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Motivation: unitary fermi gas

Feshbach Resonances in the News
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Ultra-Cold Molecules 
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• Cold atom experiments

• Approximation to low-density nuclear matter
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Neutron superfluid in crust
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Fermions at unitarity
• Definition: Non-relativistic spin 1/2 fermions with an attractive interaction

Range of interaction
Interparticle spacing

S-wave scattering length

Strongly-coupled conformal system
No intrinsic length scales except density

Physics at low k doesn’t care of the 
details of the interaction.
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Figure 3.3: (Left) Distribution of correlators (Right) Distribution of log of correlators

where C⇥(⌅) is the correlator evaluated on a single background field configuration, and

C(⌅) = �C⇥(⌅)⇥⇥. For the case N� = N⇥, one can show explicitly that correlators of the

type defined in Eq. ?? and Eq. ?? are positive for every background field configuration.

A plot of ⇤� (c) for N = 4 is shown in Fig. ?? for various time values, and shows the

formation of a long tail in the late time limit. A corresponding plot of the distribution for

the logarithm of C⇥(⌅), also shown in Fig. ??, suggests that the multi-fermion correlation

function has a nearly log-normal distribution. Such distributions are known to possess very

long tails which dominate the distribution mean. Undersampling the tail can result in an

underestimate in the correlation function, and thus an overestimate in the energy obtained

from Eq. ?? at large times, as was evident in Fig. ??.

3.3 Mean Field Approximation

3.4 Cumulant Expansion Method: Theory

p cot �0 = 0(or �0 = ⇥/2) (3.6)

22

A =
4⇤

M

1

p cot �0 � ip
(3.7)

It is challenging or impossible to estimate true mean value from taking ensemble average

of some data which don’t have a Gaussian distribution. One of our interest is measuring

a many-body correlator which is generated from stochastic process. As shown in previous

section, the correlator has a nearly Log-Normal (LN) distribution and a long tail with

small probability. This has motivated us to consider a new statistical measurement for the

correlator.

Consider a correlator C with positive definite real number and a new variable Z = lnC

which has some probability distribution P (Z). Then it is generally true that

ln⌅C⇧ =
��

n=1

⇥n
n!

, (3.8)

where ⇥n is the nth cumulant of the lnC:

⇥1 = ⌅lnC⇧, ⇥2 = ⌅(lnC)2⇧ � ⌅lnC⇧2, etc.

Proof of Eq. 3.8: The characteristic function for Z is

�Z(t) =

⇥
P (Z)eiZtdZ. (3.9)

Define ⌅ = it, then we have

�Z(⌅) =

⇥
P (Z)eZ�dZ

=

⇥
P (Z)dZ +

⇥
P (Z)ZdZ⌅ +

⇥
P (Z)Z2dZ

⌅2

2!
+ · · ·

= 1 + ⌅Z⇧⌅ + ⌅Z2⇧⌅
2

2!
+ · · · (3.10)

and

ln�Z(⌅) = ⌅Z⇧⌅ + (⌅Z2⇧ � ⌅Z⇧2)⌅
2

2!
+ · · ·

=
��

n=1

⇥n
⌅n

n!
, (3.11)

Bertsch parameter

0

Pairing gap

• Universality:
1 Introduction
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free
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For fermions near unitarity, the Bertsch parameter has been determined from exper-
iments and Monte Carlo simulations with great precision. However, It is challenging or
impossible to take ensemble average of some data which don’t have a Gaussian distribution.
One of our interest is measuring a many-body correlator which is generated from stochastic
process. The correlator has a nearly Log-Normal (LN) distribution and a long tail with
small probability. This have motivated us to consider a new statistical measurement for the
correlator.

Collect some past work on cumulant expansion
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Chronology of the Bertsch parameter

Endres, Kaplan, 
JWL, Nicholson
(2013)

The Bertsch parameter is approaching 0.37 at a few percent level !

ENDRES, KAPLAN, LEE, AND NICHOLSON PHYSICAL REVIEW A 87, 023615 (2013)
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FIG. 12. (Color online) (Left) An infinite-volume extrapolation of the ground-state energy for N = 58 unitary fermions. (Right) Ground-
state energy extrapolated to zero density as a function of 1/N . The red band represents a constant fit to the energies for 40 ! N ! 66.

number. Our results show that the shell structure is present
in the first and second shells (4 ! N ! 38), which is much
more evident in the energies at finite volume. On the other
hand, we find little evidence for shell effects within the
last two shells (i.e., 40 ! N ! 66), suggesting that within
the numerical uncertainty of our measurements, we are
sufficiently near the thermodynamic limit to perform a
thermodynamic limit extrapolation of the Bertsch parameter,
given by ξ = limN→∞ c0(N ). Note that the N dependence is
expected to be correlated since the energies at different N
were determined from the same ensemble. To estimate the
Bertsch parameter, we have performed a correlated constant fit
to the infinite-volume extrapolated energies over the fit range
N ∈ [40,66], obtaining the estimated value: ξ = 0.366+0.016

−0.011.
The Bertsch parameter has been extensively studied in

the past using quantum Monte Carlo (QMC) simulations.
The earliest works based on a variational approach found
an upper bound of ξ ! 0.42 (1) [29,30], while a more recent
QMC calculation for N = 66 with an extrapolation to zero
range reported an upper bound of ξ ! 0.383 (3) [41,42].
Numerous lattice simulations of two-component fermions in
the unitary limit have been reported at both zero and nonzero
temperature. References [39] and [38] quoted the Bertsch
parameter values 0.292 (24) and 0.37 (5), respectively, from
finite temperature lattice simulations extrapolated to zero

FIG. 13. (Color online) Historical results for the Bertsch
parameter determined experimentally, by analytic calculation, and by
numerical simulation. Numerical values and citations are tabulated in
Table VI; our value is indicated as the latest simulation data point.

temperature. A different zero-temperature lattice calculation
with an infinite-volume extrapolation for N = 10 and N = 14
yielded ξ = 0.292 (12) and 0.329 (5), respectively [37]. The
Bertsch parameter has also been measured in several atomic
experiments by studying pair correlation and absorption rates
of 6Li and 40K in a harmonic trap. Some recent experimental
measurements reported ξ = 0.39 (2) [10] by Duke and 0.41 (1)
[11] by the Paris group. The most recent experimental
determination by the group from the Massachusetts Institute
of Technology (MIT) found 0.376 (4) [13]. In Fig. 13,
we summarize all analytical, numerical, and experimental
estimates of ξ to date along with our value of the Bertsch
parameter obtained from the simulations of up to N = 66
untrapped unitary fermions. References for the historical
results are provided in Table VI. Our determination of the
Bertsch parameter appears as the latest data point in Fig. 13
and is statistically consistent with other recent findings.

V. CONCLUSION

We have studied up to 66 unpolarized unitary fermions
in a periodic box by applying a lattice Monte Carlo method
developed for studying large numbers of strongly interacting
nonrelativistic spin- 1

2 fermions [50]. Our method differs from
methods used in the past in that it does not make use of
importance sampling, nor is it variational in nature. As such,
our approach not only allows us to study unpolarized Fermi
systems, but also systems with unequal numbers of spin-up and
spin-down fermions. One of the main obstacles in calculating
ground-state energies of large numbers of fermions using our
method is that it exhibits a severe distribution overlap problem,
resulting in unreliable estimates of correlation functions. To
solve this problem, we use a cumulant expansion technique for
the logarithm of correlators [64], which allows us to determine
energies in a reliable manner with controlled systematic errors.
The successful application of our method to unitary fermions
gives us confidence that these techniques may prove useful
in other situations where importance sampling is difficult.
Conventional importance sampling schemes for Fermi gas
calculations often use the N -body correlator itself as an impor-
tance measure and so the ensemble generated is only of use for
estimating a single observable for which it was designed. Our
approach offers an advantage over such importance sampling
schemes in that one may use the ensemble generated to
reliably estimate all desired observables. Thus our approach

023615-14
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Figure 3 | Bragg spectra and pairing gap near unitarity. a, Experimental spectrum at unitarity (filled data points) and QRPA theory (shaded). Vertical
dotted lines indicate the onset of the single-particle branch for h̄!�2� (EF = 12.1kHz). Inset: comparison of experimental and theoretical BA mode peaks.
b,c, Zoomed view of Bragg spectra at 1/(kFa)=�0.11 and 1/(kFa)=�0.21. d, Pairing gap � determined from Bragg spectra (blue points) along with
previous radiofrequency (RF) measurements (green triangles)25 and theoretical predictions: BCS (black dotted line), T-matrix (green dashed)26,
Luttinger–Ward (black solid)12, Gaussian fluctuation theory (red dash-dotted)28, Monte Carlo (brown cross)27, operator product expansion (red
asterisk)29, and extended T-matrix (purple dash-dot-dotted)30. Error bars in a–c denote the standard deviation of the measured centre-of-mass
displacements. Error bars in d are calculated by combining the uncertainty in determining n̄ with the finite spectral resolution of the measurements.

our measurements in the strongly interacting regime represent the
low-temperature (near ground-state) excitations.

