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Ab initio nuclear physics in the continuum

Nuclear calculations from quantitatively realistic Hamiltonians have focused on
bound-state properties
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Carlson et al. (2015)

Even the resonances here have been treated as bound states here for computation



Ab initio nuclear physics in the continuum

But there is also useful information in nuclear collisions

They probe the nuclear Hamiltonian, and cross sections are needed for astrophysics
& other applications
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There is a lot of recognition (e.g., the 2015 Long-Range Plan) that ab initio reaction
theory is an important direction for the near future

But relatively little has happened so far (exceptions: Quaglioni et al., Lee et al.)



Why has so little been done?

Bound state boundary conditions are easy: just use L2 (really, LP) basis/variational
functions

Your basis functions or variational ansatz may be poor in the wave function tails

But then the tails are typically small, unimportant for many observables, irrelevant
for energy-driven methods

You just do your Cl diagonalization / variational minimization / GFMC projection
on LP functions and get good binding energies

Sufficiently narrow resonance wave functions are “nearly” LP, so at least energies
are computable with bound-state techniques



Why has so little been done?

Scattering is different because you only care about the tails

You could (always using stationary states):

Impose a boundary condition in each channel & diagonalize H

Use the Bloch operator (~ Lagrange multiplier enforcing a log derivative)
Solve Kohn or Schwinger variational principle to find K-matrix

Set up RGM equations or adiabatic potential & compute channel wave functions

Formulate the problem as the Lippmann-Schwinger equation, maybe using
some form of Born approximation

I’'m mainly working on the first option, and some on the last



Nuclear variational Monte Carlo method (Wiringa, Pandharipande, ...)

We wish to compute nuclear energy levels, S-matrix, etc. from a modern nuclear
potential (~ 20 operator terms, ~ 30 parameters, with 3-body terms)

The variational ansatz:
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Two-body correlations solve sets of differential equations built on the potential, three-body
based on 15t-order perturbation

Each piece contains adjustable parameters, until recently optimized by hand into artisanal wave
functions (now automated with adoption of Norfolk potentials)



Drilling down farther

The VMC wave function is built from pieces of good L, S, J, T, and Young
diagram [n]

E.g, for OLi
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As a final step after optimizing correlation parameters, amplitudes 3, of these things are
found as a generalized eigenvalue problem

In ©Li, this means finding Bo1(az]> Biofaii]s B21[a2
Long-range properties depend on what’s built into the correlations

For scattering/reactions, we've focused on building the right asymptotics into the qbﬁs ] at

r — o0
Other correlations either go to constants or decay rapidly (have to check that it's rapid enough)
These variational functions are often good approximations

They do miss 1 MeV or more of binding (out of ~ 10) per p-shell nucleon



Nuclear Green’s function Monte Carlo

We apply GFMC by diffusion in the coordinates, el _'

5He(1/2-)

with importance sampling, & a propagator [ oS
. . . . . | —-0.46719200 fm~! at 9.000 fm
explicitly transforming spin/isospin vectors

—-25.389+0.018 MeV

S\

3

= R4 2.981 MeV above —28.37 (3.129 new) |
e3] B he5_1_BGu5m0.467192r9_il2.crunla.out]
crunch run Mar 14 14:14 .

W(r) =exp|— (H - E)7| Wy

H is projected into “vg form” for propagator,
remaining terms perturbative in (W|H|W) ]

There is a path constraint based on avoiding sign changes in Re[W (R)TWw(R)]
of spin-isospin vectors (simplifying a lot)

Walkers marked for killing are propagated an additional 20—80 steps first to
remove bias

We believe that this gives lots of accurate energies upto A = 12, with statistical
error & path constraint bias amounting to ~ 200 keV



Energy (MeV)
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From review of Carlson et al. (2015)

Note that many of these are excitations of same J, T": eigensolutions of 87, g,
amplitudes stay orthogonal in propagation

(Presumably W;W(T) sampling & path constraint do that)



The outer limits

Reaction and scattering work requires more attention to the outer parts of W (r)
and W than level energies

