Many-body dynamics with quantum computers

Alessandro Roggero

figure credit: IBM

Advances in MC Techniques for Many-Body Quantum Systems 22 Aug, 2018

Goal: exclusive cross sections for ν oscillation experiments

$$
P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - \sin^2(2\theta)\sin^2\left(\frac{\Delta m^2 L}{4E_{\nu}}\right)
$$

• need to use measured reaction products to constrain E_{ν} of the event

DUNE, MiniBooNE, T2K, Minerνa, NOνA,. . .

Inclusive cross section and the response function

• xsection completely determined by response function

$$
R_O(\omega) = \sum_{f} \left| \langle f|\hat{O}|0\rangle \right|^2 \delta(\omega - E_f + E_0)
$$

• excitation operator \hat{O} specifies the vertex

Inclusive cross section and the response function

• xsection completely determined by response function

$$
R_O(\omega) = \sum_f \left| \langle f|\hat{O}|0\rangle \right|^2 \delta(\omega - E_f + E_0)
$$

• excitation operator \hat{O} specifies the vertex

Extremely challenging classically for strongly correlated quantum systems

Many body dynamics with Integral Transforms

$$
R_O(\omega) = \sum_f \left| \langle f|\hat{O}|0\rangle \right|^2 \delta(\omega - E_f + E_0)
$$

PROBLEM: need lots of detailed informations to compute this ab-initio

A possible way out: integral transform techniques

• integrated quantities can be much easier to compute

$$
T(\sigma) = \int d\omega K(\sigma, \omega) R_O(\omega) = \sum_f |\langle f|\hat{O}|0\rangle|^2 K(\sigma, E_f - E_0)
$$

= $\langle 0|\hat{O}^\dagger K(\sigma, \hat{H} - E_0) \hat{O}|0\rangle$

 $K(\sigma,\omega) = \omega^{\sigma} \quad \Rightarrow \quad$ energy weighted sum-rules $K(\sigma, \omega) = e^{-\sigma \omega} \quad \Rightarrow \quad$ Laplace Transform (euclidean time/QMC) $K(\sigma, \omega; \Gamma) = \frac{\Gamma}{\Gamma^2 + (\sigma - \omega)^2} \;\; \Rightarrow \;\;$ Lorentz Integral Transform (NCSM,CC)

$$
L(\sigma) = \int K(\sigma, \omega) R(\omega) d\omega = \int_0^\infty e^{-\sigma \omega} R(\omega) d\omega
$$

$$
L(\sigma) = \int K(\sigma, \omega) R(\omega) d\omega = \int_0^\infty e^{-\sigma \omega} R(\omega) d\omega
$$

NOTE: we have access only to a NOISY version of $L(\sigma)$

$$
L(\sigma) = \int K(\sigma, \omega) R(\omega) d\omega = \int_0^\infty e^{-\sigma \omega} R(\omega) d\omega
$$

NOTE: we have access only to a NOISY version of $L(\sigma)$

$$
L(\sigma) = \int K(\sigma, \omega) R(\omega) d\omega = \int_0^\infty e^{-\sigma \omega} R(\omega) d\omega
$$

NOTE: we have access only to a NOISY version of $L(\sigma)$

$$
L(\sigma) = \int K(\sigma, \omega) R(\omega) d\omega = \int_0^\infty e^{-\sigma \omega} R(\omega) d\omega
$$

NOTE: we have access only to a NOISY version of $L(\sigma)$

$$
L(\sigma) = \int K(\sigma, \omega) R(\omega) d\omega = \int_0^\infty e^{-\sigma \omega} R(\omega) d\omega
$$

NOTE: we have access only to a NOISY version of $L(\sigma)$

$$
L(\sigma)=\int K(\sigma,\omega)R(\omega)d\omega=\int_0^\infty e^{-\sigma\omega}\;R(\omega)d\omega
$$

NOTE: we have access only to a NOISY version of $L(\sigma)$

$$
L(\sigma)=\int K(\sigma,\omega)R(\omega)d\omega=\int_0^\infty e^{-\sigma\omega}\;R(\omega)d\omega
$$

Bayesian methods are usually used to select the "best" resconstruction

$$
G(\sigma,\beta) = \int K(\sigma,\omega,\beta)R(\omega)d\omega = \int_0^\infty e^{-\frac{(\sigma-\omega)^2}{2\beta}} R(\omega)d\omega
$$

• We have now one more parameter: β .

$$
G(\sigma,\beta) = \int K(\sigma,\omega,\beta)R(\omega)d\omega = \int_0^\infty e^{-\frac{(\sigma-\omega)^2}{2\beta}} R(\omega)d\omega
$$

• We have now one more parameter: β .