In the range �0.5  1/(kFa)  0, both phonon and single-
particle excitations are visible in the individual spectra. Further-
more, for �0.2 1/(kFa)  0, these two branches separate from
each other, enabling direct read-o� of the superfluid pairing gap �.
Figure 3a shows a zoomed view of the Bragg spectrum at unitarity.
Filled points are experimental data and the shaded curve is the
QRPA theory including the Fourier width of the Bragg pulse. Since
a minimum energy of ~! = 2� is required to break a pair and
produce two free atoms, we associate the sharp onset of single-
particle excitations with 2� (dotted vertical line). At unitarity we
find �/EF =0.47±0.03. The pairing gap has previously been mea-
sured using momentum24 and spatially resolved25 radiofrequency
spectroscopy. Our localized Bragg measurements are consistent
with previous radiofrequency data25, yet provide the pairing gap
directly, free of final-state e�ects, Hartree energy shifts or density
inhomogeneities. Figure 3b,c shows spectra for 1/(kFa)=�0.11 and
1/(kFa)=�0.21, respectively. A plot of�/EF for these three spectra
is provided in Fig. 3d along with di�erent calculations12,26–30.

The experimentally determined pairing gap can serve as an input
parameter for our diagrammatic theory, which uses the chemical
potential as a fitting parameter (see Supplementary Information).
We find good agreement between our QRPA calculation and
experiment over the full excitation spectrum (shaded curves, Fig. 3),
particularly in the frequency of the BA mode. When the theory
is scaled to match the amplitude of the experimentally measured
single-particle branch, the calculated BA mode is consistently more
than twice as high and approximately two-thirds the width of
the measured peak (inset, Fig. 3a). Damping mechanisms31, not
included in the theory, may explain this discrepancy.

As k!0, the BAmode displays linear dispersion with a gradient
set by the sound velocity cs. The centre frequency of the BA mode
!BA is found from a Gaussian fit to the BA peak (solid blue lines,
Fig. 2) providing a measure of cs/vF =!BA/(kvF), where vF =~kF/m
is the Fermi velocity. This is plotted in Fig. 4 (blue circles) for
interactions where we obtain a reliable fit. In the momentum range
used here, 0.4. k/kF . 0.6 (see Supplementary Information), the
dispersion remains close to linear near unitarity, but becomes
concave (convex) in the BCS (BEC) regime21,26,31. We can estimate
this curvature for finite k/kF using the QRPA calculation and
correct for it to estimate cs/vF as k ! 0 (see Supplementary
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Figure 4 | Speed of sound across the BCS–BEC crossover. Solid blue points
are found using the raw BA mode frequency and orange diamonds show
corrected estimates of cs/vF as k!0 based on the calculated curvature of
the BA mode dispersion at non-zero k/kF (see Supplementary Information).
At unitarity, vF =0.040 m s�1. Also shown are theoretical predictions for
cs/vF: BCS theory (black dotted line), Beliaev (black dashed)18, density
functional (green dash-dash-dotted)32, Luttinger–Ward (black solid)12,
Gaussian fluctuation theory (red dash-dotted)28, and extended T-matrix
(purple dash-dot-dotted)30. Inset shows measured BA mode frequency for
clouds at di�erent k/kF at unitarity demonstrating linear dispersion. Error
bars represent the combined uncertainties in n̄, the fitted !BA and the angle
between the Bragg lasers.

Information). The corrected data (orange diamonds in Fig. 4)
agree well with theoretical calculations of cs/vF throughout the
BCS–BEC crossover12,28,30,32 and also with previous experiments9–11.
Our measurements are the first to probe sound propagation in a
homogeneous Fermi gas, allowing direct comparison with theory,
free of complications arising from density inhomogeneities and
partial hydrodynamics across the wavefront.

By varying the power of our trapping laser, we can tune n̄ (and
hence k/kF) to map the dispersion of the BA mode. Measured BA
mode frequencies for di�erent densities reveal linear dispersion at
unitarity in the range 0.45. k/kF . 0.7 (Fig. 4, inset) with a slope
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FIG. 10. Dimensionless superfluid gap. The red curve indi-
cates the gap calculated by substituting our fµ(x) into the gap
equation in Eq. (31). The dashed black curve was obtained by
BCS-MF calculation [44]. The green triangle and the green
inverse triangles indicate the theoretical values obtained by
the QMC method [45, 46]. The blue circles are experimental
values obtained by quasiparticle spectroscopy [12].

V. CONCLUSION

We determined various thermodynamic quantities in
their dimensionless forms from the BCS region to the
unitarity limit for homogeneous spin 1/2 fermions in the
superfluid state at the zero-temperature limit. All of the
quantities were determined within systematic errors of
4% around the unitarity limit based on standard ther-
modynamic relations, the scale invariant property, and
the local density approximation. In particular, we de-
termined the fE(x) for internal energy density directly
from experimental data without using an approximated
model function. The dimensionless function represents
a universal property shared by various physical systems,
and helps to construct the EOS for pure neutron matter,
for example.
The thermodynamic quantities obtained here are valu-

able for studying the strong-coupling properties of a su-
perfluid Fermi gas in the BCS-BEC crossover region.
We evaluated various many-body theories using the ob-
tained thermodynamic quantities. These theories agree
qualitatively with our results, but the measurement re-
sults for fE(x) allowed us to perform more quantitative
comparison among those theories. The ETMA, which
is a strong-coupling theory involving fluctuations in the
Cooper channel, provided the closest results to those of
the present study. The details of the ETMA can be found
in previous studies [35, 36].
We also found that ∆ obtained by substituting the

chemical potential of interacting fermions into the ordi-

nary BCS gap equation has a value close to the binding
energy of the paired fermions. This is new information
regarding the relation between thermodynamic quanti-
ties and the binding energy in the BCS region close to
the unitarity limit. Future experiments, such as experi-
ments involving the measurement of the Higgs mode of
the order parameter, will reveal the magnitude of the or-
der parameter as well as the relation between the order
parameter and the binding energy.
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Appendix A: Superfluid transition point and
experimental temperature

Experimentally, it is impossible to prepare fermions at
zero temperature, even if we start from a molecular BEC,
and so fermions are always prepared at finite tempera-
ture. In the case of Fermi systems, it is proper to discuss
temperature in terms of a temperature parameter defined
as t = kBT/εF . When investigating the properties of in-
teracting fermions in the ground state, the experimental
temperature texp should not only be sufficiently lower
than 1 in order to exclude temperature and entropy from
the thermodynamics, but should also be lower than the
superfluid critical temperature, tc, to take into account
the condensation energy [34]. Therefore, texp < tc < 1
should be satisfied in order to investigate the ground
state. Since tc decreases monotonically to zero from the
unitarity limit to the BCS limit as a function of the inter-
action parameter x, it is inevitable that tc(x) intersects
texp somewhere between the two interaction limits. Here,
we define the intersection as texp = tc(x∗).
We determined the superfluid transition point x∗

by measuring the condensate fraction (CF) of paired
fermions. The value of x∗ can be determined even if we

Pairing gap from cold atom experiments

Hoinka et al, Nature 13, 
943-946 (2017)

Horikoshi et al, Phys. 
Rev. X 7, 041004 (2017)



Quasiparticle Dispersion in cold Atoms
Add one       to fully-paired system
Energy cost for an unpaired particle:  μ + Δ 
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Pairing gap from numerical simulations

Carlson & Reddy (2005)

Any recent update from numerical simulations?
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A = �
⇤

C2np2n

1 +M(µ+ ip)/4⇥
⇤

C2np2n
. (1.25)

A�1 =
�C0

1 + C0M
4� (µ+ ip)

. (1.26)

C0(µ) =
4⇥

M

�
1

�µ+ 1/a

⇥
. (1.27)

The beta function for C0, which is relevant to unitary fermions, is defined by

�0 ⇤ µ
dC0

dµ
. (1.28)

�0 =
Mµ

4⇥
C2
0 =

C2
0

4⇥a/M � C0
. (1.29)

This �-function become zero when C0 = 0, a trivial IR fixed point, and a ⌅ ⇧, a

non-trivial UV fixed point. For a better illustration of RG flow, we may define a new

dimensionless coupling Ĉ0(µ) ⇤ �µC0(µ) and take usual definition of the �-function. This

gives

�̂0 = µ
⌅Ĉ0

⌅µ
= Ĉ0

�
1� M

4⇥
Ĉ0

⇥
. (1.30)

4�
M

1.4 A New Lattice Approach

The demand for a non-perturbative and a systematic approach to study systems of strongly

interacting non-relativistic fermions leads for us to develop a new lattice method by adopting

the low energy nuclear e�ective theory on lattice. The main features of our lattice approach

are following:

(1) We prepare a T ⇥L3 Euclidean lattice and assign fermionic fields on sites. The four-

Fermi contact interaction can be achieved by introducing a auxiliary field ⇤ on time-like
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the probability conservation or unitarity, the magnitude of this amplitude should be 1 and

then we can write

1 + 2ikf⇥(k) = e2i�� or f⇥(k) =
1

k cot �⇥ � ik
, (1.11)

where the phase shift �⇥ is real. For finite range potential, the threshold behavior of the

phase shift is �⇥ ⇤ k2⇥+1 and typically ⇥ = 0 (S-wave) is considered for low energy scattering.

