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Auxiliary Field Quantum Monte Carlo Method

●High-dimensional integral

Single particle operator Slater determinant
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Probability density function

● Measure ground state property

● General multi-dimensional integral:

Auxiliary Field Quantum Monte Carlo Method



● Sampling configurations of the auxiliary field

● Estimate expectation values on the Ground State wave function

● Random walk in the manifold of N particles Slater Determinants that 
can be parametrized using complex matrices

Auxiliary Field Quantum Monte Carlo Method
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Probability density function

- Half-filled repulsive Hubbard model

- The spin-balanced atomic Fermi gas

...
QMC calculations are relied on to provide definitive answers.
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Exact:
−10.197

QMC
−10.199 ± 0.005

Less than 0.007% chi-square 342.1
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orthogonal

Quantum connection

Diverge

zero is never sampled how fast overlap approach zero?
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●General Multi-dimensional integral:
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● One dimensional integral: sample

● When α     0,               5, variance will diverge as                
● MC error bar will be unreliable!
● It's hard to see problem in a normal MC calculations.

Simple Example
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Infinite Variance II

● Measure standard deviation

converge

fluctuation

Phys. Rev. E 93, 033303 (2016)
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New Method to Control Variance

● Change the PDF:

● For auxiliary field QMC:

● Conveniently implemented in path integral:
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Hubbard model:
2x4
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Application

● Spin-spin correlation, reduce error bar

4x4
U=8t
N=16

Phys. Rev. E 93, 033303 (2016)



Application

● large system, large interaction and long β

45x45
N=58
β=320
∆τ=0.025

Strongly interaction Fermi gas
cold atoms
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Application

● Hubbard Model Half-filling Thermodynamic Limit

-0.8603(2)

U=4



Conclusion

● There is an infinite variance problem in standard 
determinantal QMC.

● A method is proposed to eliminate the problem.

● The issues are very general. Our approach applies to other 
MC methods.

When sign problem is present, we usually have infinite variance problem.