The transform $G(\sigma)$ is a smoothened version of the original signal!

$$
G(\sigma,\beta) = \int K(\sigma,\omega,\beta)R(\omega)d\omega = \int_0^\infty e^{-\frac{(\sigma-\omega)^2}{2\beta}} R(\omega)d\omega
$$

• We have now one more parameter: β .

The transform $G(\sigma)$ is a smoothened version of the original signal!

$$
G(\sigma,\beta) = \int K(\sigma,\omega,\beta)R(\omega)d\omega = \int_0^\infty e^{-\frac{(\sigma-\omega)^2}{2\beta}} R(\omega)d\omega
$$

• We have now one more parameter: β .

The transform $G(\sigma)$ is a smoothened version of the original signal!

$$
G(\sigma,\beta) = \int K(\sigma,\omega,\beta)R(\omega)d\omega = \int_0^\infty e^{-\frac{(\sigma-\omega)^2}{2\beta}} R(\omega)d\omega
$$

• We have now one more parameter: β .

The transform $G(\sigma)$ is a smoothened version of the original signal!

PROBLEM: computational cost scales exponentially with $1/\beta$!!!

Additional challanges: the nuclear many-body problem

$$
H = \sum_{i} \frac{p^2}{2m} + \frac{1}{2} \sum_{i,j} V_{ij} + \frac{1}{6} \sum_{i,j,k} W_{ijk} + \cdots
$$

- **•** much easier to deal with than not the QCD lagragian
- being non-perturbative it is still extremely challenging
	- nuclear states live in huge Hilbert spaces: $\,dim\left(\mathcal{H}\right)>4^A$

Additional challanges: the nuclear many-body problem

$$
H = \sum_{i} \frac{p^2}{2m} + \frac{1}{2} \sum_{i,j} V_{ij} + \frac{1}{6} \sum_{i,j,k} W_{ijk} + \cdots
$$

- **•** much easier to deal with than not the QCD lagragian
- **•** being non-perturbative it is still extremely challenging
	- nuclear states live in huge Hilbert spaces: $\,dim\left(\mathcal{H}\right)>4^A$

What is a Quantum computer?

JQI@Univ. of MD

Intel

Google

Alessandro Roggero (LANL) [Many-body dynamics with QC](#page-0-0) INT - 22 Aug, 2018 7/15

Microsoft?

 \bullet

Stages of quantum computations

- prepare the initial state
- **•** perform unitary operations
- **•** measure the final state

Stages of quantum computations

- o prepare the initial state
- o perform unitary operations
- **•** measure the final state

Stages of quantum computations

- **•** prepare the initial state
- **•** perform unitary operations
- **o** measure the final state

Sleator & Weinfurter, Barenco et al., Lloyd (1995)

Can access ALL unitary matrices via a small set of universal gates

- integer factorization Schor (1994)
- database search Grover (1996)
- Hamiltonian simulation Lloyd (1996)
- linear equations Harrow et al. (2009)

· · ·

Stages of quantum computations

- **•** prepare the initial state
- **•** perform unitary operations
- **o** measure the final state

Sleator & Weinfurter, Barenco et al., Lloyd (1995)

Can access ALL unitary matrices via a small set of universal gates

- integer factorization Schor (1994)
- database search Grover (1996)
- Hamiltonian simulation Lloyd (1996)
- linear equations Harrow et al. (2009)

· · ·

Quantum Adiabatic Algorithm Farhi et al. (2000,2001), McClean et al. (2016)

$$
H(\lambda) = (1 - \lambda)H_A + \lambda H_B
$$

PROBLEM: \bullet number of steps scales with gap Δ : $N_s = \frac{\lambda}{\delta \lambda} \approx \Delta^{-2}$

• gap could scale exponentially with system size

Quantum Adiabatic Algorithm Farhi et al. (2000,2001), McClean et al. (2016)

$$
H(\lambda) = (1 - \lambda)H_A + \lambda H_B
$$

PROBLEM: \bullet number of steps scales with gap Δ : $N_s = \frac{\lambda}{\delta \lambda} \approx \Delta^{-2}$ **•** gap could scale exponentially with system size