By defining u⇥ ⇥ R⇥(r), the radial wave equation may be simplified to

d2u⇥(r)

dr2
�
�
⇥(⇥+ 1)

r2
+ 2µV (r)� k2

⇥
u⇥(r) = 0. (1.12)

For a potential with finite range R, the radial wave function for r > R may be written

as

u⇥(r) = rei�� [cos �⇥j⇥(kr)� sin �⇥n⇥(kr)] , (1.13)

where j⇥(kr) and n⇥(kr) are spherical Bessel functions. The phase shift can be determined

by calculating the coe⇥cients of those spherical Bessel functions from boundary matching

at r = R. For extremely low energy scattering (k ⌅ 0), the situation is quite simple. For

r > R and ⇥ = 0, the solution of the Eq. 1.12 is obvious,

u0(r) = A(r � a). (1.14)

Since the asymptotic forms of j0(kr) and n0(kr) are 1 and 1/kr, respectively, we obtain

lim
k�0

k cot �0(k) = �1

a
, (1.15)

where a is known as the S-wave scattering length. A systematic expansion of k cot � as a

function of k, which is called the e�ective range expansion, is possible,

k cot �0 = �1

a
+

1

2
r0k

2 + · · · , (1.16)

where r0 is know as the e�ective range which corresponds to the characteristic size of the

potential. The details of the shape of the potential are embedded in higher shape parameters

ri.

Figure 1.1: Sum of bubble diagrams for 2-body scattering with the four-Fermi contact

interactions. The bulb at each vertex represents the sum of an infinite tower of local

operators with p2n.

is

iAtree = �i(µ/2)4�D
⇥⌃

n=0

C2n(µ)p
2n. (1.21)

The loop integrals which appear in the bubble diagram in Fig. 1.1 are the form

In = �i(µ/2)4�D
⌥

dDq

(2⌅)D
q2n

�
i

E/2 + q0 � q2/2M + i⇥

⇥�
i

E/2� q0 � q2/2M + i⇥

⇥

= (µ/2)4�D
⌥

dD�1q

(2⌅)(D�1)
q2n

�
1

E � q2/M + i⇥

⇥

= �M(ME)n(�ME � i⇥)(D�3)/2�

�
3�D

2

⇥
(µ/2)4�D

(4⌅)(D�1)/2
. (1.22)

Instead of a minimal subtraction scheme, we may consider a power divergence subtrac-

tion (PDS) scheme [8] in order to take account of the pole at D = 3 in the integral In. By

adding

�In = �M(ME)nµ

4⌅(D � 3)
, (1.23)

the subtracted integral in D = 4 dimensions is

IPDS
n = In + �In = �(ME)n

�
M

4⌅

⇥
(µ+ ip), (1.24)

and the inverse of the amplitude A is

A�1 = �4⌅

M

⇤
4⌅

M
⇧

C2np2n
+ µ+ ip

⌅
. (1.25)
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Fermion scattering at very low energy; leading interaction:

LEFT =
C0

4
N†NN†N + . . . = iC0

Renormalization group: C0 scales with UV cutoff #:

⇤� = µ
⇥ ⇤C0

⇥µ
= � ⇤C0

�
⇤C0 � 1

⇥�C0 ⇥ �
Mµ

4�
C0 =

µ

µ + 1
a

Scattering length

Trivial IR fixed point

free fermions
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Conformal, infinite a
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dimensionless coupling Ĉ0(µ) ⇤ �µC0(µ) and take usual definition of the �-function. This

gives

�̂0 = µ
⌅Ĉ0
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dimensionless coupling Ĉ0(µ) ⇤ �µC0(µ) and take usual definition of the �-function. This

gives

�̂0 = µ
⌅Ĉ0
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Figure 1.2: Plot of the beta function of Ĉ0(µ).
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In Fig. 1.2, we draw this beta function with RG flows. The IR fixed point at Ĉ0 = 0

corresponds to a trivial non-interacting theory, while the UV fixed point at Ĉ0 = 4⇤/M

corresponds to a non-trivial conformal theory which is the one of interest, unitary fermions.

Note that the coupling constant C0(µ) of UV fixed point diverges as the renormalization

scale µ goes to zero.

1.4 A New Lattice Approach

The demand for a non-perturbative and a systematic approach to study systems of strongly

interacting non-relativistic fermions leads us to develop a new lattice method by adopting

the low energy nuclear e�ective theory on the lattice. The main features of our lattice

approach are following:

(1) We prepare a T ⇥ L3 Euclidean lattice and assign fermionic fields on lattice sites.

Galilean-invariant four-fermion contact interactions are induced by an auxiliary field ⌅ on

time-like links2, which prevents fermionic loops involving the interaction on the surface

2The meaning of “Galilean invariant” is that the interaction is only a function of the transferred three-
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⌥Ĉ0

⌥µ
= Ĉ0
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In Fig. 1.2, we draw this beta function with RG flows. The IR fixed point at Ĉ0 = 0

corresponds to a trivial non-interacting theory, while the UV fixed point at Ĉ0 = 4⇤/M

corresponds to a non-trivial conformal theory which is the one of interest, unitary fermions.

Note that the coupling constant C0(µ) of UV fixed point diverges as the renormalization

scale µ goes to zero.

1.4 A New Lattice Approach

The demand for a non-perturbative and a systematic approach to study systems of strongly

interacting non-relativistic fermions leads us to develop a new lattice method by adopting

the low energy nuclear e�ective theory on the lattice. The main features of our lattice

approach are following:

(1) We prepare a T ⇥ L3 Euclidean lattice and assign fermionic fields on lattice sites.

Galilean-invariant four-fermion contact interactions are induced by an auxiliary field ⌅ on

time-like links2, which prevents fermionic loops involving the interaction on the surface

2The meaning of “Galilean invariant” is that the interaction is only a function of the transferred three-

11

9

A = �
⇤

C2np2n

1 +M(µ+ ip)/4⇥
⇤

C2np2n
. (1.25)

A�1 =
�C0

1 + C0M
4� (µ+ ip)

. (1.26)

C0(µ) =
4⇥

M

�
1

�µ+ 1/a

⇥
. (1.27)

The beta function for C0, which is relevant to unitary fermions, is defined by

�0 ⇤ µ
dC0

dµ
. (1.28)

�0 =
Mµ

4⇥
C2
0 =

C2
0

4⇥a/M � C0
. (1.29)

This �-function become zero when C0 = 0, a trivial IR fixed point, and a ⌅ ⇧, a

non-trivial UV fixed point. For a better illustration of RG flow, we may define a new
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dimensionless coupling Ĉ0(µ) ⇤ �µC0(µ) and take usual definition of the �-function. This

gives

�̂0 = µ
⌅Ĉ0
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By performing a Taylor expansion of the above expansion and using the fact that the

amplitude A (or equivalently A�1) is independent of the subtraction point µ, one can show

that for µ ⌃ 1/|a| the coupling C2n(µ) scales as

C2n(µ) ⇧
4⇤

M�nµn+1
. (1.26)

If we take µ ⇧ p, C2n(µ) ⇧ 1/pn+1 and the vertex including C2n↵2n scale as pn�1, along

with that each propagator and each loop integration
⇤
d4q count as 1/p2 and p5 respectively,

one can construct a reasonable power counting rule for the case of large scattering length

(referred to literature of “KSW” counting) [8, 9, 10]. In this power counting scheme, the

leading order contribution to the scattering amplitude, A�1, scales as p�1 and consists

of the sum of bubble diagrams with C0 vertices. The higher order contributions to the

amplitude, An with n = 0, 1, 2, · · · , can be constructed by perturbatively inserting derivative

interactions, dressed to all orders by C0. The coupling constants C2n(µ) can be determined

by matching this expansion in the e⇥ective theory to the physical scattering amplitude

in Eq. 1.19. From the requirement that the amplitude is independent of the arbitrary

parameter µ, µd(1/A)/dµ = 0, one can formulate the Renormalization Group (RG) analysis

for each C2n where the boundary conditions are set by physical parameters a and rn.