This is true even of bound states involved

In Nollett, Wiringa & Schiavilla (2001) and Nollett (2001), we looked at d(«, v)°Li,
S3H(e,~) Li, and 3He(a, v) " Be with VMC

We cheated on initial states — made them products of VMC projectiles, with a
cluster-cluster correlation that reproduced phase shifts

But final bound states also needed correct tails, because at 10-500 keV that’s
where EM matrix elements come from for astrophysics

We built that into the quS[”] (ro;) p-shell orbitals with with correct clustering
properties



Single-channel scattering: the nodal boundary condition

Simplest single-channel scattering:

Set up an eigenvalue problem that maps onto scattering, minimize (E) as
before

Most applications (nuclear, atomic, solid state) have been “particle in a box:”
wave function constrained to zero at a surface r1» = R (cluster separation)

Find energy of
1

krqio
evaluated only at r1» < Rg

v —

{Pa®PoYr} [cosdyrFr(krio) +sindjrGr(krio)] ,

Then tan 5JL = —FL(kRQ)/GL(kRo)



Improving on the nodal boundary condition

But then different energies are evaluated at different box volumes: lose some
ability to compute differences (e.g. stored walks)

At low energies, the box must be enormous to match de Broglie, & calculation
IS mostly noninteracting clusters

An R-matrix boundary condition avoids these drawbacks

For single-channel scattering, specify a channel radius Rg & a logarithmic
derivative ~:

f-VeW =-W, atr= R

Then fix Rg at some “small” value (beyond nuclear radius and nucleon exchanges)

Vary the chosen ~ to get states of different E/, match asymptotics to find § (F)



Implementation of boundary conditions

Either type of boundary condition can be built into the VMC wave function — we

used the ¢! radial orbitals in SHe

Just need to make sure that none of the pair correlations have long enough
range to mess up ~ (nodal condition is easy)
In GFMC, we used a method of images from Carlson

Integral over all space is mapped onto integral inside
Oy box using image points with computable locations

Image  Contributions from image points are multiplied by
[1 4+ ~10 - (R; — R)] (or other extrapolation)

GFMC walk

Their contributions are added to the propagation of
r=R,, points near the boundary

We assumed configurations with one particle = Rg from c.m. of other 4 are
entirely in the an channel (must clip the « a bit)



Why °He scattering was painful

Low-energy scattering is tougher than energy levels because we need small
energy differences from a threshold, not absolute energy

Scattering at Eon, = 100 keV requires 0.100/28.3 = 0.3% accuracy in °He
energy (and “He energy, but that’s easier to get)

At this level, dependence on the starting wave function W, was noticeable
We eventually learned to cut off 2-body correlations beyond the size of “He

We also iterated (2 or 3 times) on single-particle energies in W to tune the
4He+n starting wave function at large ran

We were also sensitive to the Monte Carlo path constraint



Why °He was painful

In most(?) A > 5 GFMC calculations, bias is reduced by removing the constraint
for the final n, = 10 to 40 steps in 7 before an energy evaluation
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Maybe because the wave functions are more diffuse, we needed n,, > 80 for
smooth §(E) curves in °He



Why °He was painful

The box radius R must be located beyond any interaction & exchange between

4

He & scattering neutron

As R increases, less of the box volume is “interesting” & the maximum energy
we can compute gets smaller
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R = 7 fm is not large enough

R = 9 fm is large enough



Poles & scattering lengths

s-wave turns out similarly for all interactions

Scattering lengths all consistent with 2.4 fm,
compared with 2.46 fm measured

180\\\\\\\\\\\\\\\\\\\\

3/27 (MeV) 1/2= (MeV) 60
Argonne vig | 1.19 —0.774¢ 1.7 —2.21 i
AV18+UIX 1.39 — 0.751¢ 2.4 — 2.5 30
AV18+IL2 0.83 — 0.35¢ 2.3 —2.61 7
Experiment | 0.798 — 0.324+

— R-Matrix

* Pole location

Eq . (MeV)
Nollett et al. (2007)

150 —

120 —

0, ; (degrees)
\O
S
\

B AVI8+UIX |
® AVIS+IL2 |
— R-Matrix

=
===
—’ —

2.07 —2.79q 0(),“”““““‘\“\

Phase shifts show the role of NN N potential

in spin-orbit splitting

We also fitted pole locations just like you
would do with experimental data

This was repeated by Lynn et al. (2016) to fix
NN N couplings in EFT potentials



Some first attempts at 3 4 1 scattering

SHe was expected to be “easy” because there’s only one open channel, “He is
compact, scattering channel similar to VMC structure

4H and “Li should be only slightly more difficult (easier?)