Spectral Combing Algorithm Kaplan, Klco, Roggero (2017)

IDEA: couple target to bath

- **•** bath prepared in a cold state
- unitary evolution could entangle the 2 systems such that entropy has maximum at $|GS\rangle$ _{targ}

Quantum Adiabatic Algorithm Farhi et al. (2000,2001), McClean et al. (2016)

$$
H(\lambda) = (1 - \lambda)H_A + \lambda H_B
$$

PROBLEM: \bullet number of steps scales with gap Δ : $N_s = \frac{\lambda}{\delta \lambda} \approx \Delta^{-2}$ **•** gap could scale exponentially with system size

IDEA: couple target to bath

- **•** bath prepared in a cold state
- unitary evolution could entangle the 2 systems such that entropy has maximum at $|GS\rangle$ _{targ}

PROBLEM

needs huge density of states

$$
N_{\rm bath}\gg N_{\rm targ}
$$

Quantum Adiabatic Algorithm Farhi et al. (2000,2001), McClean et al. (2016)

$$
H(\lambda) = (1 - \lambda)H_A + \lambda H_B
$$

PROBLEM: \bullet number of steps scales with gap Δ : $N_s = \frac{\lambda}{\delta \lambda} \approx \Delta^{-2}$ • gap could scale exponentially with system size

Spectral Combing Algorithm Kaplan, Klco, Roggero (2017)

BETTER IDEA: couple target to a small system with time-dependent spectrum

- \bullet comb energies decreasing with t
- energy transferred to the comb through avoided level crossings

Quantum Adiabatic Algorithm Farhi et al. (2000,2001), McClean et al. (2016)

$$
H(\lambda) = (1 - \lambda)H_A + \lambda H_B
$$

PROBLEM: \bullet number of steps scales with gap Δ : $N_s = \frac{\lambda}{\delta \lambda} \approx \Delta^{-2}$ • gap could scale exponentially with system size

Spectral Combing Algorithm Kaplan, Klco, Roggero (2017)

BETTER IDEA: couple target to a small system with time-dependent spectrum

- \bullet comb energies decreasing with t
- energy transferred to the comb through avoided level crossings

Kitaev (1996), Brassard et al. (2002), Svore et. al (2013), Weibe & Granade (2016),...

QPE is a general algorithm to estimate eigenvalues of a unitary operator

$$
U|\xi_k\rangle = \lambda_k|\xi_k\rangle, \lambda_k = e^{2\pi i \phi_k} \quad \Leftarrow \quad U = e^{-itH}
$$

Kitaev (1996), Brassard et al. (2002), Svore et. al (2013), Weibe & Granade (2016),. . .

QPE is a general algorithm to estimate eigenvalues of a unitary operator

$$
U|\xi_k\rangle = \lambda_k|\xi_k\rangle, \lambda_k = e^{2\pi i \phi_k} \quad \Leftarrow \quad U = e^{-itH}
$$

- starting vector $|\psi\rangle = \sum_k c_k |\xi_k\rangle$
- store time evolution $|\psi(t)\rangle$ in auxiliary register of M qubits
- perform (Quantum) Fourier transform on the auxiliary register
- measures will return λ_n with probability $P(\lambda_n) \approx |c_n|^2$

Kitaev (1996), Brassard et al. (2002), Svore et. al (2013), Weibe & Granade (2016),. . .

QPE is a general algorithm to estimate eigenvalues of a unitary operator

$$
U|\xi_k\rangle = \lambda_k|\xi_k\rangle, \lambda_k = e^{2\pi i \phi_k} \quad \Leftarrow \quad U = e^{-itH}
$$

- starting vector $|\psi\rangle = \sum_k c_k |\xi_k\rangle$
- store time evolution $|\psi(t)\rangle$ in auxiliary register of M qubits
- perform (Quantum) Fourier transform on the auxiliary register
- measures will return λ_n with probability $P(\lambda_n) \approx |c_n|^2$

Kitaev (1996), Brassard et al. (2002), Svore et. al (2013), Weibe & Granade (2016),. . .