The unitarity limit, a ⌥ � and ri ⌥ 0 for i = 0, 1, 2, · · · , may be achieved by tuning the

coupling constants in Eq. 1.25 to reproduce Eq. 1.19. It is obvious that all C2n for n ⌅ 1

should be zero. The leading order contribution is given by

A�1 =
�C0

1 + C0M
4� (µ+ ip)

. (1.27)

Comparing with the leading terms in Eq. 1.19, we have

C0(µ) =
4⇤

M

�
1

�µ+ 1/a

⇥
. (1.28)

The �-function for C0 is defined by

�0 ⇤ µ
dC0

dµ
=

Mµ

4⇤
C2
0 =

C2
0

4⇤a/M � C0
. (1.29)

This �-function becomes zero when C0 = 0, a trivial IR fixed point, and a ⌥ �, a

non-trivial UV fixed point. For a better illustration of RG flow, we may define a new
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Lattice construction for non-relativistic fermions

II. LATTICE CONSTRUCTION

A. Action, notation and conventions

The starting point for our construction is a highly improved variant of the nonrelativistic

Euclidean-time lattice action proposed in [45], given by:

S = b�b
3
s

⇤

�,x

�
⌅̄x,� (��⌅)x,� �

1

2M
⌅̄x,� (⌥2⌅)x,� + (

⌃
C⇤)x,� ⌅̄x,�⌅x,��1

⇥
. (1)

This action describes two species of interacting fermions ⌅ = (⌅⇥,⌅⇤) with equal mass M

defined on a T ⇥ L3 lattice, with the temporal and spatial lattice spacings given by b�

and bs, respectively. For convenience, we work primarily in lattice units, where bs = b� =

1, however in some sections we restore the lattice spacings in order to discuss temporal

and spatial discretization errors. Throughout this work, we consider a lattice with open

boundary conditions in the time direction with time labeled by integers ⇥ ⇤ [0, T � 1]

and periodic boundary conditions in the spatial directions with position labeled by integers

xj ⇤ [�L/2, L/2�1], for j = 1, 2, 3. As a result of using open temporal boundary conditions,

the utility of our lattice action is limited to studies at zero temperature. In addition, this

choice of boundary conditions forbids the introduction of a chemical potential and as a

result, we work in the canonical rather than grand-canonical ensemble.

The derivative operator �� appearing in Eq. 1 represents a backward di�erence operator in

time, i.e., (��⌅)x,� = ⌅x,� �⌅x,��1, whereas ⌥2 represents a lattice gradient operator defined

so as to give a perfect continuum-like single particle dispersion relation for free fermions.

This kinetic term is highly nonlocal, although as will be described below, the nonlocality

poses no challenge in a numerical simulation of Eq. 1.

A four-fermion contact interaction is achieved via the introduction of a stochastic auxil-

iary scalar field ⇤x,� associated with the time-like links of the lattice. This field is chosen to

satisfy the conditions

⌅⇤x,� ⇧ = 0 , ⌅⇤x,�⇤x�,� �⇧ = �x,x���,� � (2)

where the expectation value represents ensemble averaging over ⇤, and in this work the ⇤

distribution is taken to either be unit-variance Gaussian or Z2. The point-split character of

the interaction ensures that scattering propagates fermions forward in time by one unit. This
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choice, along with the absence of fermion propagation in the negative temporal direction

and open boundary conditions in time, ensures that no closed fermion loop depends on

⇥. A consequence is that the fermion determinant is ⇥-independent and has no e⇥ect on

the measure for ⇥, greatly simplifying numerical simulation of Eq. 1. The operator Cxx� =

C(x� x⇥) acts only in space and is taken to be real, symmetric, local, and invariant under

lattice translations; it can be thought of as some di⇥erential operator acting on ⇥ which

allows the interaction between fermions induced by ⇥ exchange to depend on the transfer

momentum. Not only does this give us a momentum-dependent interaction we can tune

to attain unitarity, but it is also Galilean invariant as it depends on only on the di⇥erence

between the ingoing and outgoing fermion momenta. This is important, since tuning a

non-Galilean invariant interaction to give unitarity in one frame would lead to non-unitary

fermions in another. Thus, boosted pairs of particles would see an interaction which did not

correspond to unitarity.

Integrating out the auxiliary field ⇥ yields the four-fermion interaction

(
⌅
C⇥)x,� (⇤̄⇤)x,� ⇤ (⇤̄⇤)x,� (C⇤̄⇤)x,� , (3)

where (⇤̄⇤)x,� = ⇤̄x,�⇤x,��1, and we have used the Hermiticity of C. Note that since there

are only two species of fermions, any three-, four- and higher-body interactions induced from

integrating out the auxiliary field will vanish due to Fermi statistics.

We may express Eq. 1 succinctly as S = ⇤̄K⇤, where the time components of the fermion

matrix K are given in block-matrix form by:

K =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

D �X(T � 1) 0 0 . . . 0

0 D �X(T � 2) 0 . . . 0

0 0 D �X(T � 3) . . . 0

0 0 0 D . . . 0
...

...
...

...
. . . �X(0)

0 0 0 0 . . . D

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

, (4)

with

D = 1� ⇧2

2M
, X(�) = 1�

⌅
C�(�) . (5)

Note that the L3 ⇥ L3 matrices D, X, C and �(�) act only in space and that �(�) is a

diagonal matrix with statistically independent random elements ⇥x(�).
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(1) Four-Fermi interaction via auxiliary 
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(2) Open B.C. in time and periodic B.C. 
in space
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time, i.e., (��⌅)x,� = ⌅x,� �⌅x,��1, whereas ⌥2 represents a lattice gradient operator defined

so as to give a perfect continuum-like single particle dispersion relation for free fermions.

This kinetic term is highly nonlocal, although as will be described below, the nonlocality

poses no challenge in a numerical simulation of Eq. 1.

A four-fermion contact interaction is achieved via the introduction of a stochastic auxil-

iary scalar field ⇤x,� associated with the time-like links of the lattice. This field is chosen to

satisfy the conditions

⌅⇤x,� ⇧ = 0 , ⌅⇤x,�⇤x�,� �⇧ = �x,x���,� � (2)

where the expectation value represents ensemble averaging over ⇤, and in this work the ⇤

distribution is taken to either be unit-variance Gaussian or Z2. The point-split character of

the interaction ensures that scattering propagates fermions forward in time by one unit. This

5
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the conditions in Eq. 2.2

(
⌅
C⇥)x,� (⇤̄⇤)x,� ⇤ (⇤̄⇤)x,� (C⇤̄⇤)x,� , (2.3)

where (⇤̄⇤)x,� = ⇤̄x,�⇤x,�+1, and we have used the Hermiticity of C. Due to Fermi statistics,

all higher-body interactions, beyond two-body interaction, induced by the auxiliary field ⇥

vanish automatically.

For numerical calculation, it is convenient to express Eq. 2.1 as S =
⌥

� ⇤̄�K�,�+1⇤�+1

where the matrix K is given by

K =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

D �X(T � 1) 0 0 . . . 0

0 D �X(T � 2) 0 . . . 0

0 0 D �X(T � 3) . . . 0

0 0 0 D . . . 0
...

...
...

...
. . . �X(0)

0 0 0 0 . . . D

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

(2.4)

where D and X are L3 ⇥ L3 matrices are defined as

D = 1� ⇧2

2M
, X(�) = 1�

⌅
C�(�) . (2.5)

A consequence of the open boundary condition is that the matrix K is an upper trian-

gular block matrix and its determinant, detK = (detD)T , is independent on the auxiliary

field. The absence of a ⇥ independent measure substantially simplifies the full numeri-

cal simulation of Eq. 2.1, which is equivalent to quenched simulation, since no important

sampling is necessary.

2.2 Transfer Matrix Formalism

Because K is upper triangular in form, interacting fermion propagators measured from time

slice zero to time slice � may be expressed exactly as a sequence of applications of D�1 and

X operators, resulting in a simple recursive formula:

K�1(� ; 0) = D�1X(� � 1)K�1(� � 1; 0) , (2.6)

choice, along with the absence of fermion propagation in the negative temporal direction

and open boundary conditions in time, ensures that no closed fermion loop depends on

⇥. A consequence is that the fermion determinant is ⇥-independent and has no e⇥ect on

the measure for ⇥, greatly simplifying numerical simulation of Eq. 1. The operator Cxx� =

C(x� x⇥) acts only in space and is taken to be real, symmetric, local, and invariant under

lattice translations; it can be thought of as some di⇥erential operator acting on ⇥ which

allows the interaction between fermions induced by ⇥ exchange to depend on the transfer

momentum. Not only does this give us a momentum-dependent interaction we can tune

to attain unitarity, but it is also Galilean invariant as it depends on only on the di⇥erence

between the ingoing and outgoing fermion momenta. This is important, since tuning a

non-Galilean invariant interaction to give unitarity in one frame would lead to non-unitary

fermions in another. Thus, boosted pairs of particles would see an interaction which did not

correspond to unitarity.