A = 4 would also allow a check against HH & AGS calculations

Bob Wiringa & | started on scattering in 3H 4+ n and 3He + p a few years ago
Breakup threshold is relatively high, no underlying bound states

Channel mixing is modest except in 1~ channel

A quick tour of what we found, all VMC and AV18 alone unless otherwise
noted...



4H(0*) - AV18

Hale R-matrix (Expt)
Deltuva & Fonseca

VMC

VMC AV18+UIX
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For 1~ scattering, singlet & triplet channels mix, but we only made a start on
coupled channels
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At each energy, we computed two solutions, tried to extract S-matrix from ~’s &
amplitudes at the channel radius



The near future of VMC/GFMC scattering/reactions

| have a student starting on the 3 4 1 scatterings in 4H & “Li now

We will check against accurate calculations with the same potentials (AV18+UIX
to start, Norfolk later)

The main prize is to learn QMC coupled channels in a relatively gentle case: the
1~ channels of S = 0and S = 1 (& weaker tensor s-d & p-f couplings)

In the p-shell, there are few cases with only a one-nucleon channel open:
Be+p, 'Li+n,...

Those could be initial states for radiative capture & neutron spin rotation
A similar approach should work for o 4+ 3H, a 4+ 3He, a4+ « ...

But maybe need more-explicitly clusterized |®) functions in VMC for those



Other ideas (not my current student)

The particle-in-a-box states states are just the lowest in the tower of states used
iIn R-matrix theory

We could in principle compute energies & surface amplitudes of lowest several,
& get §(E) by insertion into R-matrix formalism

lvan Brida started on the tower of states in °He & had some promising early
results

There is also a Lippmann-Schwinger-like formalism to generate correct tails
from variational W with the wrong tails

I've used it to extract tails of bound-state overlap functions (Nollett & Wiringa
2011) & rough estimates of nucleon emission widths (Nollett 2012)

It could be used for extraction of surface amplitudes in coupled channels VMC/GFMC,
or for Born-like approximations to scattering



BONUS MATERIAL



Thinking outside the box

Probably there are smarter things to be done than particle-in-a-box energy
calculations

For GFMC, defining channels & finding surface amplitudes/derivatives is problematic
(exchange effects, poor convergence, ...)

(Amplitude is needed for wave function normalization and/or channel mixing)

| would also like to avoid getting surface amplitudes from surface values of the
wave function — GFMC seems to converge slowly there

Lippmann-Schwinger-like approaches seem useful



Integral relation for the ANC

There is a better way than explicit overlaps, ideally suited to QMC methods
(appears in literature of 1960s, 1970s; this form from ~1990)

The Schrodinger equation
(H—-—E)V,4=0
may be separated into parts internal to W 4_1 and parts involving the last
particle (distance r.. away) to yield

Wy = _[TreI+VC‘|‘B]_1 (Urel = Vo) Wy

which implies

. M 1 (ricc)
2“ _77;H‘* a
Clj =5 A / 2 W Y (Bee) (Ure) — Vi) WadR
kh<w . Tce

M_77 H_l(%?“) is the “other” Whittaker function, irregular at r — oo,
D

and R = (rq,ro,--- ,ry), Withree =14 — ﬁszlz_ll r;



Why is any of this useful?