QPE is a general algorithm to estimate eigenvalues of a unitary operator

$$
U|\xi_k\rangle = \lambda_k|\xi_k\rangle, \lambda_k = e^{2\pi i \phi_k} \quad \Leftarrow \quad U = e^{-itH}
$$

• starting vector
$$
|\psi\rangle = \sum_k c_k |\xi_k\rangle
$$

- store time evolution $|\psi(t)\rangle$ in auxiliary register of M qubits
- perform (Quantum) Fourier transform on the auxiliary register
- measures will return λ_n with probability $P(\lambda_n) \approx |c_n|^2$

BONUS: final state after measurement is $|\psi_{fin}\rangle \approx \sum_k \delta(\lambda_k - \lambda_n) c_k |\xi_k\rangle$

Response functions as a probability distribution

$$
R_O(\omega) = \sum_f \left| \langle f|\hat{O}|0\rangle \right|^2 \delta(\omega - E_f + E_0)
$$

- positive definite quantity with finite integral $\int_{-\infty}^{\infty} R_O(\omega) < \infty$
- properly normalized version $\overline{R_O}(\omega)$ defines a probability density

 \rightarrow scattering events with energy transfer ω happen with probability $\overline{R_O}(\omega)$

Response functions as a probability distribution

$$
R_O(\omega) = \sum_f \left| \langle f|\hat{O}|0\rangle \right|^2 \delta(\omega - E_f + E_0)
$$

- positive definite quantity with finite integral $\int_{-\infty}^{\infty} R_O(\omega) < \infty$
- properly normalized version $\overline{R_O}(\omega)$ defines a probability density

 \rightarrow scattering events with energy transfer ω happen with probability $\overline{R_O}(\omega)$

Strategy on a Quantum Computer (Roggero & Carlson (2018)

e generate final states $|f\rangle$ with energy transfer ω distributed as

$$
P(\omega) \propto \sum_{f} \left| \langle f | \hat{O} | 0 \rangle \right|^2 \delta_{\Delta} (\omega - E_f + E_0)
$$

• finite width Δ can be made small at will with only modest resources

Response functions as a probability distribution

$$
R_O(\omega) = \sum_f \left| \langle f|\hat{O}|0\rangle \right|^2 \delta(\omega - E_f + E_0)
$$

- positive definite quantity with finite integral $\int_{-\infty}^{\infty} R_O(\omega) < \infty$
- properly normalized version $\overline{R_O}(\omega)$ defines a probability density

 \rightarrow scattering events with energy transfer ω happen with probability $\overline{R_O}(\omega)$

Strategy on a Quantum Computer (Roggero & Carlson (2018)

• generate final states $|f\rangle$ with energy transfer ω distributed as

$$
P(\omega) \propto \sum_{f} \left| \langle f|\hat{O}|0\rangle \right|^2 \delta_{\Delta} (\omega - E_f + E_0)
$$

- finite width Δ can be made small at will with only modest resources
- direct access to final states with given $\omega \rightarrow$ exclusive information

Additional ingredient:

• quantum circuit that prepares $|E\rangle = \hat{O}(q)|0\rangle$ (Roggero & Carlson (2018))

$$
P(\nu) = \sum_{f} |\langle f|E \rangle|^2 \, \delta_W \, (\nu - E_f + E_0)
$$

- **•** finite width approximation of $R(q, \omega)$
- need only $W \sim \log_2 \left(1 / \Delta \omega \right)$ ancillae
- evolution time $t \sim Poly(\Omega)/\Delta\omega$

Additional ingredient:

• quantum circuit that prepares $|E\rangle = \hat{O}(q)|0\rangle$ (Roggero & Carlson (2018))

$$
P(\nu) = \sum_{f} |\langle f|E \rangle|^2 \, \delta_W \, (\nu - E_f + E_0)
$$

- **•** finite width approximation of $R(q, \omega)$
- need only $W \sim \log_2 \left(1 / \Delta \omega \right)$ ancillae
- \bullet evolution time $t \sim Poly(\Omega)/\Delta\omega$

Additional ingredient:

• quantum circuit that prepares $|E\rangle = \hat{O}(q)|0\rangle$ (Roggero & Carlson (2018))

$$
P(\nu) = \sum_{f} |\langle f|E \rangle|^2 \, \delta_W \, (\nu - E_f + E_0)
$$

- **•** finite width approximation of $R(q, \omega)$
- need only $W \sim \log_2 \left(1 / \Delta \omega \right)$ ancillae
- \bullet evolution time $t \sim Poly(\Omega)/\Delta\omega$

