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Goal: exclusive cross sections for ν oscillation experiments

Goals for ν oscillation exp.
neutrino masses
accurate mixing angles
CP violating phase

P (να → να) = 1− sin2(2θ)sin2

(
∆m2L

4Eν

)
need to use measured reaction products to constrain Eν of the event

DUNE, MiniBooNE, T2K, Minerνa, NOνA,. . .
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Inclusive cross section and the response function
xsection completely determined by response function

RO(ω) =
∑
f

∣∣∣〈f |Ô|0〉∣∣∣2 δ (ω − Ef + E0)

excitation operator Ô specifies the vertex

Extremely challenging classically for strongly correlated quantum systems

dipole response of 16O

Bacca et al. (2013) LIT+CC

quasi-elastic EM response of 12C

Lovato et al. (2016) GFMC
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Many body dynamics with Integral Transforms

RO(ω) =
∑
f

∣∣∣〈f |Ô|0〉∣∣∣2 δ (ω − Ef + E0)

PROBLEM: need lots of detailed informations to compute this ab-initio

A possible way out: integral transform techniques
integrated quantities can be much easier to compute

T (σ) =

∫
dωK(σ, ω)RO(ω) =

∑
f

∣∣∣〈f |Ô|0〉∣∣∣2K (σ,Ef − E0)

= 〈0|Ô†K
(
σ, Ĥ − E0

)
Ô|0〉

K(σ, ω) = ωσ ⇒ energy weighted sum-rules
K(σ, ω) = e−σω ⇒ Laplace Transform (euclidean time/QMC)
K(σ, ω; Γ) = Γ

Γ2+(σ−ω)2
⇒ Lorentz Integral Transform (NCSM,CC)
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What is the issue: example with Laplace kernel

L(σ) =

∫
K(σ, ω)R(ω)dω =

∫ ∞
0

e−σω R(ω)dω
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NOTE: we have access only to a NOISY version of L(σ)
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How can we solve the issue: example with Gaussian kernel

G(σ, β) =

∫
K(σ, ω, β)R(ω)dω =

∫ ∞
0

e
− (σ−ω)2

2β R(ω)dω

We have now one more parameter: β.
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β =0.2

The transform G(σ) is a smoothened version of the original signal!

PROBLEM: computational cost scales exponentially with 1/β !!!
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Additional challanges: the nuclear many-body problem

H =
∑
i

p2

2m
+

1

2

∑
i,j

Vij +
1

6

∑
i,j,k

Wijk + · · ·

much easier to deal with than not the QCD lagragian
being non-perturbative it is still extremely challenging

nuclear states live in huge Hilbert spaces: dim (H) > 4A

Great success for light systems with regular (super) computers

Pastore, Baroni et al. (2018)
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What is a Quantum computer?
JQI@Univ. of MD

Microsoft?

Google
Intel

Bits vs Qubits

N bits: an integer number < 2N

N qubits: a vector |ψ〉 in 2N -dim Hilbert-space
=⇒ exponentially more information available
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What can they do?

Stages of quantum computations
prepare the initial state
perform unitary operations
measure the final state

Sleator & Weinfurter, Barenco et al., Lloyd (1995)

Can access ALL unitary matrices via a small
set of universal gates

integer factorization Schor (1994)

database search Grover (1996)

Hamiltonian simulation Lloyd (1996)

linear equations Harrow et al. (2009)

· · ·
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Preparing low-energy states on quantum computers
Quantum Adiabatic Algorithm Farhi et al. (2000,2001), McClean et al. (2016)

H(λ) = (1− λ)HA + λHB

PROBLEM: number of steps scales with gap ∆: Ns = λ
δλ ≈ ∆−2

gap could scale exponentially with system size

Spectral Combing Algorithm Kaplan, Klco, Roggero (2017)

IDEA: couple target to bath

Htarg Hbath

Hint

bath prepared in a cold state
unitary evolution could entangle
the 2 systems such that entropy
has maximum at |GS〉targ

PROBLEM
needs huge density of states

Nbath � Ntarg
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BETTER IDEA: couple target to
a small system with

time-dependent spectrum

comb energies decreasing with t
energy transferred to the comb
through avoided level crossings

Hint

Time

E
ig
en
va
lu
es

|0〉|↓↓〉

|0〉|↑↓〉, |0〉|↓↑〉

|1〉|↓↓〉

|0〉|↑↑〉

|1〉|↑↓〉, |1〉|↓↑〉

|1〉|↑↑〉

|0〉|all〉

|1〉|all〉
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Energy spectra with Quantum Phase Estimation
Kitaev (1996), Brassard et al. (2002), Svore et. al (2013), Weibe & Granade (2016),. . .