1(2]{7“(»() ot T
Cij = khQ A/ W XY (Bee) (Upe) — Vo) W 4dR

The power of this approach lies in the factor (U, — V)

It contains the potential, but only terms linking the core to the last particle:

UreI:ZUiA+ Z Vz’jA

i<A 1<j<A
At large separation of the last nucleon, U,y — Vo, 80 Uy — Vo — O
Integrand goes to zero at r¢c ~ 7 fm with AV18+UIX

QMC methods are good at integration over the wave function interior, bad at
the exterior

Closely related to Lippman-Schwinger equation (and to Pinkston-Satchler or
Kawali-Yazaki overlaps); used by Mukhamedzhanov & Timofeyuk since ~ 1990



s—wave ANC integral for (dp|®He)

ANCs: 3He — dp

s-wave ANC integrand & integral d-wave ANC integrand & integral
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12| ----------------- rel. no. of samples

d—wave ANC integral for (dp|®He)

2 16 20

1
ry, (fm)

Points are Monte-Carlo sampled integrand; solid curves are cumulative integrals

For 3He — dp, we have C¢” = 2.131(8) fm~1/2,C% = —0.0885(7) fm~1/2

ij converges just where sampling gets sparse in the explicit overlap



Application to the VMC wave functions

| implemented the integral approach to the ANC within the VMC code, building
on Wiringa’s spectroscopic factor routines

| computed ANCs from Bob’s AV18+UIX VMC wave functions for almost every
combination of particle stable A- and (A — 1)-body statesat A < 9

| have to choose a separation energy, either experimental or AV18+UIX, in
evaluating each integral

It quickly became apparent that results match experiment only when the experimental
separation energy is used

(Retrospective no-brainer: otherwise we're comparing against different functions)



8Li — 7Li 4 n summarizes the whole project

dashed: p, ,

f—
S
I

10-3

r (fm)

ANC (fm—1) | VMC: AV18+UIX binding VMC: Lab binding Experiment

cgl /o 0.029(2) 0.048(3) 0.048(6)
053 /2 0.237(9) 0.382(14) 0.384(38)




Readable results, where there are “experimental” data
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Ratio to experiment

Small error bars are VMC statistics

Large ones are “experimental”

Sensitivity to wave function construction
seems weak but hard to quantify

A < 4 clearly dominated by systematics,
also old

With a couple of exceptions, these are the
first ab initio ANCs in A > 4



Comparison with what came before
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The results, 3 < A < 9 one-nucleon removal

A A—-1 51/2 ds)» Cazpn/Cs1p2
H ’H 2.127(8) —0.0979(9) —0.0460(5)
‘He ’H 2.144(8) —0.0927(10) —0.0432(5)
‘He H —6.55(2)
‘He 3He 6.42(2)
A A—-1 D12 P32 fs2 x 10° fapp x 10°
Li %He 3.68(5)
TLi* %He 3.49(5)
i 6Li 1.652(12) 1.890(13) —78(20)
TLi* °Li —0.543(16) —2.54(4)
"Be 5Li —1.87(3) —2.15(3) 63(9)
"Be* °Li 0.559(16) 2.59(5)
8Li Li 0.218(6) —0.618(11) 5.2(5) 2.5(15)
8Li* Li —0.090(3) 0.281(5) —0.6(2)
8B "Be 0.246(9) —0.691(17) 1.1(2) —1.1(5)
’C 5B —0.309(7) 1.125(12) 1.9(5) —0.5(18)
°Li 8Li 0.308(7) —1.140(13) —4.1(10) 5(3)
oLi 8Li* —0.122(3) 0.695(7) —1.1(6)
°Li 8He —5.99(8)
Be 8LLi 5.03(6) 9.50(11) 35(34) 257(112)
°Be 8Li* 6.56(5) —6.21(7) 364(40)

Nollett & Wiringa, PRC 83, 041001(R) (2011)

The small f-wave amplitudes are accessible with this method — unknown how
reliable (or measurable), but something new



Heights and widths

“The other day | was walking my dog around my
building, on the ledge. Some people are afraid of
heights. I’'m afraid of widths.”

