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Motivation

Q: What are observable signatures of the critical point 
in heavy-ion experiments (RHIC BES, FAIR)?
Answer requires an understanding of the real-

time dynamics near the critical point 



• Divergence of the correlation length 𝜉s near the 
critical point of a second order phase transition 

• Long distance properties near the critical point are 
insensitive to the microscopic physics 

• Characterized in terms of critical scaling exponents  

• Universality quantities only depend on  
dimensionality, symmetry breaking pattern

Static critical phenomena

Critical phenomena

𝜉s ~|T-Tc| -𝝂α,𝛽,γ,𝛿,𝜈,η



• Dynamics near the critical point 
subject to critical slowing down  
-> Divergence of the temporal 
correlation length 𝜉t  

Dynamic critical phenomena

Critical dynamics

𝜉t  ~𝜉z~|T-Tc| -𝝂z 

• Characterized in terms of dynamical critical exponent z



Dynamic critical phenomena
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• Classification scheme for non-relativistic systems  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affect the long time dynamics of the system

Critical dynamics
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How does a given relativistic field theory 
fit into this classification scheme?  

What are the relevant degrees of freedom 
near the critical point?



• Consider single component scalar field theory in 
2+1 D

First principle study of 
simplest possible example

• Static universality class 2D Ising (Z2)
->Static critical properties known exactly (Onsager solution)

Nucl. Phys. B832 (2010) 228-240 ( arXiv:0912.3135 [hep-lat] ) 

• Second order phase transition at Tc>0 for m2 <0 
with order parameter ⟨𝜙(t,x)⟩

http://arxiv.org/abs/arXiv:0912.3135


• Classification in Halperin-Hohenberg schemes  

Critical dynamics of 
relativistic scalar theory

• Effective degrees of freedom away from Tc are 
massive quasi-particles (with finite life-time)

• Spectral function ρ(t−t′,x−x′,T) = i⟨[𝜙(t,x),𝜙(t′,x′)]⟩T

ρ0(ω,p,T) = 2πi sgn(ω) δ(ω2 −p2 −M2(T)) 
• Mean-field approximation

 
 

(mean field η=0 and z=1 for relativistic scalar) 

ρ(szω,sp,s1/νTr ) = s−(2−η) ρ(ω,p,Tr)• Critical behavior

(Model C)  z=2+α/ν   —> z=2 (2D Ising) 



First principles calculation of the spectral function  
requires real-time simulation

Basic idea of the method

• Generally not possible in the quantum field theory, since 
real-time sign problem (~eiS) prevents use of importance 
sampling techniques 

• However, the critical dynamics of a second order phase 
transition (Tc>0) is classical-statistical in nature

-> Quantum and classical theory are in the same 
(static and dynamic) universality class

• No sign problem in classical-statistical field theory.

-> Dynamic critical behavior can be studied 
using real-time classical lattice simulations



Quantum vs. classical-statistical  
dynamics

Classical-statistical theoryQuantum theory

-> No difference for low momentum modes (ω/T << 1)

Classical effective theory defined with cut-off scale Λ, such that  
(ω/T << 1) for all modes will accurately reproduce quantum theory.

ρ(t−t′,x−x′,T) =i⟨[𝜙(t,x),𝜙(t′,x′)]⟩

F(t−t′,x−x′,T) =  1/2 ⟨{𝜙(t,x),𝜙(t′,x′)}⟩

ρcl(t−t′,x−x′,T) = ⟨{𝜙(t,x),𝜙(t′,x′)}PB⟩

Fcl(t−t′,x−x′,T) = ⟨𝜙(t,x),𝜙(t′,x′)⟩

F(ω,p) = (nBE(ω)+1/2) ρ(ω,p) 
            ~ (T/ω+O(w/T)) ρ(ω,p)

F(ω,p)= T/ω ρ(ω,p)

in equilibrium fluctuation dissipation relation implies  
 only one independent two-point function

Integrating out ‘quantum modes’ above Λ leads to renormalization of 
model parameters, but universal critical dynamics is unaffected.  



Computation in classical-statistical field theory 

1) Generate ensemble of 2D thermal field configurations  
using standard importance sampling techniques

2) Solve classical-equations of motion in real-time 

3) Compute spectral function from unequal time  
 correlation function ρcl(t−t′,x−x′,T) = ⟨{𝜙(t,x),𝜙(t′,x′)}PB⟩ 

ρcl(t−t′,x−x′,T) =-1/T ∂t-t’ ⟨𝜙(t,x),𝜙(t′,x′)⟩classical KMS 

Calculation of spectral 
function in real-time 



Critical dynamics of 
relativistic scalar theory

-> Change from relativistic quasi-particle to relaxation dynamics

Spectral function ρ(ω,p=0,Tr) at finite temperature  
from real-time lattice simulation



Critical dynamics of 
relativistic scalar theory

Critical regionHigh temperature

Spectral function ρ(t,p=0,Tr) at finite temperature  
from real-time lattice simulation

-> Change from relativistic quasi-particle to relaxation dynamics  
with a divergent (temporal) correlation length 



Critical dynamics of 
relativistic scalar theory

Divergence of temporal  
correlation length

Extraction of dynamic critical exponent z

—> Different extractions yield z=2.05±0.15 in agreement with Model C

Critical spectral function



• Classical-statistical lattice field theory provides an efficient 
way to study dynamic critical behavior from first principles 

• First application to (2+1)D relativistic scalar field theory.  

• Interesting applications e.g. to effective models of low-
energy QCD

-> Critical dynamics governed by diffusive degree of freedom 
which emerges in the vicinity of the critical point.

-> Dynamic critical exponent of the relativistic theory is consistent 
with the classification scheme of Halperin & Hohenberg

Critical dynamics of 
relativistic scalar theory



Spectral functions in 3D 
O(4) model
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Distinction between Pion and Sigma modes difficult in finite volume  
    -> only possible with explicit symmetry breaking

1) Scan temperature axis for 
pseudo-critical behavior at 
finite symmetry breaking

2) Scan critical behavior 
by tuning explicit symmetry  

breaking to zero at T=Tc  



Spectral functions in 3D 
O(4) model
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Spectral functions in 3D 
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Spectral functions in 3D 
O(4) model
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• Exploited classical nature of low energy excitations 
to study real-time critical properties of relativistic 
scalar field theories (Z2,O(4)) in 2D and 3D 
 
Several interesting extensions: 

• Non-equilibrium phase transitions (work in progress) 

• Explicit construction of classical-statistical low 
energy eff. theory by integrating out high energy 
modes (work in progress)

Summary & Conclusion


