates

Temme et al, Nature (2011)

It is time to start writing quantum software

Invent new quantum algorithms

Explore quantum applications

Determine resources and optimize quantum code

Co-design quantum hardware and software