— Steven Wright

We have VMC/GFMC energies for many narrow unbound levels (computed as
bound)

Figuring out how to get widths has been difficult

There is an obvious but laborious way — explicit calculation of phase shifts at
many energies, extraction of pole (has been done for °He states)

Other paths have not panned out (e.g. “decay” rate in GFMC)



Widths as ANCs

Widths are closely related to ANCs, so maybe there’s a cheap way to estimate
them

Hand-waving description:

An unbound wave function at large radius looks like
W(r — 00) o [Fj(kr)cosd + Gy(kr)siné] /r
so that at resonance (6 = 90°; as our pseudobound states should have)

P(r — 00) = Cpj9192G(kr) /T
The flux per unit time through the surface is |Cy;|?v = %|Clj|2, SO
h2k
[~ —|Cl]|2
L

This is be shown to be nearly exact in papers by Humblet (not by this reasoning)



Widths as ANCs

The relation
Y(r — o00) = Cpj9192G(n, kr) /7
for resonant states is mathematically almost the same as
Y(r — o0) = Czjqﬁl(bQW_,%lJr%(Qk?“)/"“

for bound states

The integral method also applies to resonant states, except that now F; appears
in the integral instead of M—n,H—%

This is used as a mathematical tool to get the asymptotics right in simpler o and
p decay models (e.g. Aberg et al. (1997) proton emitters, Russian literature
on « decay, etc.)



Testing out the integral relation for

The integral estimate should apply to states that are in some sense narrow

I've chosen low-lying states in A < 9 with width mainly/all in nucleon emission
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Testing out the integral relation for

| computed a pretty complete set of these

State Daughter Experiment From Exp energy From AV18+UIX energy Matches (¢
E (MCV) I (1\40\/) FVMC (N[OV) EUIX (1\4CV) FVMC (MCV) 9(]0?
He(3/27) “He(07) 0.798 0.648 [50]  0.307(5) 1.39 0.684(11) no  0.460
SHe(1/27) ‘He(0T) 2.07 5.57 [50]  0.582(13) 2.4 0.711(15) no  0.429
"He(3/27) SHe(0%)  0.445 0.15(2) 0.114(4) 2.3 1.184(9) yes  0.092
"He(1/27) SHe(0T) 3.045 - 1.98(9) 2.91 1.87(8) no  0.092
"He(1/27) SHe(2t) 1.25 - 0.42(3) 1.11 0.36(2) yes  0.067
"He(1/27) sum 3.045 2.0(1.0) 2.40(12)° 2.91 2.22(11)°
"He(5/27) SHe(2T) 1.57 1.99(17) 1.31(10)* 1.87 1.66(13)* no  0.165
"Li(5/25) SLi(1™)  0.204 0.0646 0.0483(17)“ 1.55 0.92(3)“ yes  0.055
"Be(5/25) SLi(1™)  1.60 0.19(5) 0.426(14)" 2.5 1.00(3)* yes  0.055
B(1M) "Be(3/27) 0.632 0.0383(14) 1.47 0.346(12) yes  0.001
8B(17T) "Be(1/27) 0.203 - 0.00105(6) 1.38 0.51(3) yes  0.003
8B(1T) sum 0.0357(6)  0.0394(14) 0.86(3) yes
SLi(3T) "Li(3/27) 0.223 0.032(3)  0.0344(18) 2.5 1.12(6) yes  0.007
8B(3") "Be(3/27) 2.18 0.39(4) 0.38(2) 2.4 0.46(2) yes  0.007
8B(0™) "Be(3/27) [2.56] - [0.65(4)] 2.39 0.57(3) no  0.005
8B(o+ "Be(1/27) [2.24] - [1.23(6)] 2.30 1.29(7) no  0.004
8Li(0™) "Li(3/27) [0.97] - [0.37(2)] 0.94 0.389(15) no  0.005
8Li(0™) "Li(1/27) [0.62] - [0.516(18)] 0.62 0.72(2) no  0.004
8Be(17) T =1° "Li(3/27) 0.385 — 0.0089(3) 1.2 0.152(3) yes  0.003
8Be(1%) T'=0° "Li(3/27) 0.895 - 0.150(4) 0.5 0.0354(10) yes  0.003
8Be(1T) sum®  "Li(3/27) 0.149(6)  0.159(4) 0.187(3) yes
8Be(37) T =1° "Li(3/27) 1.81 — 0.166(8) 3.68 0.60(3) yes  0.007
8Be(3%) T'=0° "Li(3/27) 1.98 - 0.314(14) 2.33 0.43(2) yes  0.003
8Be(3%) T =1 "Be(3/27) 0.170 - 0.0115(6) 2.09 0.44(2) yes  0.007
8Be(3%) T'=0° "Be(3/27) 0.335 - 0.050(2) 0.74 0.161(8) yes  0.004
8Be(3T) sum’  sum 0.50(3) 0.542(16) 1.63(4) yes
ILi(5/27) SLi(2T)  0.232 0.10(3) 0.145(4) 0.97 1.17(3) yes  0.003
9Li(7/27) SLi(2T)  2.366 - 0.0012(7) 3.64 0.0031(16) no  0.045
OLi(7/27) 8Li(3%)  0.111 - 0.0427(8) 0.23 0.126(3) yes  0.006
OLi(7/27) sum 0.04(2) 0.0439(11) 0.129(3)
°Li(3/2;) SLi(2T)  1.316 - 0.522(13) 1.51 0.631(17) no  0.014
9Li(3/25) SLi(17)  0.340 - 0.172(4) 0.50 0.302(8) yes  0.006
°Li(3/25) sum 0.6(1) 0.694(18) 0.932(19)
°C(1/27) 8B(27)  0.918 0.10(2) 0.102(3) 1.54 0.428(11) yes  0.006
9Be(1/27) 8Be(0™)  1.110 0.86(9) 0.80(2) 4.37 4.89(12) yes  0.0005
9B(3/27) 8Be(0*)  0.185 0.00054(21) 0.00058(2) 1.9 0.92(2) yes  0.0003
Be(7/27) ¥Be(0T) 4.715 - 0.0082(4) - - yes  0.005
“Be(7/27) 8Be(2%) 1.685 - 0.40(2) - - yes  0.003
9Be(7/27) sum 1.2(2) 0.41(2)* — — yes
B(7/27) "Be(27) 4.13 2.0(2) 0.82(4)" - - yes  0.003
5B(27) "Be(3/27) 2.41 0.12(4) 0.425(15) - - yes  0.004
5B(27) "Be(1/27) 1.98 0.24(11)  0.039(2) - - yes  0.010
SLi(27) Li(3/27) [2.18] - [1.00(4)] - - yes  0.004
8Li(24) "Li(1/27) [2.06] - [0.105(6)] - - yes  0.010

