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@ Unconventional SC may be due to interactions between spin and
orbital degrees of freedom

© Charge-spin susceptibility: a way of estimating spin-orbital coupling
from first principles

© Testing if charge-spin susceptibility can distinguish uSC from non-uSC
@ Test set
@ Charge-spin susceptibility
o Classifiers for uSC



@ Unconventional SC may be due to interactions between spin and
orbital degrees of freedom



Finding new unconventional superconductors

Finding new unconventional (high-T,)
superconductors.
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Finding new unconventional superconductors

Temperature (K)

CeRnin,

p=25GPa

[Norman, RPP 79, 074502 (2016)]

Heavy fermions, Organic, Cuprates, Iron-based.

Only two really high-T.

Data-poor situation!
unlike conventional superconductivity
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Main issue we will discuss today.



Finding new unconventional superconductors
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Heavy fermions, Organic, Cuprates, Iron-based.

|Not clear what to look for! |

Up to now, many similarity-based searches.
But no prediction verified so far.



Finding new unconventional superconductors

Commonalities between cuprates and iron-based superconductors:
@ Layered materials with 2D arrays of transition metals.
o Partially filled d-levels = stable local magnetic moments.
@ Majority have long-range magnetic order when undoped.
@ SC when long-range magn. order — paramagnetic.
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Commonalities between cuprates and iron-based superconductors:
@ Layered materials with 2D arrays of transition metals.
o Partially filled d-levels = stable local magnetic moments.
@ Majority have long-range magnetic order when undoped.
@ SC when long-range magn. order — paramagnetic.

Crucial role of spin fluctuations in electron pairing.
[Scalapino, RMP 84, 1383 (2012)]




Finding new unconventional superconductors

Commonalities between cuprates and iron-based superconductors:
@ Layered materials with 2D arrays of transition metals.
o Partially filled d-levels = stable local magnetic moments.
@ Majority have long-range magnetic order when undoped.
@ SC when long-range magn. order — paramagnetic.

‘Crucial role of spin fluctuations in electron pairing.
[Scalapino, RMP 84, 1383 (2012)]

Conventional (BCS) Unconventional
Superconductivity Superconductivity

phonon spin excit.




© Charge-spin susceptibility: a way of estimating spin-orbital coupling
from first principles
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"All happy families are alike; each unhappy family is unhappy in its own way."

Leo Tolstoy in Anna Karenina.

Hypothesis: Some ingredients need to be present for high-T. uSC.

What should those ingredients be?



Parent compounds of cuprates and iron-based SCs:
o are layered with arrays of transition metals.
@ have stable local magnetic moments.



Parent compounds of cuprates and iron-based SCs:
o are layered with arrays of transition metals.
@ have stable local magnetic moments.

Simplistic classifier: layered + magnetic

14

12

Counts
B (=] [e-]

[N}

Superconducting?
N no
N yes

No Yes
Local moments in ground state



Parent compounds of cuprates and iron-based SCs:
o are layered with arrays of transition metals.
@ have stable local magnetic moments.

Simplistic classifier: layered + magnetic

Superconducting?
14 = no
|
12 yes
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Counts
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No Yes
Local moments in ground state

Bad at distinguishing uSC from other materials.
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Detecting spin-orbital coupling

Parent compounds of cuprates and iron-based SCs:
o are layered with arrays of transition metals.
@ have stable local magnetic moments.
@ spin fluctuations crucial in pairing. = Spin-orbital coupling.

For concreteness consider the model Hamiltonian
H = H,+ Hs+ AHys

with A coupling orbital and deep spin levels.

Hole-doped cuprates:
@ conduction holes mostly oxygen-p;
o half-filled Cu-d as local magn. moments;
Iron-pnictides:
@ minority spin levels as conduction electrons;
@ majority spin levels as local magn. moments;
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Detecting spin-orbital coupling

Parent compounds of cuprates and iron-based SCs:
o are layered with arrays of transition metals.
@ have stable local magnetic moments.
@ spin fluctuations crucial in pairing. = Spin-orbital coupling.

For concreteness consider the model Hamiltonian
H = H,+ Hs+ AHys

with A coupling orbital and deep spin levels.

One can show that

Ap;(l‘) = %X;AS,’(I‘)

Can spin-orbital coupling separate cuprates
and iron-based SCs from other materials?




