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Finding new unconventional superconductors

[Norman, RPP 79, 074502 (2016)]

Heavy fermions, Organic, Cuprates, Iron-based.

Not clear what to look for!
Up to now, many similarity-based searches.

But no prediction verified so far.
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"All happy families are alike; each unhappy family is unhappy in its own way."

Leo Tolstoy in Anna Karenina.

Hypothesis: Some ingredients need to be present for high-Tc uSC.

What should those ingredients be?
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Bad at distinguishing uSC from other materials.
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Hole-doped cuprates:
conduction holes mostly oxygen-p;
half-filled Cu-d as local magn. moments;
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minority spin levels as conduction electrons;
majority spin levels as local magn. moments;
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Detecting spin-orbital coupling

Parent compounds of cuprates and iron-based SCs:
are layered with arrays of transition metals.
have stable local magnetic moments.
spin fluctuations crucial in pairing. ⇒ Spin-orbital coupling.

For concreteness consider the model Hamiltonian

H = Ho + HS + λHoS

with λ coupling orbital and deep spin levels.

One can show that

∆ρi (r) =
λ

w
Xi∆si (r)

Can spin-orbital coupling separate cuprates
and iron-based SCs from other materials?



Detecting spin-orbital coupling

Approximate spin-orbital coupling λ
w by charge-spin susceptibility χcs

χcs ≡ 1
N

N∑
i=1

χi =
1
N

N∑
i=1

∆ρi
∆si

N is the number of different magnetic textures considered, ∆ρi (∆si ) is
stands for the spatial fluctuations in charge (spin) density relative to that
of lowest-energy magnetic order.The former are given by

∆ρi =

∫
dr
∣∣ρi (r)− ρ0(r)

∣∣
∆si =

∫
dr
∣∣si (r)− s0(r)

∣∣
where ρ0(r) and s0(r) are the charge and spin distributions of the
lowest-energy state.



Detecting spin-orbital coupling

Approximate spin-orbital coupling λ
w by charge-spin susceptibility χcs

χcs ≡ 1
N

N∑
i=1
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1
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Results
Calculating descriptors

How are we going to calculate these properties?
(Local magnetic moments and charge-spin susceptibility)

Accurate method (like QMC) is expensive.

If large-scale search =⇒ have to use DFT.
(at least as a first filter)

Multiple-DFT calculations to control errors.



Results
Example: Controlling inaccuracies in magnetic moments prediction with multiple-DFT

Example: Find if there are stable local magnetic moments with multiple
DFT+U. [Cococcioni and Gironcoli PRB 71, 035105 (2005)]
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Example: Find if there are stable local magnetic moments with multiple
DFT+U. [Cococcioni and Gironcoli PRB 71, 035105 (2005)]
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Improved estimator for existence of magnetic moments (multi DFT+U):

P(M|NNN ∨ NNY ) ≈ 0.0 ,
P(M|NYY ) ≈ 0.6 ,
P(M|YYY ) ≈ 1.0 .
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Results
Example: Controlling inaccuracies in magnetic moments prediction with multiple-DFT

Improved estimator for existence of magnetic moments (multi DFT+U):

This is our biggest source of error.

Can use QMC in those with most uncertainty.
[Narayan et al., arXiv:1705.01008]
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Cuprates: CaCuO2, SrCuO2, T-La2CuO4, T’-La2CuO4.
Ba-122s: BaM2As2 (M=Cr,Mn,Fe,Co,Ni,Cu).
FeX: FeSe, FeTe, FeS.

All magnetic metals.
Turn superconductor upon charge
doping. FeSe turns SC in pure form.
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Test set

35 pure materials (all layered, some magnetic, some uSC):

Cuprates: CaCuO2, SrCuO2, T-La2CuO4, T’-La2CuO4.
Ba-122s: BaM2As2 (M=Cr,Mn,Fe,Co,Ni,Cu).
FeX: FeSe, FeTe, FeS.
214s: La2MO4 (M=Co,Ni), Sr2MO4 (M=V,Cr,Mn,Fe,Co)
and K2MF4 (M=Co,Ni,Cu).
TMDCs: MSe2 (M=Ti,Nb,Ta,W) and MS2 (M=Mo,Ta).