QPE is a general algorithm to estimate eigenvalues of a unitary operator

U |ξk〉 = λk|ξk〉 , λk = e2πiφk ⇐ U = e−itH

starting vector |ψ〉 =
∑

k ck|ξk〉
store time evolution |ψ(t)〉 in
auxiliary register of M qubits
perform (Quantum) Fourier
transform on the auxiliary register
measures will return λn with
probability P (λn) ≈ |cn|2

Ovrum&Hjorth-Jensen (2007)

BONUS: final state after measurement is |ψfin〉 ≈
∑

k δ̃(λk − λn)ck|ξk〉
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Response functions as a probability distribution

RO(ω) =
∑
f

∣∣∣〈f |Ô|0〉∣∣∣2 δ (ω − Ef + E0)

positive definite quantity with finite integral
∫∞
−∞RO(ω) <∞

properly normalized version RO(ω) defines a probability density

→ scattering events with energy transfer ω happen with probability RO(ω)

Strategy on a Quantum Computer (Roggero & Carlson (2018))
generate final states |f〉 with energy transfer ω distributed as

P (ω) ∝
∑
f

∣∣∣〈f |Ô|0〉∣∣∣2 δ∆ (ω − Ef + E0)

finite width ∆ can be made small at will with only modest resources
direct access to final states with given ω → exclusive information
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Response functions on a Quantum Computer

Additional ingredient:

quantum circuit that prepares |E〉 = Ô(q)|0〉 (Roggero & Carlson (2018))

By performing quantum phase estimation with W ancilla qubits we will
measure frequency ν with probability:

P (ν) =
∑
f

|〈f |E〉|2 δW (ν − Ef + E0)

finite width approximation of R(q, ω)

need only W ∼ log2 (1/∆ω) ancillae
evolution time t ∼ Poly(Ω)/∆ω

Roggero & Carlson (2018)
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We need around ∼ 104 samples to get within 1% error
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Final state properties from a Quantum Computer

after measuring energy ν with QPE, state-register is left in

|out〉ν ∼
∑
f

〈f |Ô(q)|0〉|f〉 with Ef − E0 = ν ±∆ω

we can then measure eg. 1- and 2-particle momentum distributions

Caveat
need to further
time-evolve to
extract information
on asymptotic states
in the detectors
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How practical is all this?
pionless EFT on a 103 lattice of size 20 fm [a = 2.0 fm]
10x faster gates and negligible error correction cost (very optimistic)
want R(q, ω) with 20 MeV energy resolution

we need a quantum device with ≈ 4000 qubits (current record is 72)
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cost for 40Ar at ≈ 1% accuracy
naive ≈ 105 years per q

optimized ≈ 3 weeks per q

code optimization is critical
there is still a long way to go

classical ' 1081 PB and an
exascale machine for
≈ 1

4 age of universe
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Summary
accurate input from nuclear physics is critical to extract reliable
informations from current and planned neutrino experiments
current ab-initio techniques are getting better especially for ground
state properties and inclusive scattering cross sections

still not enough, need new ideas: quantum computing?

QC is an emerging technology with the potential of revolutionarize the
way many-body theory is done
we already know how to simulate efficiently the time-evolution of non
relativistic systems and progress on field theories is on the way
more work has to be done to make all this viable in the near term

Collaborators:

N.Klco, D.Kaplan (INT)
J.Carlson (LANL)

Alessandro Roggero (LANL) Many-body dynamics with QC INT - 22 Aug, 2018 15 / 15



Summary
accurate input from nuclear physics is critical to extract reliable
informations from current and planned neutrino experiments
current ab-initio techniques are getting better especially for ground
state properties and inclusive scattering cross sections

still not enough, need new ideas: quantum computing?

QC is an emerging technology with the potential of revolutionarize the
way many-body theory is done
we already know how to simulate efficiently the time-evolution of non
relativistic systems and progress on field theories is on the way
more work has to be done to make all this viable in the near term

Collaborators:

N.Klco, D.Kaplan (INT)
J.Carlson (LANL)

Alessandro Roggero (LANL) Many-body dynamics with QC INT - 22 Aug, 2018 15 / 15



Application to the 1D Ising model in a transverse field

The Spectral Combing algorithm
initialize system in |ψ〉⊗| ↓↓ · · · 〉

1 propagate state from t = 0 to t = tf
using full Hamiltonian H = Htarg +Hcomb +Hint

2 if more iteration needed perform a measurement
of z-projection of spins in the comb otherwise exit

3 return spins in the comb to their ground-state and repeat
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Kaplan,Klco,Roggero (2017)

Htarg = −h
Ntarg∑
i

σxi −
Ntarg∑
i

σzi σ
z
i+1

Ntarg = 3, Ncomb = 3 and h = 2.0

Ncomb = 3 sufficient for Ntarg = 3, 4, 5
and variety of h across phase transition
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Non-unitary operators on a quantum computer

Measurement based non-unitary gates with ancilla
Gingrich & Williams (2004), Terashima & Ueda (2005)

entangle system with ancilla
measure ancilla
if ancilla is |0〉 system left in

|ψ〉 ∝ N̂ |φ〉
probability of success P (|0〉) ≤ 1

For our purpose we can very easily prepare in this way the wanted state

|ΦO〉 ∝ Ô|ψ0〉+O(δ)

paying the price that P (|0〉) = O(δ).

One can raise P (|0〉) ≈ 1 deterministically! Roggero & Carlson (2018)
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