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Why add pions?

@ In nuclear structure calculations pions are often (usually)
integrated out and replaced by an instantaneous interaction.
@ Here we want to include the pion degrees of freedom.
e Test the instantaneous approximation.
o Obtain the induced three-body interactions, (and add Delta degrees
of freedom later)
@ Study pion-nucleon scattering.
e Simplify calculation of currents.
o Possibility to lead to simplifed calculations (like 3-body).

@ Develop low variance methods to add relativistic boson fields to
world line nucleon simulations.



Keeping pions

@ Known for many decades that pions mainly have an axial-vector
coupling to nuclei.

@ This is an iy° coupling which for nonrelativistic nucleons becomes
for a nucleon at position r,

[o- VT - 7(r)]

@ More modern formalism uses chiral effective field theory.

@ Here we expand, keep nonrelativistic nucleons, keep quadratic
terms in pion fields.



Lagrangian density
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m, is the pion mass, M, is the bare nucleon mass, f; = 92 MeV is the

pion decay constant, g4 = 1.26 is the nucleon axial-vector coupling
constant, Cs and Cr are low-energy constants, and i = x, y, z.



Comparison to chiral effective field theory nucleon
potentials
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Avoiding a real-space lattice

@ We could use a real-space lattice to define the pion field theory.

@ One goal is to see the changes that pions make on our Green’s
function Monte Carlo or Auxiliary field diffusion Monte Carlo
results.

@ Since our nucleons move in the continuum, we would prefer to
avoid a real-space lattice for pions.

@ Defining and calculating the field theory in free space is possible,
but it is simpler to calcuate in a periodic box.

@ We transform to field oscillators (~ momentum states in the
periodic box).



Pion mode amplitudes

@ Take cubic box of side L

k = 2{("&7”}/7”2)7 with nj = 07:’:17:1:2’ T

@ Expand in plane waves.
M;(x) is the momentum conjugate to =(x).
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Standing wave states

@ To have real amplitudes we write sine and cosine amplitudes

@ If we include k we do not include —k.
For k = 0 we have 7§ = mjo/v2 and 75, = 0.

@ Our pion canonical variables are:

X) = \/Ezl[wfk cos(k - x) + 7 sin(k - x)],
M;(x) = \/;Z [N cos(k - x) + N7 sin(k - X)],



Hamiltonian
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dk,(ri — rj) is a smeared out delta function for the contact term, which
we take to be consistent with the cutoff employed for the pion modes,

Ok (r) = L13 (1 +2Z cos(k - r))

We report the cutoff in terms of the maximum wy calculated by

w§ = \/ k& + m2, where
4rk3 (277)3,\/
=7 Nk

3 L

Nk being the number of k vectors in the unprimed sums.
Other choices for the cutoff/form factor should/could be explored.
Other choices will not change the implementation.



Monte Carlo ingredients

@ For Green’s function Monte Carlo or Auxiliary field diffusion Monte
Carlo, we know the recipe.

@ We choose our basis, the eigenstates of the nucleon positions and
spin/isospins and pion mode amplitudes.

@ We would like an initial trial/importance function, (RSM|W ).
@ We need the usual propagators — pions are equivalent to
nonrelativistic harmonic oscillators, nucleons are nonrelativistic.

@ Since pions are bosons, the sign/phase problem is the same as
for the case without pions.



Trial wave function

@ We assume the pion motion is significantly faster than the
nucleons, and use a Born-Oppenheimer approximation with fixed
nucleons to construct the trial function.

@ Keeping just the axial vector terms, we write
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@ Complete the square
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Trial wave function

@ The 7° operators do not commute because of the nucleon
spin- |sosp|n operators contained in By®.

@ We construct the trial function ignoring these commutators

(RSMWT) = (RSTI|exp |- X (G2 + 75) | 10). (@)
k

where |®) is an A nucleon model state.



Trial wave function

In terms of the original pion coordinates:
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We have include variational parameters oy, which rescale the coupling
for different momenta.

where rjj =r; —rj,



Nucleon model state

@ For 1 particle, the nucleon model state is simply one of the four
P 1) P L) [n 1), [nd).

@ For s-wave nuclei, we solve 2-body equation for the short range
interaction with appropriate boundary conditions for the binding
energy.

@ In general we plan to use either standard GFMC or AFDMC type
trial functions for the nuclear model states.



Variational calculations

(Vr|H|VT)
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@ These calculations go through exactly as standard nuclear physics
calculations.

o We have an extra a set of boson field amplitudes (i.e. harmonic
oscillators) to diffuse.

@ Nucleon charge is not conserved (e.g. proton can emita =™ to
become a neutron)

e So GFMC calculations with full spin/isospin sums scale like 44 (For

Z = A/2 nucleon charge conservation gives 2x24 ~ 44,/ 2,

(A/2)12 A
states.)



Variational calculations

@ For calculations with spin/isospin sums (like GFMC) we sample
the pion mode amplitudes I and the nucleon positions R from

> s(Wr|MRS)(NARS|VT)
[dn [dRY g(Wr|NRS)(NMRS|VT)

@ And evaluate
> s(VT|H|INRS)

> s(Vr[MRS)

@ Here we look at light nuclei and use spin/isospin sums. Later, we
can use Auxiliary field diffusion Monte Carlo to sample
spin/isospin.

@ Use linear method to optimize parameters.




GFMC Notes

@ The propagator has the same form as other real-space methods.

@ We use GFMC method with Trotter breakup for nucleon
propagators (with importance sampling).

@ We sample the exact Harmonic oscillator propagators for the pion
mode amplitudes (with importance sampling).

@ Using the exact harmonic oscillator propagators allows us to use
time steps set by the nucleon time scales rather than the pion
energies.

@ We use forward walking to calculate expectation values of
operators that do not commute with H.



1-nucleon renormalization

Short time density-density correlation:
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1-nucleon renormalization

Nucleon diffusion:
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We take kinetic mass counter term to be zero.
(The correction at lowest order perturbation theory is small too.)



Lowest-order diagram
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Rest mass, L = 10fm
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Rest mass

Both without Weinberg Tomazawa interaction:
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Pion momentum distribution

Single proton in box, n is number of k-shells.
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Pion density around nucleon (sort of)

n=5is a cutoff we, ~ 327 MeV, and n = 10 is w; ~ 449 MeV.
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One-pion exchange

Comparison of instantaneous OPE in box to calculation with infinite
mass nuclei:

(a) T=1 and S=0 n=5, OPE - (b) T=0 and S=1 h=5, OPE -
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Low energy constant fits

For simplicity/expediency we fit to results for Argonne v6’ and v8' in a
periodic box using a Lanczos solver, rather than Lischer method and
experiment.
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Deuteron and 2 neutrons in box

Deuteron and 2 neutrons in box:
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Conclusion — Future

@ We have shown that calculating with relativistic pion fields and
continuum nuclei is straightforward.

@ This formalism seems to have the same sort of phase/sign
problem as that for nucleons alone.

@ Pions are relatively cheap, and are bosons. Currents should be
easier. Adding Deltas may make 3-body interactions simpler.

@ We have shown how to calculate the needed counter terms and
low-energy constants.

@ We are working on larger systems now.