Detecting spin-orbital coupling

Approximate spin-orbital coupling % by charge-spin susceptibility ycs

N N
_ 1 1 Apj
Xes = N ; Xi = N AS,‘

i=1

N is the number of different magnetic textures considered, Ap; (As;) is
stands for the spatial fluctuations in charge (spin) density relative to that
of lowest-energy magnetic order.The former are given by

Api = /df’pi(f)—Po(r)‘
As;, = /dr’s;(r)—so(r)|

where po(r) and so(r) are the charge and spin distributions of the
lowest-energy state.




Detecting spin-orbital coupling

Approximate spin-orbital coupling % by charge-spin susceptibility ycs
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[Narayan et al., arXiv:1705.01008]



© Testing if charge-spin susceptibility can distinguish uSC from non-uSC
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Results

Calculating descriptors

How are we going to calculate these properties?
(Local magnetic moments and charge-spin susceptibility)

Accurate method (like QMC) is expensive.

If large-scale search =—> have to use DFT.
(at least as a first filter)

Multiple-DFT calculations to control errors.




Results

Example: Controlling inaccuracies in magnetic moments prediction with multiple-DFT

Example: Find if there are stable local magnetic moments with multiple
DFT+U. [Cococcioni and Gironcoli PRB 71, 035105 (2005)]

Lowest-energy state:
@ is non-magnetic = stable magnetic moments absent.
@ is magnetic = stable magnetic moments exist.
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Example: Controlling inaccuracies in magnetic moments prediction with multiple-DFT

Example: Find if there are stable local magnetic moments with multiple
DFT+U. [Cococcioni and Gironcoli PRB 71, 035105 (2005)]

Lowest-energy state:
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Example: Controlling inaccuracies in magnetic moments prediction with multiple-DFT
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Results

Example: Controlling inaccuracies in magnetic moments prediction with multiple-DFT

Example: Find if there are stable local magnetic moments with multiple
DFT+U. [Cococcioni and Gironcoli PRB 71, 035105 (2005)]
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Results

Example: Controlling inaccuracies in magnetic moments prediction with multiple-DFT

Example: Find if there are stable local magnetic moments with multiple
DFT+U. [Cococcioni and Gironcoli PRB 71, 035105 (2005)]

Lowest-energy state:
@ is non-magnetic = stable magnetic moments absent.
@ is magnetic = stable magnetic moments exist.

a) b) ) d
@ u=0 (0) U=5 © u=10 @ Multiple DFT+U
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‘ Lower rate of false positives and false negatives. ‘

‘ But large rate of uncertain. ‘
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Example: Controlling inaccuracies in magnetic moments prediction with multiple-DFT

Improved estimator for existence of magnetic moments (multi DFT+U):
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Results

Example: Controlling inaccuracies in magnetic moments prediction with multiple-DFT

Improved estimator for existence of magnetic moments (multi DFT+U):
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Example: Controlling inaccuracies in magnetic moments prediction with multiple-DFT

Improved estimator for existence of magnetic moments (multi DFT+U):
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Results

Example: Controlling inaccuracies in magnetic moments prediction with multiple-DFT

Improved estimator for existence of magnetic moments (multi DFT+U):

Local Moments
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This is our biggest source of error.

‘ Can use QMC in those with most uncertainty. ‘
[Narayan et al., arXiv:1705.01008]




© Testing if charge-spin susceptibility can distinguish uSC from non-uSC
@ Test set
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35 pure materials (all layered, some magnetic, some uSC):

Cuprates: CaCuOs, SrCuQO,, T-LapCuOy4, T'-LasCuOy.
Ba-122s: BaMyAsy (M=Cr,Mn,Fe,Co,Ni,Cu).
FeX: FeSe, FeTe, FeS.

All magnetic metals.
Turn superconductor upon charge
doping. FeSe turns SC in pure form.




Test set

35 pure materials (all layered, some magnetic, some uSC):

Cuprates: CaCuOs, SrCuQO,, T-LapCuOy4, T'-LasCuOy.
Ba-122s: BaMyAsy (M=Cr,Mn,Fe,Co,Ni,Cu).

FeX: FeSe, FeTe, FeS.

214s: La,MO,4 (M=Co,Ni), Sr,M0O, (M=V,Cr,Mn,Fe,Co)
and K;MF, (M=Co,Ni,Cu).

All are AFM insulators.
Were never made superconducting.




Test set

35 pure materials (all layered, some magnetic, some uSC):

Cuprates: CaCuOs, SrCuQO,, T-LapCuOy4, T'-LasCuOy.
Ba-122s: BaMyAsy (M=Cr,Mn,Fe,Co,Ni,Cu).

FeX: FeSe, FeTe, FeS.

