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electronic structure qmc  
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         - ground and excited states, T=0

         - energy differences ~ eVs, accuracy target 0.05 eV  
           (Hartree-Fock as reference, E_corr = E_exact - E_HF) 

interest in:
      
      1)  so far spins were just static labels (up, down) but we 
           need spin-orbit, etc, varying spins

      2)  maybe, unify static and variable spins formulations
 
      3)  beyond the fixed-node/phase 
                                        



projector QMC and variational fixed-node → 
“standard model” FNDMC (90-95% of E_corr) 

 
   Hamiltonian: interacting electrons in ionic potentials (or ECP) 

 QMC/DMC:
 

                                          

         fixed-node (FN) approx.

     trial function Slater-Jastrow:
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ψT=∑
k
ck det k

↑ [ϕα]det k
↓ [ϕβ]exp [Ucorr ]

ψ0(r1 , r2 , ... , r N )=limτ→∞ exp(−τH )ψT (rial ) → H ψ0=E0ψ0

ψT ψ0,FN ≥ 0

ψT ψ0,FN =



Γ(ψ0,FN )=Γ(ψT ) →

Γ(ψ)={R ;ψ(R)=0}

      node

codimension 1

  !

dim(Γ(ψ))=3N−1



if eigenstate is inherently complex (eg, stationary current):
fixed-phase approximation

                            write

                          
                     fixed-phase (FP) approx.
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ψT=∑
k
ck det k

↑ [ϕα]det k
↓ [ϕβ]exp [Ucorr ]=ρT e

iΦT

ρT ρ0,FP =

ρ0=limτ→∞ exp [−τ(H+(∇Φ0)
2/2)]ρT (rial ) → (H+(∇Φ0)

2/2)ρ0=E0ρ0

ψ=ρeiΦ ; ρ≥0

Φ0=ΦT → V eff ,T=(∇ ΦT )
2/2



  !

dim(Γ(ρ))=3N−2

 codimension 2  



 fixed-phase → special case of fixed-node (sketch)

       
           let              be real, fermionic, with nodes at               

           construct  

      

           then the limit of potential from the phase → node

                 
      
           ie, can write also the fixed-node as effective singular potential    
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ψT (R)

ϕ̃=arctan [(ℜ ψ̃)/∣ψ̃∣2]

ψ̃=ψT+iaψsymm ,>0

lima→0 (∇ ϕ̃)2 → C∞(1/a)δ[R−Rnode ,T ]

Rnode ,T∈Γ(ψT )

H → H+V ∞(Rnode ,T )



from spatial orbitals to spinorbitals

   spinless electrons-ions Hamiltonian → spatial-only problem, 
                                                                                
   spin channels factorized:
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ψT=∑
k
ck det k

↑ [ϕα(r i)]det k
↓ [ϕβ(r j)]exp [Ucorr ]

     
    now, include spin-orbit  →  

    determinant of spinors

    spin functions and
       “coordinates” :

    - wf complex, good quantum number J
   

ϕn(ri , si)=αϕ↑(ri)χ
↑(si)+βϕ↓(ri)χ

↓(si)

χ↑(1/2)=χ↓(−1/2)=1 χ↑(−1/2)=χ↓(1/2)=0

ψTrial=ψTrial (R ,S )=det [ϕn(ri , si)]exp(Ucorr)



 projection is more involved and less straightforward

         
        some ideas:

            - work in 80s on nuclei (Kalos, Carlson, Schmidt, others)
            
            - sample the spinors (Pederiva, Gandolfi, Ambrosetti 2000s) with 
              spinor updates (“stochastic rotations of spinors”)

            - smooth out spin configurations + fixed-phase approximation
              (Melton, Ambrosetti, Pederiva, LM et al,  2016) 

            - ... 



 we smooth out spin configurations/paths

       
       - continuous (overcomplete) representation, ie, “coordinates”, 
         possible choice: 
  
        
       different from “rotating spinors”, here: spinors are fixed
       
       why this choice in particular ? (… later)
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χ↑(s)=exp(+is) , χ↓(s)=exp(−is); s∈(0,2π)



how can you do that ? 

       
     atomic spin-orbit acting on a valence electron    can be recast as 
  
        
        
         
       correct action of SO and expectations need matrix elements
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Li⋅S i → ∑
l , j ,m j

∣l , j ,m j> vlj (ri) <l , j , m j∣

〈l , j ,m j χ〉 = 〈aχ↑+b χ↓
c χ↑+d χ↓〉

∑
s=1/2,−1/2

∫
0

2π
ds

I

i  



sample the spin configurations as free d.o.f.
→ fixed-phase spinorbit DMC (FPSODMC)

   
   effective free-particle Hamiltonian (kinetic term) for spins 
      

                                          
           annihilates arbitrary spinor 
  
   
   therefore, to the leading order no contribution to the energy
   (subleading contribution overshadowed by the fixed-phase 
   bias since SO is small) 
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H →H+H spin , H spin(si)= −
1

2μs [ ∂2

∂ si
2
+1]

H spin(si)[αϕ↑(ri)χ
↑(si)+βϕ↓(ri)χ

↓(si)]=0

   

    FPSODMC method: tests on atomic and molecular systems

H spin



total energies: Pb atom valence only, 
vary effective mass, proportional to 1/(spin time step)  

 

     
(small  ←  spin effective mass → large)  
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total energies: Pb atom with valence 6s26p2 

FPSODMC(….) vs  CI with ccpVxZ basis(     )

 

                  Arxiv: ...

