Electronic structure quantum Monte Carlo methods and variable spins: beyond fixedphase/node approximations

Cody Melton, M. Chandler Bennett, L. Mitas, with A. Ambrosetti, F. Pederiva

North Carolina State University Universities of Trento and Padova

CPSFM Center for Predictive Simulation of Functional Materials

INT Workshop, August 1, 2018

electronic structure qmc

- ground and excited states, T=0
- energy differences ~ eVs, accuracy target 0.05 eV (Hartree-Fock as reference, E_corr = E_exact - E_HF)

interest in:

- 1) so far spins were just static labels (up, down) but we need spin-orbit, etc, varying spins
- 2) maybe, unify static and variable spins formulations
- 3) beyond the fixed-node/phase

projector QMC and variational fixed-node → "standard model" FNDMC (90-95% of E_corr)

Hamiltonian: interacting electrons in ionic potentials (or ECP)

QMC/DMC:
$$\psi_0(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N) = lim_{\tau \to \infty} \exp(-\tau H) \psi_{T(rial)} \rightarrow H \psi_0 = E_0 \psi_0$$

if eigenstate is inherently complex (eg, stationary current): fixed-phase approximation

write
$$\psi = \rho e^{i\Phi}$$
; $\rho \ge 0$
 $\rho_0 = \lim_{\tau \to \infty} \exp\left[-\tau \left(H + (\nabla \Phi_0)^2/2\right)\right] \rho_{T(rial)} \rightarrow (H + (\nabla \Phi_0)^2/2) \rho_0 = E_0 \rho_0$

$$dim(\Gamma(\rho)) = 3N - 2$$

codimension 2

fixed-phase (FP) approx. $\Phi_0 \stackrel{!}{=} \Phi_T \rightarrow V_{eff,T} = (\nabla \Phi_T)^2/2$ $\psi_T = \sum_k c_k det_k^{\uparrow}[\phi_{\alpha}] det_k^{\downarrow}[\phi_{\beta}] \exp[U_{corr}] = \rho_T e^{i\Phi_T}$

fixed-phase → special case of fixed-node (sketch)

let $\psi_T(\mathbf{R})$ be real, fermionic, with nodes at $\mathbf{R}_{node,T} \in \Gamma(\psi_T)$ construct

$$\tilde{\psi} = \psi_T + ia \psi_{symm,>0}$$

$$\tilde{\phi} = \arctan\left[(\mathfrak{R} \ \tilde{\psi}) / |\tilde{\psi}|^2\right]$$

then the limit of potential from the phase \rightarrow node

$$\lim_{a\to 0} (\nabla \tilde{\phi})^2 \to C_{\infty}(1/a) \delta[\mathbf{R} - \mathbf{R}_{node,T}]$$

ie, can write also the fixed-node as effective singular potential

$$H \rightarrow H + V_{\infty}(\mathbf{R}_{node,T})$$

NC STATE UNIVERSITY

spinless electrons-ions Hamiltonian \rightarrow spatial-only problem, spin channels factorized: $\psi_T = \sum_k c_k det_k^{\uparrow}[\phi_{\alpha}(r_i)]det_k^{\downarrow}[\phi_{\beta}(r_j)]exp[U_{corr}]$

now, include spin-orbit $\rightarrow \phi_n(r_i, s_i) = \alpha \phi^{\uparrow}(r_i) \chi^{\uparrow}(s_i) + \beta \phi^{\downarrow}(r_i) \chi^{\downarrow}(s_i)$ determinant of spinors $\psi_{Trial} = \psi_{Trial}(\mathbf{R}, \mathbf{S}) = det[\phi_n(r_i, s_i)] \exp(U_{corr})$ spin functions and $\chi^{\uparrow}(1/2) = \chi^{\downarrow}(-1/2) = 1$ $\chi^{\uparrow}(-1/2) = \chi^{\downarrow}(1/2) = 0$

- wf complex, good quantum number J

projection is more involved and less straightforward

some ideas:

- ...