214s: LapMO4 (M=Co,Ni), SraMO,4 (M=V,Cr,Mn,Fe,Co)

and K;MF4 (M=Co,Ni,Cu).

TMDCs: MSe, (M=Ti,Nb,Ta,W) and MS, (M=Mo,Ta).

Nonmagnetic metals and insulators.
Conventional superconductor under
charge doping or pressure.




Test set

35 pure materials (all layered, some magnetic, some uSC):

Cuprates: CaCuOs, SrCuQO,, T-LapCuOy4, T'-LasCuOy.
Ba-122s: BaMyAsy (M=Cr,Mn,Fe,Co,Ni,Cu).

FeX: FeSe, FeTe, FeS.

214s: LapMO4 (M=Co,Ni), SraMO,4 (M=V,Cr,Mn,Fe,Co)
and K;MF4 (M=Co,Ni,Cu).

TMDCs: MSe; (M=Ti,Nb,Ta,W) and MS, (M=Mo,Ta).
MPX3: VPS3, NiPSes;, CdPSes, CrGeTes.

Magnetic and non-magnetic insulators.

Superconductivity unknown. We suspect
~dl they cannot be made uSC.
| &7 |



© Testing if charge-spin susceptibility can distinguish uSC from non-uSC

@ Charge-spin susceptibility



Charge-spin susceptibility
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Charge-spin susceptibility

Charge-spin susceptibility: xs = % vazl Xi = % Z,Nﬂ ﬁ’s’i”.
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‘Xcs distinguishes cuprates and iron-based SCs from other materials! ‘

uSC seems to require intermediate spin-orbital coupling.
(similar to e-ph coupling conventional SCs. [Esterlis et al., arXiv:1806.00488])



© Testing if charge-spin susceptibility can distinguish uSC from non-uSC

@ Classifiers for uSC
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Classifiers for uSC based on three ingredients:
o layered structure (with TMs);
@ stable local magnetic moments;
@ charge-spin susceptibility;

Quantified as: P(SC|xY, M,2D) ~ P(SC|xY) P(M).
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Classifiers for unconventional superconductivity

Classifiers for uSC based on three ingredients:
o layered structure (with TMs);
@ stable local magnetic moments;
@ charge-spin susceptibility;

Quantified as: P(SC|xY, M,2D) ~ P(SC|xY) P(M).
P(SC|xcs) from charge-spin susceptibility:

U e
_ sc
P(SC|XCS) - ch + pgsc

Probability local moments exist P(M):
From experiment ‘ From DFT+U

P(M|NNN v NNY) ~ 0.0
P(Mexp) = 1010 | P(Mcarc) = { P(MINYY) = 0.6
P(M|YYY) ~ 1.0



Classifiers for unconventional superconductivity

Assessing quality of different classifiers: F1 = %.
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Classifiers for unconventional superconductivity

Assessing quality of different classifiers: F1 = %.
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Best classifier is P(SC|xY=%) P(Mexp).
P(M¢a1c) with DFT4U is inaccurate. QMC, can help.
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‘Clearly distinguishes known uSCs from other materials! ‘
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A few comments on highly ranked non-uSCs:

@ DFT+U too inaccurate = false prediction. Clarifiable with QMC.



Ranking test set materials
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A few comments on highly ranked non-uSCs:
@ DFT+U too inaccurate = false prediction. Clarifiable with QMC.
@ T necessary ingredient (that we didn't consider) and material lacks.



Ranking test set materials

Superconducting?
08 = no
N yes

P(SC|X, Mexp)

A few comments on highly ranked non-uSCs:
@ DFT+U too inaccurate = false prediction. Clarifiable with QMC.
@ T necessary ingredient (that we didn't consider) and material lacks.
@ Good spin-orbital coupling but other instability dominates over SC.



Ranking test set materials

Superconducting?
0.8 . no
N yes
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0.4

P(SC|X, Mexp)
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0.0

A few comments on highly ranked non-uSCs:

@ DFT+U too inaccurate = false prediction. Clarifiable with QMC.
@ T necessary ingredient (that we didn't consider) and material lacks.
@ Good spin-orbital coupling but other instability dominates over SC.
@ Charge doping issue:

o Charge doping degrades spin-orbital coupling.

@ Material not amenable to doping for chemical reasons.

e Can be made uSC (with correct doping) but never attempted.



Summary

o Classifier for uSC with 3 ingredients: layered, LMs and spin-orbital.
@ LMs prediction introduces most inaccuracies. QMC-improvable?
o Sufficiently specific to distinguish cuprates and iron-based SCs.

@ Singles a few non-uSC. Experimentalists should look at them.
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