→ j1, j2=
1

2

→ j1, j2=
3

2



Cr and Mo atoms electronic ground states  →  7S
3 
 (d5s1)

W atom is isovalent, what is its ground state ? 

averaged SO (CI, QMC)                                                       7S
3 
(5d56s1)

    

explicit SO two-component, open-shell only CI               7S
3 
(5d56s1)     

  
explicit SO two-component, full CI or FPSODMC/rCI      5D

0
 (5d46s2)       
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 both SO and correlation needed to flip the state !



W atom SO splitted sd-manifold of  excitations:
correct ground state in FPSODMC   

 Config.  State    COSCI   DMC/COSCI     CISD      DMC/rCISD   Exp

  5d46s2    5D
1
         0.10          0.13(1)          0.10          0.15(1)        0.21

  5d56s1       7S
3            

- 0.85        - 0.19(1)          0.12          0.19(1)        0.37

  5d46s2    5D
2
         0.24          0.30(1)          0.13          0.30(1)        0.41

  5d46s2    5D
3
         0.42          0.49(1)          0.29          0.51(1)        0.60

  5d46s2    5D
4
         0.60          0.69(1)          0.45          0.69(1)        0.77
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W atom: also correct order of excitations!  

 Config.  State    COSCI   DMC/COSCI     CISD      DMC/rCISD   Exp

  5d46s2    5D
1
         0.10          0.13(1)          0.10          0.15(1)        0.21

  5d56s1       7S
3            

- 0.85        - 0.19(1)          0.12          0.19(1)        0.37

  5d46s2    5D
2
         0.24          0.30(1)          0.13          0.30(1)        0.41

  5d46s2    5D
3
         0.42          0.49(1)          0.29          0.51(1)        0.60

  5d46s2    5D
4
         0.60          0.69(1)          0.45          0.69(1)        0.77
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FPSODMC agrees with experiment, higher accuracy needs better ECP



Sn
2
 dimer should be simple, it is only the fourth row … but

SO correction is ~ 0.5 eV ! (small cores, 44 val. e-)

A. Ambrosetti et al, to appear in PRB  

Exp.  



 why this in particular  ? 

       
       
     

                - similar to spatial coords but much smaller space

                - no divergencies, no jumps, importance sampling ok  

                - simplifies dealing with pseudopotentials (effective cores)
                  and generate similar bias, “close” to fixed-node regime 

         but more 

                - enables to smoothly “complexify” also real eigenstates
                  
                - and still more ... 
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χ↑(s)=exp(+is) , χ↓(s)=exp(−is); s∈(0,2π)



interestingly, from such spinor wf, one can recover the

spin-labeled fixed-node trial form ...   
       
       
     in spinors                                                                    

     adjust to two values:      
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χα(r , s)=ϕα(r)e
is
, χβ(r , s)=ϕβ(r )e

−is

{up }={si }→ s , {down }={s j }→ s ' , s≠s '  



full sampling of all possible spin states and
configurations: cartoon     
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 N-electron continuous spin-position space 

N !

[(N /2)! ]2
≈2N

R
3N×(2π)N

 singlets



restricting spins into particular “up” and “down”
subspace
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                                   one (N/2)*(N/2) choice → fixed-node 

R
3N× ↑↑ ... × ↓ ↓ ...



  fixed-node trial wf form but with a complex twist

   spins factorize out of the determinant and we get up.down product:    

      

    - the most interesting regime:     

    -  basically, the fixed-node limit but complexified, ie, it has 
       properties of the fixed-phase, as can be achieved by:  

             - the choice of spin variables (one assigns a set of particles 
               as spin-up or -down, ie, particular subset of permutations)

             - explore how close/far to fixed-node by    
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ψT=det [χ j(r k , sk)] → ψT= fac(s , s ' )det
↑ [ϕi(rk )]det

↓ [ϕ j(r k ' )]

{up }={si }≈s {down }={s j }≈s ' ,  

τspin/ τspace  



 fixed-node vs fixed-phase biases in atoms: 
 FN real w.f.  vs  FP at the FN limit

essentially the same

C. Melton, LM, PRE, 96, 043305 or arxiv 
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 similar for molecules now including nonlocal ECPs
FN vs FP at the FN limit: binding curves of N2 

       
   
       
       
                                                                                                               

   



released-node
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



 released-node:
importance sampling with symmetric guiding function

while projecting out the fermionic component
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EFN=
∫ψFN ψT [(H ψT )/ψT ]

∫ψFN ψT

ψT

ERN=
∫ψRN ψG(ψT /ψG)[(H ψT )/ψT ]

∫ψRN ψG(ψT /ψG)

FNDMC

ψG

 RNDMC  

antisymm.

symm.

ψT ψFN

ψGψRN= symm+antisymm



 choice of guiding function
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 why ?
             - amplitude is symmetric by definition
 
             - its node is codimension 2, ie, generically 
               ergodic sampling

             - it is “close” to          →  that implies 
               close to optimal importance sampling 
               →  local energy fluctuations almost the same
           
  

ψT

ψG=ρT ψT=ρT (R , S )exp [ iϕT (R , S )]



few electron system (all-el O atom): 
released-node and the well-known exponential noise 

exact

FN



better tuned algorithm: 
released-node eliminates the bias fully

exact

FN



summary

        
     
     - unifying formalism FPSODMC, FN and FP, static/variable spins,

              sampling + nodes   →    sampling + effective potential  
  
     - wave functions with phase/spins are more general, more smooth, 
       ergodic sampling (zeros codim 2)

     - new options for attacking fixed-node/phase bias

     - more variational freedom (?)

      PRA 2016, JCP 2016, PRE 2017 + more coming  
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