Nonmagnetic metals and insulators.
Conventional superconductor under
charge doping or pressure.



Test set

35 pure materials (all layered, some magnetic, some uSC):

Cuprates: CaCuO2, SrCuO2, T-La2CuO4, T’-La2CuO4.
Ba-122s: BaM2As2 (M=Cr,Mn,Fe,Co,Ni,Cu).
FeX: FeSe, FeTe, FeS.
214s: La2MO4 (M=Co,Ni), Sr2MO4 (M=V,Cr,Mn,Fe,Co)
and K2MF4 (M=Co,Ni,Cu).
TMDCs: MSe2 (M=Ti,Nb,Ta,W) and MS2 (M=Mo,Ta).
MPX3: VPS3, NiPSe3, CdPSe3, CrGeTe3.

Magnetic and non-magnetic insulators.
Superconductivity unknown. We suspect
they cannot be made uSC.
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Charge-spin susceptibility

Charge-spin susceptibility: χcs ≡ 1
N
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Charge-spin susceptibility: χcs ≡ 1
N
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χcs distinguishes cuprates and iron-based SCs from other materials!

uSC seems to require intermediate spin-orbital coupling.
(similar to e-ph coupling conventional SCs. [Esterlis et al., arXiv:1806.00488])



1 Unconventional SC may be due to interactions between spin and
orbital degrees of freedom

2 Charge-spin susceptibility: a way of estimating spin-orbital coupling
from first principles

3 Testing if charge-spin susceptibility can distinguish uSC from non-uSC
Test set
Charge-spin susceptibility
Classifiers for uSC



Classifiers for unconventional superconductivity

Classifiers for uSC based on three ingredients:
layered structure (with TMs);
stable local magnetic moments;
charge-spin susceptibility;

Quantified as: P(SC |χU
cs ,M, 2D) ≈ P(SC |χU

cs)P(M).



Classifiers for unconventional superconductivity

Classifiers for uSC based on three ingredients:
layered structure (with TMs);
stable local magnetic moments;
charge-spin susceptibility;

Quantified as: P(SC |χU
cs ,M, 2D) ≈ P(SC |χU

cs)P(M).

P(SC |χcs) from charge-spin susceptibility:

P(SC |χU
cs) =

ρUsc
ρUsc + ρU¬sc



Classifiers for unconventional superconductivity

Classifiers for uSC based on three ingredients:
layered structure (with TMs);
stable local magnetic moments;
charge-spin susceptibility;

Quantified as: P(SC |χU
cs ,M, 2D) ≈ P(SC |χU

cs)P(M).

P(SC |χcs) from charge-spin susceptibility:

P(SC |χU
cs) =

ρUsc
ρUsc + ρU¬sc

Probability local moments exist P(M):

From experiment From DFT+U

P(Mexp) = 1 or 0 P(Mcalc) ≡
{ P(M|NNN ∨ NNY ) ≈ 0.0

P(M|NYY ) ≈ 0.6
P(M|YYY ) ≈ 1.0



Classifiers for unconventional superconductivity

Assessing quality of different classifiers: F1 = 2TP
2TP+FP+FN .
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Classifiers for unconventional superconductivity

Assessing quality of different classifiers: F1 = 2TP
2TP+FP+FN .
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Best classifier is P(SC |χU=5
cs )P(Mexp).

P(Mcalc) with DFT+U is inaccurate. QMC can help.



Ranking test set materials

Ranking test set according to best classifier: P(SC |χU=5
cs )P(Mexp).
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Clearly distinguishes known uSCs from other materials!
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Good spin-orbital coupling but other instability dominates over SC.
Charge doping issue:

Charge doping degrades spin-orbital coupling.
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Summary

Classifier for uSC with 3 ingredients: layered, LMs and spin-orbital.
LMs prediction introduces most inaccuracies. QMC-improvable?
Sufficiently specific to distinguish cuprates and iron-based SCs.
Singles a few non-uSC. Experimentalists should look at them.
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