Additional ingredient:

• quantum circuit that prepares $|E\rangle = \hat{O}(q)|0\rangle$ (Roggero & Carlson (2018))

$$
P(\nu) = \sum_{f} |\langle f|E \rangle|^2 \, \delta_W \, (\nu - E_f + E_0)
$$

- **•** finite width approximation of $R(q, \omega)$
- need only $W \sim \log_2 \left(1 / \Delta \omega \right)$ ancillae
- \bullet evolution time $t \sim Poly(\Omega)/\Delta\omega$

Additional ingredient:

• quantum circuit that prepares $|E\rangle = \hat{O}(q)|0\rangle$ (Roggero & Carlson (2018))

By performing quantum phase estimation with W ancilla qubits we will measure frequency ν with probability:

$$
P(\nu) = \sum_{f} |\langle f|E \rangle|^2 \, \delta_W \, (\nu - E_f + E_0)
$$

- finite width approximation of $R(q,\omega)$
- need only $W \sim \log_2 \left(1 / \Delta \omega \right)$ ancillae
- \bullet evolution time $t \sim Poly(\Omega)/\Delta\omega$

We need around $\sim 10^4$ samples to get within 1% error

• after measuring energy ν with QPE, state-register is left in

$$
|out\rangle_{\nu} \sim \sum_{f} \langle f|\hat{O}(q)|0\rangle|f\rangle \quad \text{ with } E_f - E_0 = \nu \pm \Delta \omega
$$

we can then measure eg. 1- and 2-particle momentum distributions

• after measuring energy ν with QPE, state-register is left in

$$
|out\rangle_{\nu} \sim \sum_{f} \langle f|\hat{O}(q)|0\rangle|f\rangle \quad \text{ with } E_f - E_0 = \nu \pm \Delta \omega
$$

we can then measure eg. 1- and 2-particle momentum distributions

Caveat

• after measuring energy ν with QPE, state-register is left in

$$
|out\rangle_{\nu} \sim \sum_{f} \langle f|\hat{O}(q)|0\rangle|f\rangle \quad \text{ with } E_f - E_0 = \nu \pm \Delta \omega
$$

we can then measure eg. 1- and 2-particle momentum distributions

Caveat

• after measuring energy ν with QPE, state-register is left in

$$
|out\rangle_{\nu} \sim \sum_{f} \langle f|\hat{O}(q)|0\rangle|f\rangle \quad \text{ with } E_f - E_0 = \nu \pm \Delta \omega
$$

we can then measure eg. 1- and 2-particle momentum distributions

Caveat

• after measuring energy ν with QPE, state-register is left in

$$
|out\rangle_{\nu} \sim \sum_{f} \langle f|\hat{O}(q)|0\rangle|f\rangle \quad \text{ with } E_f - E_0 = \nu \pm \Delta \omega
$$

we can then measure eg. 1- and 2-particle momentum distributions

Caveat

• after measuring energy ν with QPE, state-register is left in

$$
|out\rangle_{\nu} \sim \sum_{f} \langle f|\hat{O}(q)|0\rangle|f\rangle \quad \text{ with } E_f - E_0 = \nu \pm \Delta \omega
$$

we can then measure eg. 1- and 2-particle momentum distributions

Caveat

• after measuring energy ν with QPE, state-register is left in

$$
|out\rangle_{\nu} \sim \sum_{f} \langle f|\hat{O}(q)|0\rangle|f\rangle \quad \text{ with } E_f - E_0 = \nu \pm \Delta \omega
$$

we can then measure eg. 1- and 2-particle momentum distributions

Caveat

- pionless EFT on a 10^3 lattice of size 20 fm $[a=2.0$ fm]
- 10x faster gates and negligible error correction cost (very optimistic)
- want $R(q,\omega)$ with 20 MeV energy resolution

- pionless EFT on a 10^3 lattice of size 20 fm $[a=2.0$ fm]
- 10x faster gates and negligible error correction cost (very optimistic)
- want $R(q, \omega)$ with 20 MeV energy resolution

- pionless EFT on a 10^3 lattice of size 20 fm $[a=2.0$ fm]
- 10x faster gates and negligible error correction cost (very optimistic)
- want $R(q,\omega)$ with 20 MeV energy resolution