Integrating out the auxiliary field ⇥ yields the four-fermion interaction

(
⌅
C⇥)x,� (⇤̄⇤)x,� ⇤ (⇤̄⇤)x,� (C⇤̄⇤)x,� , (3)

where (⇤̄⇤)x,� = ⇤̄x,�⇤x,��1, and we have used the Hermiticity of C. Note that since there

are only two species of fermions, any three-, four- and higher-body interactions induced from

integrating out the auxiliary field will vanish due to Fermi statistics.

We may express Eq. 1 succinctly as S = ⇤̄K⇤, where the time components of the fermion

matrix K are given in block-matrix form by:

K =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

D �X(T � 1) 0 0 . . . 0

0 D �X(T � 2) 0 . . . 0

0 0 D �X(T � 3) . . . 0

0 0 0 D . . . 0
...

...
...

...
. . . �X(0)

0 0 0 0 . . . D

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

, (4)

with

D = 1� ⇧2

2M
, X(�) = 1�

⌅
C�(�) . (5)

Note that the L3 ⇥ L3 matrices D, X, C and �(�) act only in space and that �(�) is a

diagonal matrix with statistically independent random elements ⇥x(�).
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The corresponding expectation value of an arbitrary operator O(⌅, ⌅̄) is given by:

⇧O(⌅, ⌅̄)⌃ = 1

Z

⇥
[d⇤]�(⇤) detK Õ(K�1) , (11)

where Õ(K�1) is some new calculable operator which depends implicitly on ⇤ through the

propagator K�1. Both O and Õ may have explicit dependence on ⇤ as well. Since K is an

upper triangular block matrix, its determinant is given by the product of determinants of its

diagonal blocks, detK = (detD)Twhich is independent of the auxiliary field. Therefore the

full numerical simulation of Eq. 1 is equivalent to a quenched simulation, with expectation

values given by:

⇧O(⌅, ⌅̄)⌃ = 1

Zquenched

⇥
[d⇤]�(⇤)Õ(K�1) , (12)

where Zquenched =
�
[d⇤]�(⇤) is the quenched partition function. Note that the absence of a

nontrivial probability measure for the auxiliary field ensures that the path integral is free of

the sign problem.

Because K is upper triangular in form, interacting fermion propagators measured from

time slice zero to time slice ⇥ may be expressed exactly as a sequence of applications of D�1

and X operators, resulting in a simple recursive formula:

K�1(⇥ ; 0) = D�1X(⇥ � 1)K�1(⇥ � 1; 0) , (13)

with K�1(0; 0) = D�1. The form of this result is evident from the fact that fermion loops

are not permitted in the time direction, which is a consequence of using open boundary

conditions. Inversion of the nonlocal D operator and application of the X(⇥) operator may

be performed e⇥ciently with fast Fourier transforms (FFTs); it is this feature that allows

us to use the perfect dispersion relation and momentum dependent interaction defined in

Eq. 6 and Eq. 8.

B. Transfer matrix formalism

Multi-fermion correlation functions are obtained from an ensemble average of direct prod-

ucts of propagators

K�1(⇥ ; 0) = K�1(⇥ ; 0)⇥ . . .⇥K�1(⇥ ; 0)⇧ ⌅⇤ ⌃
N

, (14)
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is independent of the 
auxiliary field

No nontrivial probability measure
Quenched simulation & sign free

Open B.C. in time

Lattice construction for non-relativistic fermions

• Fermion matrix

1 Introduction

E

unitary(n) = ⇠E

free(n) (1)

"

unitary(n) = �"

free
F (n) (2)

� = 0.504(30) (3)

kFa = 1 (4)

"(k) / "F (5)

K

�1(T ; 0) = D

�1
X(T � 1)D�1

X(T � 2) · · ·X(0)D�1 (6)

K

�1(⌧ ; 0) = D

�1/2
T

⌧
D

�1/2 (7)

T = D

�1/2
X(⌧)D�1/2 (8)

For fermions near unitarity, the Bertsch parameter has been determined from exper-
iments and Monte Carlo simulations with great precision. However, It is challenging or
impossible to take ensemble average of some data which don’t have a Gaussian distribution.
One of our interest is measuring a many-body correlator which is generated from stochastic
process. The correlator has a nearly Log-Normal (LN) distribution and a long tail with
small probability. This have motivated us to consider a new statistical measurement for the
correlator.

Collect some past work on cumulant expansion
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Chapter 3

MEASUREMENT, OVERLAP PROBLEM, AND CUMULANT
EXPANSION TECHNIQUE

3.1 Measurement

The basic philosophy of the Euclidean lattice formulation is that the correlation function

C(�), which corresponds to the transfer matrix sandwiched between initial state at time

zero and final state at time slice � , exponentially decays with multiple energy eigenstates

in the Euclidean time,

C(�) = Z0e
�E0� + Z1e

�E1� + Z2e
�E2� · · · , (3.1)

where E0 < E1 < E2 < · · · . In the limit of � ⇤ ⌅, one can extract the ground state energy

by

E0 = �1

�
log [C(�)/Z0] . (3.2)

More practical and powerful way of extracting the ground state energy is to define a gener-

alized e⇥ective mass by

meff (�) =
1

��
log

�
C(� ⇤)

C(�)

⇥
, (3.3)

where �� is the time separation between � and � ⇤. The meff (�) satisfies

lim�⇥⌅meff (�) = E0, (3.4)

and simplifies the calculation since the coe⌅cient Z0 cancels out. At late times, the e⇥ective

mass plot should have a plateau where the contamination from excited states is less than

the statistical uncertainty by falling o⇥ exponentially with the energy di⇥erence between

lowest and first excited states.
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FIG. 18. (Color online) N = 4 fermion-correlator and natural log-correlator distributions at various time separations τ for unitary fermions
of mass M = 5 on an L = 10 lattice. Solid curves in the log-correlator distribution plot correspond to Gaussian fits to the distribution.

the Berry-Esseen theorem along with our mean-field result
for the correlator distribution to estimate the minimal number
of configurations required for a given value of N and τ . The
result is Nconf ≫ e3 40

9π
E0(N)τ , scaling exponentially in the time

and free-gas energy. Applying this result to the case N = 4, we
find that Nconf ≫ 3K configurations are required for τ = 24,
Nconf ≫ 175K for τ = 36, and Nconf ≫ 10M for τ = 48. The
onset of an overlap problem around τ ∼ 32 in Fig. 19 obtained
from Nconf = 100K configurations is consistent with the
prediction based on the application of Berry-Esseen theorem
to our mean-field calculation.

The traditional technique for avoiding difficulties associ-
ated with distribution overlap problems is to use importance
sampling in the Monte Carlo simulation. In the case of large
numbers of fermions, this might be achieved by reweighting
the probability measure by either the correlation function at
some late time, or some other carefully chosen weight factor.
In the former case, one might use the product ρ(φ)Cφ(τ0) for
an arbitrary but large value of τ0 as a probability measure for
the auxiliary fields, and then measure ensemble averages of the
ratio Cφ(τ )/Cφ(τ0) to estimate the correlator at times τ .10 In
taking such an approach, however, the ensembles generated are
typically only suitable for estimating a specfic operator (e.g.,
a single correlator at a specific value of N ), or a small class of
operators, and are inappropriate for most others. Consequently,
the simulation cost is enhanced by the number of operators
being measured in addition to the difficulty of performing
unquenched simulations using a far more complicated effective
action for the auxiliary field, which generally will involve the
logarithm of a correlation function. This may be likened to
performing a simulation in the Grand Canonical ensemble,
where a different simulation must be performed at each value
of chemical potential to achieve estimates of the energy as a
function of density.

A far more efficient approach proposed in Ref. [48] is to
find a better estimator for C(τ ) that is free from the distribution
overlap problem rather than rely on importance sampling.

10Since effective masses depend only on the ratio C(τ + 1)/C(τ ),
the overall normalization of correlation functions determined from
an ensemble average of 1/Cφ(τ0) using ρ(φ)Cφ(τ0) as a probability
measure is unimportant.

Provided Cφ(τ ) > 0 for every φ,11 a systematic method for
extracting useful information from an undersampled log-
normal-like distribution may be devised by considering the
cumulant expansion

ln CNκ
(τ ) ≡

Nκ∑

n=1

κn(τ )
n!