- work in 80s on nuclei (Kalos, Carlson, Schmidt, others)
- sample the spinors (Pederiva, Gandolfi, Ambrosetti 2000s) with spinor updates ("stochastic rotations of spinors")
- smooth out spin configurations + fixed-phase approximation (Melton, Ambrosetti, Pederiva, LM et al, 2016)

we smooth out spin configurations/paths

 continuous (overcomplete) representation, ie, "coordinates", possible choice:

 $\chi^{\uparrow}(s) = \exp(+is), \quad \chi^{\downarrow}(s) = \exp(-is); \quad s \in (0, 2\pi)$

different from "rotating spinors", here: spinors are fixed

why this choice in particular ? (... later)

how can you do that ?

atomic spin-orbit acting on a valence electron *i* can be recast as

$$\boldsymbol{L}_{i} \cdot \boldsymbol{S}_{i} \rightarrow \sum_{l, j, m_{j}} \left| l, j, m_{j} > v_{lj}(r_{i}) < l, j, m_{j} \right|$$

correct action of SO and expectations need matrix elements

sample the spin configurations as free d.o.f. \rightarrow fixed-phase spinorbit DMC (FPSODMC)

effective free-particle Hamiltonian (kinetic term) for spins

$$H \rightarrow H + H_{spin}$$
, $H_{spin}(s_i) = -\frac{1}{2\mu_s} \left[\frac{\partial^2}{\partial s_i^2} + 1 \right]$

 H_{spin} annihilates arbitrary spinor $H_{spin}(s_i)[\alpha \phi^{\uparrow}(r_i)\chi^{\uparrow}(s_i)+\beta \phi^{\downarrow}(r_i)\chi^{\downarrow}(s_i)]=0$

therefore, to the leading order no contribution to the energy (subleading contribution overshadowed by the fixed-phase bias since SO is small)

FPSODMC method: tests on atomic and molecular systems

total energies: Pb atom valence only, vary effective mass, proportional to 1/(spin time step)

total energies: Pb atom with valence 6s²6p² FPSODMC(....) vs CI with ccpVxZ basis(---)

Cr and Mo atoms electronic ground states $\rightarrow {}^{7}S_{3}^{}$ (d⁵s¹) W atom is isovalent, what is its ground state ?

averaged SO (CI, QMC) $^{7}S_{3} (5d^{5}6s^{1})$ explicit SO two-component, open-shell only CI $^{7}S_{3} (5d^{5}6s^{1})$

explicit SO two-component, full CI or FPSODMC/rCI ⁵D₀ (5d⁴6s²)

both SO and correlation needed to flip the state !

W atom SO splitted *sd*-manifold of excitations: correct ground state in FPSODMC

Config.	State	COSCI	DMC/COSCI	CISD	DMC/rCISD	Ехр
5d ⁴ 6s ²	⁵ D ₁	0.10	0.13(1)	0.10	0.15(1)	0.21
5d⁵6s¹	⁷ S ₃	- 0.85	- 0.19(1)	0.12	0.19(1)	0.37
5d⁴6s ²	⁵ D ₂	0.24	0.30(1)	0.13	0.30(1)	0.41
5d ⁴ 6s ²	⁵ D ₃	0.42	0.49(1)	0.29	0.51(1)	0.60
5d⁴6s ²	⁵ D ₄	0.60	0.69(1)	0.45	0.69(1)	0.77

W atom: also correct order of excitations!

Config.	State	COSCI	DMC/COSCI	CISD	DMC/rCISD	Ехр
5d ⁴ 6s ²	⁵D ₁	0.10	0.13(1)	0.10	0.15(1)	0.21
<mark>5d⁵6s</mark> ¹	⁷ S ₃	- 0.85	- 0.19(1)	0.12	0.19(1)	0.37
5d ⁴ 6s ²	⁵ D ₂	0.24	0.30(1)	0.13	0.30(1)	0.41
5d ⁴ 6s ²	⁵ D ₃	0.42	0.49(1)	0.29	0.51(1)	0.60
5d ⁴ 6s ²	⁵D,	0.60	0.69(1)	0.45	0.69(1)	0.77

FPSODMC agrees with experiment, higher accuracy needs better ECP

NC STATE UNIVERSITY

Sn₂ dimer should be simple, it is only the fourth row ... but SO correction is ~ 0.5 eV ! (small cores, 44 val. e-)

why this in particular ?

