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Ultracold atoms and many-body theory
Ultracold atoms provide clean and malleable systems to develop 
and test new methods for many-body theory outside of lattice 
QCD.

Experiments can 
• control interactions (harmonic traps, optical lattices, coupling 

strength), introduce spin-polarization and mass-imbalance,
• study phenomena including superfluidity, quantized vortices, 

phases of matter (e.g. FFLO, BEC, BCS states).

K. M. O’Hara et al.
Nature (2002)MIT



Hamiltonian and particle content
• We are studying the many-body system of fermions with contact interactions.
• The non-relativistic Hamiltonian we study is (applies in any dimension):

• We compute the finite-temperature equation of state for unpolarized and polarized
fermions in one and two dimensions.

• Use a continuous and compact H. S. transformation: 

bare coupling: renormalized to 2-body binding energy (1D, 2D) 

short-range interaction (studied in dilute limit)Ĥ = � ~2
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Complex Langevin formalism
Hybrid Monte Carlo requires a positive-definite probability measure in order to propose 
new field configurations -- to circumvent the sign problem we applied the complex 
Langevin method.

We make the auxiliary field complex:  

Dynamical equations of motion are simply:

� ! �R + i�I

��R = �Re


�S[�]

��

�
�t+ ⌘

p
dt

��I = �Im


�S[�]

��

�
�t

where the action is S = � ln(det2M)



Complex Langevin formalism
Dynamical equations of motion are simply:
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To avoid uncontrolled excursions
in the complex plane, we modify 
the action with a regulating term.
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Lattice perturbation theory to N3LO
To check our CL results, we developed software which analytically computes the 
perturbative expansion of the pressure – we currently have results to N3LO.

• Expansion is performed on the lattice using a Hubbard-Stratonovitch transformation 
(can compare methods lattice to lattice),

• the fermion determinant is expanded in powers of the coupling about the non-
interacting limit,

• path integral is computed exactly and resulting expressions are computed numerically 
to obtain EoS.
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Perturbative expansion of the pressure
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Fermions in 1D: attractive & repulsive interactions
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We have computed the density equation 
of state for unpolarized fermions in 1D 
for:

• attractive interactions using PT, 
complex Langevin (CL), and HMC.

• repulsive interactions using PT and 
CL.

where PT is up to N3LO.

Spatial lattice size: Nx = 100 points
Temporal lattice size : Nt = 160 points

Dimensionless coupling: � =
p

�g



Equation of state for polarized fermions in 1D
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We have also computed the density equation of 
state for polarized fermions in 1D for:

• attractive interactions using PT, complex 
Langevin (CL), and HMC under imaginary 
polarization.

• repulsive interactions using PT and CL.

where PT is shown at N3LO.

Chemical potential polarization:

Constant coupling strength: 
Lattice size: Nx = 60 points, Nt = 160 points.
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Moving beyond perturbative regimes
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Polarized gas in two dimensions
We are studying the same non-relativistic Hamiltonian with contact interactions in two 
spatial dimensions – however, the coupling constant is dimensionless, and the 
system is classically scale invariant.

Unlike in 3D, a bound state is immediately formed for non-zero attractive interactions 
in 1D and 2D.

2D unpolarized systems have been 
realized experimentally:

Fenech et al. PRL 116, 045302 (2016)



Polarized gas in two dimensions
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Data collection is still underway. 

Perform extrapolation in !" and #:
• Spatial lattice: 12, 16, 20, 24
• Temporal lattice: 120, 160, 200, 240
• Couplings: #$% of 0.1 to 2
• Asymmetry: #ℎ of 0 to 2
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Summary and conclusions
• We are able to compute equations of state for systems with a sign problem,
• perturbatively up to N3LO
• non-perturbatively using complex Langevin.

• We have studied polarized and unpolarized Fermi gases with in one, two and 
three dimensions.

• We are able to look at both repulsive and attractive interactions.
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