, (C3)

where κn(τ ) is the n-th cumulant of the distribution for
ln Cφ(τ ), which is presumed to be nearly normally distributed.
In this expansion, systematic uncertainties associated with the
truncation of the series at order Nκ are traded for statistical
uncertainties associated with including increasing numbers
of cumulants which have been estimated from an ensemble
of finite size. For a perfect log-normally distributed Cφ(τ ),
Eq. (C3) is exact at Nκ = 2, since all higher order cumulants
vanish. In practice, if the correlator distribution is not log-
normal, deviations in the distribution would be quantified by
the nonzero contributions to Eq. (C3) from κn with n > 2.
Such contributions—one would hope—are relatively small,
allowing one to reliably obtain an estimate for ln C(τ ) based
on estimates of κn.

The generalized effective mass associated with each partial
sum in Eq. (C3) may be expressed as

m
(Nκ )
eff (τ ) = − 1

&τ

Nκ∑

n=1

1
n!

[κn(τ ) − κn(τ + &τ )] . (C4)

By studying Eq. (C4) as a function of Nκ , one may determine
the ideal value N∗

κ for which the statistical uncertainties
and truncation errors become comparable. Such an N∗

κ then
defines a best estimate value for the effective mass at a
given time τ . Alternatively, we may define an energy ENκ

=
limτ→∞ m

(Nκ )
eff (τ )12 and study its convergence as a function of

Nκ . In all of our studies, we use the latter approach.
Finally, we comment on the applicability of the cumulant

method to odd numbers of fermions. In the case N↑ = N↓ + 1,

11For the case N↑ = N↓, one can show explicitly that correlators
of the type defined in Eqs. (B2) and (B3) are positive for every
background field configuration.
12Although we have not proved the convergence of m

(Nκ )
eff (τ ) as a

function of τ , all of of our numerical evidence suggests that this
quantity tends to a constant at late times.
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Remarks

1) Canonical approaches on an Euclidean space-time lattice

2) Zero temperature (open b. c.)

3) No trapping potentials

4) Ground state energies of Nup=Ndown and Nup+1=Ndown unitary 
fermions

5) Numerical results for Nup+1=Ndown unitary fermions are very 
preliminary (single volume V=163, selected values of N).
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We choose D to have the following form in momentum space:

Dpp� = �p,p� ⇥

⇤
⇧

⌅
ep

2/(2M) |p| < �

⇧ |p| ⌅ �
, (6)

where pj = 2⇤mj/L for integers mj ⌃ [�L/2, L/2 � 1] and j = 1, 2, 3. The parameter

� = ⇤⇥ (1� 10�5) is a hard momentum cuto⇥ imposed on the fermions; a small shift away

from ⇤ has been introduced in the cuto⇥ in order to avoid inclusion of momenta lying on

the very edge of the Brillouin zone (BZ). For free fermions, X = 1 and the propagator is

just a transfer matrix, which in momentum space has the form

�
K�1

free(0, ⇧)
⇥
pp� =

�
D��

⇥
pp� ⇤ �p,p�e�E(p)�⇥(�� |p|) (7)

and yields the exact one-particle energy, E(p) = p2/2M . So we see that the choice Eq.

(6) is designed to give the exact one-particle dispersion relation up to a momentum cuto⇥

|p| = �, beyond which the fermions do not propagate. Imposing the � cuto⇥ just within the

Brillouin zone boundary was necessary to reconcile the exact continuum dispersion relation

with the periodicity of the reciprocal lattice.

For the interaction we take in momentum space

Cpp� = �p,p� ⇥

⇤
⇧

⌅
C(p) |p| < �

C(�) |p| ⌅ �
, (8)

where below �, C(p) is an analytic function of p2 which we adjust order by order in p2

to construct the desired continuum phase shift for two-particle scattering (for example, the

constant � = ⇤/2 phase shift for unitary fermions). The details of how we choose and tune

C are described in Sec. II B and Sec. II C.

In order to simulate the partition function defined by Eq. 1, it is necessary to first integrate

out the fermionic degrees of freedom, yielding an e⇥ective action involving only the auxiliary

field. The resulting partition function is given by

Z =

�
[d⌃]⌅(⌃) detK , (9)

where

⌅(⌃) =

⇤
⌃⇧

⌃⌅

⌥
x e

� 1
2⇥

2
x , Gaussian

⌥
x(�⇥x

,1 + �⇥
x

,�1) , Z2

(10)
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Separable interaction and FFT algorithm
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Figure C.2: Estimation of fitting statistical and systematic errors.
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Figure C.3: Simultaneous fit of three correlation function to constant plus exponential

function.

C.3 Simultaneous fitting of multiple correlation functions

advantage of multiple correlation functions

simultaneous fit

D�1 = 1� ⇥2

2M
(C.4)

1 +
2 sin2(p/2)

M
(C.5)
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Improvement: single particle sector



ensure that
�
C always comes in pairs of two. This property is generally true for any N -

particle system since only an even number of insertions of the interaction survive integration

over the auxiliary fields; it is also evident from the right-hand-side of Eq. 3.

In the case of two fermions, where N⇤ = N⇥ = 1, the transfer matrix defined by Eq. 15

may be evaluated in momentum space and is given by:

 q⇤q⇥|T |p⇤p⇥⌦ =
�q⇥,p⇥�q�,p� +

�
C(p⇤ � q⇤)

�
C(p⇥ � q⇥)�q⇥+q�,p⇥+p�

e�(q⇥2+q�2+p⇥2+p�2)/(4M)
, (19)

for momenta below the cuto⇤ �. We choose to expand the periodic function C(p) for |p| < �

in a convenient basis of local operators:

C(p) =
4⇥

M

NO�1⌥

n=0

C2nO2n(p) , (20)

with unknown coe⇧cients C2n to be determined from scattering data. Our choice of basis

operators is:

O2n(p) = Mn
0 ⇥

⇤
⌃⇧

⌃⌅

�
1 � e�p2/M0

⇥n

|p| ⇤ � ,
�
1 � e��2/M0

⇥n

|p| > �
(21)

for p within the first Brillouin zone, satisfying O2n(p) ⌅ p2n for p2 ⇧ M0 and tends to a

constant for p2 > M0. Throughout this work we take M0 = M , although generally there is

no need for M and M0 to be the same. In addition we will take M = O(1) in lattice units.

In the special case where NO = 1 the only operator in the sum Eq. (20) is O0 which is

constant, and the two-fermion transfer matrix may be diagonalized analytically on the finite

volume lattice. All nonzero relative momentum eigenstates of Eq. 19 correspond to plane

waves, whereas the zero relative momentum eigenstates are given by

 p⇤p⇥|⇥k⌦ ⌃ 1

e�Ek+p2
cm/M+p2

rel/(4M) � 1
�prel,0 (22)

where pcm = (p⇤ + p⇥)/2 and prel = p⇤ � p⇥. The corresponding energy eigenvalues Ek are

given by solutions to the integral equation

M

4⇥

1

C0
=

1

L3

⌥

p<�

1

e�E+p2
cm/M+p2/M � 1

, (23)

which, for every value of p2
cm, admits a single bound state for any value of C0 > 0 at finite

volume. In the infinite volume limit, a bound state only survives for C0 greater than some

positive M -dependent critical value.
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Improvement: two-body sector

ensure that
�
C always comes in pairs of two. This property is generally true for any N -

particle system since only an even number of insertions of the interaction survive integration

over the auxiliary fields; it is also evident from the right-hand-side of Eq. 3.

In the case of two fermions, where N⇤ = N⇥ = 1, the transfer matrix defined by Eq. 15

may be evaluated in momentum space and is given by:

 q⇤q⇥|T |p⇤p⇥⌦ =
�q⇥,p⇥�q�,p� +

�
C(p⇤ � q⇤)

�
C(p⇥ � q⇥)�q⇥+q�,p⇥+p�

e�(q⇥2+q�2+p⇥2+p�2)/(4M)
, (19)

for momenta below the cuto⇤ �. We choose to expand the periodic function C(p) for |p| < �

in a convenient basis of local operators:

C(p) =
4⇥

M

NO�1⌥

n=0

C2nO2n(p) , (20)

with unknown coe⇧cients C2n to be determined from scattering data. Our choice of basis

operators is:

O2n(p) = Mn
0 ⇥

⇤
⌃⇧

⌃⌅

�
1 � e�p2/M0

⇥n

|p| ⇤ � ,
�
1 � e��2/M0

⇥n

|p| > �
(21)

for p within the first Brillouin zone, satisfying O2n(p) ⌅ p2n for p2 ⇧ M0 and tends to a

constant for p2 > M0. Throughout this work we take M0 = M , although generally there is

no need for M and M0 to be the same. In addition we will take M = O(1) in lattice units.