 $\chi^{\uparrow}(s) = \exp(+is), \quad \chi^{\downarrow}(s) = \exp(-is); \quad s \in (0, 2\pi)$

- similar to spatial coords but much smaller space
- no divergencies, no jumps, importance sampling ok
- simplifies dealing with pseudopotentials (effective cores) and generate similar bias, "close" to fixed-node regime

but more

- enables to smoothly "complexify" also real eigenstates
- and still more ...

interestingly, from such spinor wf, one can recover the spin-labeled fixed-node trial form ...

in spinors
$$\chi_{\alpha}(\mathbf{r}, s) = \phi_{\alpha}(\mathbf{r})e^{is}, \ \chi_{\beta}(\mathbf{r}, s) = \phi_{\beta}(\mathbf{r})e^{-is}$$

adjust to two values: $\{up\} = \{s_i\} \rightarrow s, \ \{down\} = \{s_j\} \rightarrow s', \ s \neq s'$
det $\begin{bmatrix} \varphi_1(1)e^{is} & \varphi_1(2)e^{is'} & \varphi_1(3)e^{is} & \varphi_1(4)e^{is'} & \dots \\ \varphi_1(1)e^{-is} & \varphi_1(2)e^{-is'} & \varphi_1(3)e^{-is} & \varphi_1(4)e^{-is'} & \dots \\ \varphi_2(1)e^{is} & \varphi_2(2)e^{is'} & \varphi_2(3)e^{is} & \varphi_2(4)e^{is'} & \dots \\ \varphi_2(1)e^{-is} & \varphi_2(2)e^{-is'} & \varphi_2(3)e^{-is} & \varphi_2(4)e^{-is'} & \dots \\ \dots & \dots & \dots & \dots \end{bmatrix}$
 $[\sin(s'-s)]^{N/2} det \begin{bmatrix} \varphi_1(1) & \varphi_1(3) & 0 & 0 & \dots \\ \varphi_2(1) & \varphi_2(3) & 0 & 0 & \dots \\ 0 & 0 & \varphi_1(2) & \varphi_1(4) & \dots \\ 0 & 0 & \varphi_2(2) & \varphi_2(4) & \dots \\ \dots & \dots & \dots & \dots \end{bmatrix}$

NC STATE UNIVERSITY

full sampling of all possible spin states and configurations: cartoon

restricting spins into particular "up" and "down" subspace

<u>one (N/2)*(N/2) choice</u> \rightarrow fixed-node

fixed-node trial wf form but with a complex twist

spins factorize out of the determinant and we get up.down product:

$$\psi_T = det[\chi_j(r_k, s_k)] \quad \rightarrow \quad \psi_T = fac(s, s')det^{\uparrow}[\phi_i(r_k)]det^{\downarrow}[\phi_j(r_{k'})]$$

- the most interesting regime: $\{up\} = \{s_i\} \approx s \quad \{down\} = \{s_j\} \approx s'$,
- basically, the fixed-node limit but complexified, ie, it has properties of the fixed-phase, as can be achieved by:
 - the choice of spin variables (one assigns a set of particles as spin-up or -down, ie, particular subset of permutations)
 - explore how close/far to fixed-node by τ_{spin}/τ_{space}

fixed-node vs fixed-phase biases in atoms: FN real w.f. vs FP at the FN limit essentially the same

similar for molecules now including nonlocal ECPs FN vs FP at the FN limit: binding curves of N₂

NC STATE UNIVERSITY

released-node

released-node:

importance sampling with symmetric guiding function while projecting out the fermionic component

NC STATE UNIVERSITY

choice of guiding function

$$\psi_G = \rho_T$$

$$\psi_T = \rho_T(\boldsymbol{R}, S) \exp[i\phi_T(\boldsymbol{R}, S)]$$

why?

- amplitude is symmetric by definition
- its node is codimension 2, ie, generically ergodic sampling
- it is "close" to $\Psi_T \rightarrow$ that implies close to optimal importance sampling \rightarrow local energy fluctuations almost the same

few electron system (all-el O atom): released-node and the well-known exponential noise

better tuned algorithm: released-node eliminates the bias fully

summary

- unifying formalism FPSODMC, FN and FP, static/variable spins,

sampling + nodes \rightarrow sampling + effective potential

- wave functions with phase/spins are more general, more smooth, ergodic sampling (zeros codim 2)
- new options for attacking fixed-node/phase bias
- more variational freedom (?)

PRA 2016, JCP 2016, PRE 2017 + more coming