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Motivation
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Q: What are observable signatures of the critical point
in heavy-ion experiments (RHIC BES, FAIR)?

Answer requires an understanding of the real-
time dynamics near the critical point



Critical phenomena

Static critical phenomena

Divergence of the correlation length & near the
critical point of a second order phase transition

Long distance properties near the critical point are
iInsensitive to the microscopic physics

Characterized in terms of
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Universality quantities only depend on
dimensionality, symmetry breaking pattern



Critical dynamics

Dynamic critical phenomena

 Dynamics near the critical point
subject to critical slowing down
-> Divergence of the temporal

correlation length &;
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 Characterized in terms of dynamical critical exponent z
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Critical dynamics

Dynamic critical phenomena

 Dynamical constraints (e.g conservational laws)
affect the long time dynamics of the system

e Classification scheme for non-relativistic systems
(Halperin & Hohenberg 77)

static universality class

2D Ising model (Z2)

conserved order energy momentum

F(aaraén?tBe)r S conservation
ode

Nno conservation laws
(Model A)

dynamic universality classes



Critical dynamics

Dynamic critical phenomena

 Dynamical constraints (e.g conservational laws)
affect the long time dynamics of the system

How does a given relativistic field theory
fit into this classification scheme?

What are the relevant degrees of freedom
near the critical point?

(Model B)

dynamic universality classes



First principle study of
simplest possible example

* Consider single component scalar field theory In
2+1D

1 1 1 A
7 — o (L, 2 [+ 2 , L. 2 2 N 4
/dw(Qw —1—2(Vg0) +5mp +4!c,0)

 Second order phase transition at T¢>0 for m2 <0

with order parameter (¢(t,x))

o Static universality class 2D Ising (Z2)
->Static critical properties known exactly (Onsager solution)


http://arxiv.org/abs/arXiv:0912.3135

Critical dynamics of
relativistic scalar theory

e Effective degrees of freedom away from T are
massive quasi-particles (with finite litfe-time)

e Spectral function P(t=t",x=x"T) = iK[¢(t,x),@(t",xX") 7

 Mean-field approximation
Po(w,p, T) = 2mi sgn(w) o(w? —p# —M=(T))

e Critical behavior p(szw,sp,s"VI;) = s p(w,p,T:)
(mean field N=0 and z=1 for relativistic scalar)

e Classification in Halperin-Hohenberg schemes



Basic idea of the method

First principles calculation of the spectral function
requires real-time simulation

 (Generally not possible in the quantum field theory, since
real-time sign problem (~€'®) prevents use of importance
sampling techniques

 However, the critical dynamics of a second order phase
transition (T¢>0) Is classical-statistical in nature

-> Quantum and classical theory are in the same
(static and dynamic) universality class

* No sign problem in classical-statistical field theory.

-> Dynamic critical behavior can be studied
using real-time classical lattice simulations



Quantum vs. classical-statistical

dynamics
Quantum theory Classical-statistical theory
p(t—t",x=x",T) =i[p(t,X), (1" x")]> Pai(t=t" x=x",T) = ({(t,x),p(t' x")}pe)
F(t=t"x=x",T) = 1/2 {(t.x),(t",x")) Fai(t=t"x=X"T) = <{¢(t,x), (" XD

in equilibrium fluctuation dissipation relation implies
only one independent two-point function

F(w,p) = (nNBe(w)+1/2) p(w,p) F(w,p)= T/w p(w,p)
~ (T/w+O(w/T)) p(w,p)

-> No difference for low momentum modes (w/T << 1)

Classical effective theory defined with cut-off scale /\, such that
(W/T << 1) for all modes will accurately reproduce quantum theory.

Integrating out ‘quantum modes’ above A leads to renormalization of
model parameters, but universal critical dynamics is unaffected.



Calculation of spectral
function In real-time

Computation in

1) Generate ensemble of 2D thermal field configurations
using standard importance sampling techniques

2) Solve classical-equations of motion in real-time

3) Compute spectral function from unequal time
correlation function pe(t—t’ . x—x",T) = {{p(t,x),d(t" X’)}PB>

classical KMS pPei(t=t",x=x",T) =-1/T 0Owr {(t,X),d(t’ ,x"))



Critical dynamics of
relativistic scalar theory

Spectral function p(w,p=0,T,) at finite temperature
from real-time lattice simulation
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-> Change from relativistic quasi-particle to relaxation dynamics



m p(t,p=0)

Critical dynamics of
relativistic scalar theory

Spectral function p(t,p=0,T;) at finite temperature
from real-time lattice simulation
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-> Change from relativistic quasi-particle to relaxation dynamics
with a divergent (temporal) correlation length



Critical dynamics of
relativistic scalar theory

Extraction of dynamic critical exponent z
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—> Different extractions yield z=2.05+0.15 in agreement with Model C



Critical dynamics of
relativistic scalar theory

» Classical-statistical lattice field theory provides an efticient
way to study dynamic critical behavior from first principles

o First application to (2+1)D relativistic scalar field theory:.

-> Critical dynamics governed by diffusive degree of freedom
which emerges in the vicinity of the critical point.

-> Dynamic critical exponent of the relativistic theory is consistent

with the classification scheme of Halperin & Hohenberg

* Interesting applications e.g. to effective models of low-
energy QCD



Spectral functions in 3D
O(4) model

Distinction between Pion and Sigma modes difficult in finite volume
-> only possible with explicit symmetry breaking
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Spectral functions in 3D

O(4) model
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Spectral functions in 3D
O(4) model
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Spectral functions in 3D

O(4) model
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Spectral functions in 3D
O(4) model
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Summary & Conclusion

* Exploited classical nature of low energy excitations
to study real-time critical properties of relativistic
scalar field theories (Z2,0(4)) in 2D and 3D

Several interesting extensions:
* Non-equilibrium phase transitions (work in progress)
* Explicit construction of classical-statistical low

energy eff. theory by integrating out high energy
modes (work in progress)