- pionless EFT on a 10^3 lattice of size 20 fm $[a=2.0$ fm]
- 10x faster gates and negligible error correction cost (very optimistic)
- want $R(q,\omega)$ with 20 MeV energy resolution

- pionless EFT on a 10^3 lattice of size 20 fm $[a=2.0$ fm]
- 10x faster gates and negligible error correction cost (very optimistic)
- want $R(q,\omega)$ with 20 MeV energy resolution

- pionless EFT on a 10^3 lattice of size 20 fm $[a=2.0$ fm]
- 10x faster gates and negligible error correction cost (very optimistic)
- want $R(q,\omega)$ with 20 MeV energy resolution

- pionless EFT on a 10^3 lattice of size 20 fm $[a=2.0$ fm]
- 10x faster gates and negligible error correction cost (very optimistic)
- want $R(q,\omega)$ with 20 MeV energy resolution

- pionless EFT on a 10^3 lattice of size 20 fm $\left[a=2.0\right.$ fm]
- 10x faster gates and negligible error correction cost (very optimistic)
- want $R(q, \omega)$ with 20 MeV energy resolution

- code optimization is critical
- there is still a long way to go

- pionless EFT on a 10^3 lattice of size 20 fm $\left[a=2.0\right.$ fm]
- 10x faster gates and negligible error correction cost (very optimistic)
- want $R(q, \omega)$ with 20 MeV energy resolution

we need a quantum device with ≈ 4000 qubits (current record is 72)

- code optimization is critical
- there is still a long way to go

classical $\gtrsim 10^{81}$ PB and an exascale machine for $\approx \frac{1}{4}$ $\frac{1}{4}$ age of universe

Summary

- accurate input from nuclear physics is critical to extract reliable informations from current and planned neutrino experiments
- **•** current ab-initio techniques are getting better especially for ground state properties and inclusive scattering cross sections
	- still not enough, need new ideas: quantum computing?
- QC is an emerging technology with the potential of revolutionarize the way many-body theory is done
- we already know how to simulate efficiently the time-evolution of non relativistic systems and progress on field theories is on the way
- more work has to be done to make all this viable in the near term

Summary

- accurate input from nuclear physics is critical to extract reliable informations from current and planned neutrino experiments
- **•** current ab-initio techniques are getting better especially for ground state properties and inclusive scattering cross sections
	- still not enough, need new ideas: quantum computing?
- QC is an emerging technology with the potential of revolutionarize the way many-body theory is done
- we already know how to simulate efficiently the time-evolution of non relativistic systems and progress on field theories is on the way
- more work has to be done to make all this viable in the near term

Collaborators:

- N.Klco, D.Kaplan (INT)
- J.Carlson (LANL)

Application to the 1D Ising model in a transverse field

The Spectral Combing algorithm

- initialize system in $|\psi\rangle \otimes |\downarrow\downarrow \cdots\rangle$
	- **1** propagate state from $t = 0$ to $t = t_f$ using full Hamiltonian $H = H_{\text{targ}} + H_{\text{comb}} + H_{\text{int}}$
	- ² if more iteration needed perform a measurement of z-projection of spins in the comb otherwise exit
	- ³ return spins in the comb to their ground-state and repeat

$$
H_{\text{targ}} = -h \sum_{i}^{N_{\text{targ}}} \sigma_i^x - \sum_{i}^{N_{\text{targ}}} \sigma_i^z \sigma_{i+1}^z
$$

• $N_{\text{targ}} = 3$, $N_{\text{comb}} = 3$ and $h = 2.0$
 $N_{\text{comb}} = 3$ sufficient for $N_{\text{targ}} = 3, 4, 5$
and variety of h across phase transition

Non-unitary operators on a quantum computer

Measurement based non-unitary gates with ancilla

Gingrich & Williams (2004), Terashima & Ueda (2005)

- **•** entangle system with ancilla
- measure ancilla
- if ancilla is $|0\rangle$ system left in

 $|\psi\rangle \propto \hat{N}|\phi\rangle$

• probability of success
$$
P(|0\rangle) \leq 1
$$

For our purpose we can very easily prepare in this way the wanted state

$$
|\Phi_O\rangle \propto \hat O |\psi_0\rangle + O(\delta)
$$

paying the price that $P(|0\rangle) = O(\delta)$.

One can raise $P(|0\rangle) \approx 1$ deterministically! Roggero & Carlson (2018)