In the special case where NO = 1 the only operator in the sum Eq. (20) is O0 which is

constant, and the two-fermion transfer matrix may be diagonalized analytically on the finite

volume lattice. All nonzero relative momentum eigenstates of Eq. 19 correspond to plane

waves, whereas the zero relative momentum eigenstates are given by

 p⇤p⇥|⇥k⌦ ⌃ 1

e�Ek+p2
cm/M+p2

rel/(4M) � 1
�prel,0 (22)

where pcm = (p⇤ + p⇥)/2 and prel = p⇤ � p⇥. The corresponding energy eigenvalues Ek are

given by solutions to the integral equation

M

4⇥

1

C0
=

1

L3

⌥

p<�

1

e�E+p2
cm/M+p2/M � 1

, (23)

which, for every value of p2
cm, admits a single bound state for any value of C0 > 0 at finite

volume. In the infinite volume limit, a bound state only survives for C0 greater than some

positive M -dependent critical value.
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In the case where NO > 1, even semi-analytic solutions
for the C2n coefficients are not feasible, but they may be
determined numerically by explicit diagonalization of Eq. (19).
It is helpful to restrict the transfer matrix to the zero center-
of-momentum subspace, thus reducing the dimensionality of
the matrix from L6 down to a more manageable size of L3.
A further reduction in the dimensionality of Eq. (19) may
be achieved by projecting the zero center-of-momentum part
of the transfer matrix onto appropriate representations of the
octahedral group Oh (e.g., in the case of s-wave scattering, the
trivial representation A+

1 ). Performing such a projection makes
numerical diagonalization feasible for lattices at least as large
as L = 64, which is the maximum lattice size we consider in
our numerical studies.

C. Parameter tuning

Unitary fermions in the continuum are a conformal system,
while a lattice simulation necessarily involves finite lattice
spacing and volume, both breaking conformal symmetry.
Critical to a numerical simulation is the ability to tune the
interactions to unitarity and control the systematic errors.
In contrast to chiral symmetry in lattice QCD, for example,
there is no phase transition associated with unitarity, despite
the enhanced symmetry, and so there is no general feature
in the N -body spectrum that allows one to easily evaluate
how far one is from unitarity. It is important therefore to
collect as many results as possible about unitary fermions
in the continuum that are known exactly or to high numerical
precision in order to facilitate the tuning of the lattice action
and to control systematic errors.

What is known exactly about unitary fermions in the
continuum is (i) the spectrum of two unitary fermions in a box
of size L [50–53]; (ii) the spectrum of two and three unitary
fermions in a harmonic trap [18]; (iii) the scaling dimension
of local composite operators involving unitary fermions.5 Not
known exactly but determined to high numerical accuracy are
(iv) the few lowest energy levels for three unitary fermions in
a box, extrapolated from a lattice Hamiltonian diagonalization
very close to the continuum limit, with lattice size up to
L = 50 [29]; and (v) the ground-state energies for 4, 5, 6
unitary fermions in a harmonic trap, obtained by solving the
Schrödinger equation [57]. The ground-state energy for N = 4
fermions in a box has also recently been precisely studied by
several methods in Ref. [37], but involves extrapolation to the
continuum from very small lattices, L ! 8, which makes the
evaluation of potential systematic errors difficult.

Our strategy for utilizing this information to tune our lattice
action and estimate the size of systematic errors is to adjust
our C2n coefficients to correctly reproduce the low-lying two-
particle spectrum in a box in the continuum, subsequently
showing that we can reproduce the correct volume scaling
relations of measured energies, as well as the precisely known
ground-state energies for three fermions in a box or 3–6 trapped

5The scaling of two-body operators was determined in Refs. [2,3]
(see also [54]); the scaling of low dimension three-body operators
was first analyzed by Griesshammer [55,56], and a beautiful general
analysis was subsequently supplied by Nishida and Son [17].
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FIG. 1. (Color online) A plot of the three-dimensional ζ -function
S(η).

fermions. Here we discuss the tuning and energy levels of two
and three untrapped fermions; our results for few-body trapped
fermions are discussed in Sec. III

1. Tuning and scaling of low-lying two-body untrapped
energy levels

The two-particle energies E for s-wave particle pairs in a
box with zero net momentum and phase shift δ0 are given by
the solutions to

p cot δ0 = 1
πL

S(η), S(η) = lim
%→∞

[
∑

|j|<%

1
j2 − η

− 4π%

]

,

(24)

where j is an integer three-vector, η = (pL/2π )2, and p is
related to the energy by E = p2/M [50–53]. If scattering is
due to short-range interactions, then pcot δ0 is analytic in p2 at
sufficiently low p and one has the effective range expansion,

p cot δ0 = −1
a

+ 1
2
r0p

2 + r1p
4 . . . , (25)

where a is the scattering length, r0 is the effective range,
and r1, with dimension of volume, is what we will call the
shape parameter. By means of Eq. (24), knowledge of the
energy eigenvalues for the low-lying two-particle modes in
a box can be used to determine effective range expansion
parameters. Conversely, given a target set of effective range
expansion parameters, we can tune our operator coefficients
C2n in Eq. (20) of our lattice theory until we attain the correct
low-lying energy eigenvalues. This general tuning procedure
was introduced in Ref. [58]. For unitary fermions in the
continuum, we set pcot δ0 = 0 on the left-hand side of Eq. (24)
and find the solutions η∗

k to the equation S(η∗
k ) = 0. The

function S(η) is shown in Fig. 1, and the roots η∗
k correspond

to the points where the function crosses the η axis. The first
27 solutions are listed in Table I.6

On the lattice, the energy eigenvalues are defined from λ =
e−bτ E , where λ are the eigenvalues of the two-particle transfer

6To compute the η∗
k it is very helpful to recognize that the number

of integer three vectors j with equal norm is given by the coefficient
of x |j|2 in the Taylor expansion of [θ3(0,x)]3, where θ3(u,x) is one of
the Jacobi theta functions.
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TABLE I: First 27 roots ⇥�k (k = 1, . . . , 27) of S(⇥).

k ⇥�k k ⇥�k k ⇥�k k ⇥�k

1 -0.0959007 8 7.1962633 15 15.3537376 22 23.0194729

2 0.4728943 9 8.2879537 16 16.1218254 23 24.3306210

3 1.4415913 10 9.5345315 17 17.5325416 24 25.3016129

4 2.6270076 11 10.5505341 18 18.6053932 25 26.6803601

5 3.5366200 12 11.7014958 19 19.5186394 26 27.8780020

6 4.2517060 13 12.3102392 20 20.4033187 27 29.6156511

7 5.5377008 14 13.3831152 21 21.6944179

for momenta small compared to the cuto�. For smaller lattices, there is less of a hierarchy

between the lowlying momentum states and the cuto�, the e�ective range expansion will

break down for lower values of ⇥, and it is conceivable that the tuning procedure could cause

problems. In any case, fewer fermions can be put on a small lattice before one finds that

the ones in the higher shells no longer behave like unitary fermions. For this reason it is

important to check whether the tuning procedure is really producing unitary fermions in

the two-particle sector, and to what momentum shell unitarity is maintained.

In light of the concern raised above, one must compute p cot �0 for momenta well above the

fitted points and check for pathological behavior, given a solution for the C2n coe⇤cients, by

computing eigenvalues of the two particle transfer matrix and plugging them into Lüscher’s

formula Eq. 19. Fig. 2 shows the result of this exercise for up to four tuned couplings for

an L = 32 lattice. In the left panel we plot p cot �0 � 1 over a wide range of momenta,
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Unitarity

to

p cot �0 =
1

⌅L
S(⇥) , S(⇥) = lim

�⇥⇤

�

⇤
⇧

|j|<�

1

j2 � ⇥
� 4⌅�

⇥

⌅ , (24)

where j is an integer three-vector, ⇥ = (pL/2⌅)2, and the energy is E = p2/M . If scattering

is due to short range interactions, then p cot � is analytic in p2 at su⌅ciently low p and one

has the e⇥ective range expansion,

p cot �0 = �1

a
+

1

2
r0p

2 + . . . , (25)

where a is the phase shift, r0 is the e⇥ective range. By means of this formula, knowledge

of the energy eigenvalues for the low lying two-particle modes in a box can be used to

infer the e⇥ective range expansion parameters. We will use this formula in the opposite

sense: given a desired set of e⇥ective range expansion parameters, we can tune our operator

coe⌅cients C2n in Eq. (20) of our lattice theory until we attain the correct low-lying energy

eigenvalues. This general tuning procedure was introduced in [55]. For unitary fermions we

set p cot � = 0 on the lefthand side of Eq. (24) and find the solutions ⇥�k to the equation

S(⇥�k) = 0. The function S(⇥) is shown in Fig. 1, and the roots ⇥�k correspond to the points

where the function crosses the x-axis. The first 27 solutions are listed in Table I 6.