Some work, some don’t

But this is useful practice for
more serious calculations



Overlaps at all radii

The ANC/width integrals are special cases of the overlaps of Pinkston & Satchler
(or Kawai & Yazaki):

o G(kr
Ryi(r) o< |COSGy; -I-/T l(r cc)w;—le(Ur@ — Vo)W 4dR | Fy(kr) /7
CcC
r Fi(kr
CcC

90° phase shift means no F; component at »r — oo

If this R,;; with cos ¢;; = O is a poor match to the directly-computed overlap at
small r, then § % 90° for that channel — my assumptions are invalid

Cases that fail this test generally have small spectroscopic factors



Overlaps at all radii
Good Good Bad
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Overlaps at all radii: Bound states

The integral relations contain more information about the potential than does
the VMC wave function — better overlaps
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What next? (no particular order)

Repeat for o removal/decay instead of nucleon removal

Examining failure of Timofeyuk isospin-symmetry argument in "Be/’Li
(Isospin-breaking terms in AV187?)

GFMC & better potentials for better comparison with experiment

It would be interesting to do some honest scattering calculations for states
where pseudobound is “successful”

That requires a “Goldilocks state:” not too wide for pseudobound, not too
narrow for GFMC to map phase shifts



What next? (no particular order)

Pseudobound approaches to §(£) (Horiuchi et al., Kievsky et al., etc.) might
be well suited to VMC — worth a try!

Set up a resonant or low-lying nonresonant state as a bound-state calculation
like we usually do

Then scan over energies in the integral-relation “kernels” to map phase shifts
That might be good for treatment of finite width in EW transitions

Integral methods are probably the best way to define channels through “left-
side” wave function & get surface amplitudes from GFMC

Energy resolutions below the 100 keV range are difficult for GFMC, so the
integral approach will beat phase-shift mapping for really narrow states
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