In practice this means that for a set of operator coe⌅cients C2n (for n = 0, . . . , NO � 1)

defined in Eq. 21 we compute the two-particle transfer matrix and compute its NO lowest

eigenvalues ⇤k = exp(�Ek) = exp[�(⇥k/M)(2⌅/L)2]; we then adjust the C2n coe⌅cients

until ⇥k = ⇥�k for each k = 1, . . . , NO. Details of how this tuning was performed numerically

are provided in Sec. A.

A potential worry about our tuning method is that by tuning p cot �0 to exactly equal

zero at NO discrete momenta, we are requiring that p cot �0 in the continuum limit be either

a non-analytic function or that it oscillate with nodes at our fitting points. For large lattices

this is not going to happen so long as the fitting procedure gives rise to O(1) or smaller C2n

operator coe⌅cients, since the On operators are localized on the discretization scale, and

so from general theorems will therefore give rise to an analytic and smooth function p cot �

6 To compute the ��k it is very helpful to recognize that the number of integer three vectors j with equal

norm is given by the coe�cient of x|j|2 in the Taylor expansion of [⇥3(0, x)]
3, where ⇥3(u, x) is one of the

Jacobi theta functions.
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In the case where NO > 1, even semi-analytic solutions
for the C2n coefficients are not feasible, but they may be
determined numerically by explicit diagonalization of Eq. (19).
It is helpful to restrict the transfer matrix to the zero center-
of-momentum subspace, thus reducing the dimensionality of
the matrix from L6 down to a more manageable size of L3.
A further reduction in the dimensionality of Eq. (19) may
be achieved by projecting the zero center-of-momentum part
of the transfer matrix onto appropriate representations of the
octahedral group Oh (e.g., in the case of s-wave scattering, the
trivial representation A+

1 ). Performing such a projection makes
numerical diagonalization feasible for lattices at least as large
as L = 64, which is the maximum lattice size we consider in
our numerical studies.

C. Parameter tuning

Unitary fermions in the continuum are a conformal system,
while a lattice simulation necessarily involves finite lattice
spacing and volume, both breaking conformal symmetry.
Critical to a numerical simulation is the ability to tune the
interactions to unitarity and control the systematic errors.
In contrast to chiral symmetry in lattice QCD, for example,
there is no phase transition associated with unitarity, despite
the enhanced symmetry, and so there is no general feature
in the N -body spectrum that allows one to easily evaluate
how far one is from unitarity. It is important therefore to
collect as many results as possible about unitary fermions
in the continuum that are known exactly or to high numerical
precision in order to facilitate the tuning of the lattice action
and to control systematic errors.

What is known exactly about unitary fermions in the
continuum is (i) the spectrum of two unitary fermions in a box
of size L [50–53]; (ii) the spectrum of two and three unitary
fermions in a harmonic trap [18]; (iii) the scaling dimension
of local composite operators involving unitary fermions.5 Not
known exactly but determined to high numerical accuracy are
(iv) the few lowest energy levels for three unitary fermions in
a box, extrapolated from a lattice Hamiltonian diagonalization
very close to the continuum limit, with lattice size up to
L = 50 [29]; and (v) the ground-state energies for 4, 5, 6
unitary fermions in a harmonic trap, obtained by solving the
Schrödinger equation [57]. The ground-state energy for N = 4
fermions in a box has also recently been precisely studied by
several methods in Ref. [37], but involves extrapolation to the
continuum from very small lattices, L ! 8, which makes the
evaluation of potential systematic errors difficult.

Our strategy for utilizing this information to tune our lattice
action and estimate the size of systematic errors is to adjust
our C2n coefficients to correctly reproduce the low-lying two-
particle spectrum in a box in the continuum, subsequently
showing that we can reproduce the correct volume scaling
relations of measured energies, as well as the precisely known
ground-state energies for three fermions in a box or 3–6 trapped

5The scaling of two-body operators was determined in Refs. [2,3]
(see also [54]); the scaling of low dimension three-body operators
was first analyzed by Griesshammer [55,56], and a beautiful general
analysis was subsequently supplied by Nishida and Son [17].
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fermions. Here we discuss the tuning and energy levels of two
and three untrapped fermions; our results for few-body trapped
fermions are discussed in Sec. III

1. Tuning and scaling of low-lying two-body untrapped
energy levels

The two-particle energies E for s-wave particle pairs in a
box with zero net momentum and phase shift δ0 are given by
the solutions to

p cot δ0 = 1
πL

S(η), S(η) = lim
%→∞

[
∑

|j|<%

1
j2 − η

− 4π%

]

,

(24)

where j is an integer three-vector, η = (pL/2π )2, and p is
related to the energy by E = p2/M [50–53]. If scattering is
due to short-range interactions, then pcot δ0 is analytic in p2 at
sufficiently low p and one has the effective range expansion,

p cot δ0 = −1
a

+ 1
2
r0p

2 + r1p
4 . . . , (25)

where a is the scattering length, r0 is the effective range,
and r1, with dimension of volume, is what we will call the
shape parameter. By means of Eq. (24), knowledge of the
energy eigenvalues for the low-lying two-particle modes in
a box can be used to determine effective range expansion
parameters. Conversely, given a target set of effective range
expansion parameters, we can tune our operator coefficients
C2n in Eq. (20) of our lattice theory until we attain the correct
low-lying energy eigenvalues. This general tuning procedure
was introduced in Ref. [58]. For unitary fermions in the
continuum, we set pcot δ0 = 0 on the left-hand side of Eq. (24)
and find the solutions η∗

k to the equation S(η∗
k ) = 0. The

function S(η) is shown in Fig. 1, and the roots η∗
k correspond

to the points where the function crosses the η axis. The first
27 solutions are listed in Table I.6

On the lattice, the energy eigenvalues are defined from λ =
e−bτ E , where λ are the eigenvalues of the two-particle transfer

6To compute the η∗
k it is very helpful to recognize that the number

of integer three vectors j with equal norm is given by the coefficient
of x |j|2 in the Taylor expansion of [θ3(0,x)]3, where θ3(u,x) is one of
the Jacobi theta functions.
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Improvement: two-body sector

ensure that
�
C always comes in pairs of two. This property is generally true for any N -

particle system since only an even number of insertions of the interaction survive integration

over the auxiliary fields; it is also evident from the right-hand-side of Eq. 3.

In the case of two fermions, where N⇤ = N⇥ = 1, the transfer matrix defined by Eq. 15

may be evaluated in momentum space and is given by:

 q⇤q⇥|T |p⇤p⇥⌦ =
�q⇥,p⇥�q�,p� +

�
C(p⇤ � q⇤)

�
C(p⇥ � q⇥)�q⇥+q�,p⇥+p�

e�(q⇥2+q�2+p⇥2+p�2)/(4M)
, (19)

for momenta below the cuto⇤ �. We choose to expand the periodic function C(p) for |p| < �

in a convenient basis of local operators:

C(p) =
4⇥

M

NO�1⌥

n=0

C2nO2n(p) , (20)

with unknown coe⇧cients C2n to be determined from scattering data. Our choice of basis

operators is:

O2n(p) = Mn
0 ⇥

⇤
⌃⇧

⌃⌅

�
1 � e�p2/M0

⇥n

|p| ⇤ � ,
�
1 � e��2/M0

⇥n

|p| > �
(21)

for p within the first Brillouin zone, satisfying O2n(p) ⌅ p2n for p2 ⇧ M0 and tends to a

constant for p2 > M0. Throughout this work we take M0 = M , although generally there is

no need for M and M0 to be the same. In addition we will take M = O(1) in lattice units.

In the special case where NO = 1 the only operator in the sum Eq. (20) is O0 which is

constant, and the two-fermion transfer matrix may be diagonalized analytically on the finite

volume lattice. All nonzero relative momentum eigenstates of Eq. 19 correspond to plane

waves, whereas the zero relative momentum eigenstates are given by

 p⇤p⇥|⇥k⌦ ⌃ 1

e�Ek+p2
cm/M+p2

rel/(4M) � 1
�prel,0 (22)

where pcm = (p⇤ + p⇥)/2 and prel = p⇤ � p⇥. The corresponding energy eigenvalues Ek are

given by solutions to the integral equation

M

4⇥

1

C0
=

1

L3

⌥

p<�

1

e�E+p2
cm/M+p2/M � 1

, (23)

which, for every value of p2
cm, admits a single bound state for any value of C0 > 0 at finite

volume. In the infinite volume limit, a bound state only survives for C0 greater than some

positive M -dependent critical value.
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In the case where NO > 1, even semi-analytic solutions
for the C2n coefficients are not feasible, but they may be
determined numerically by explicit diagonalization of Eq. (19).
It is helpful to restrict the transfer matrix to the zero center-
of-momentum subspace, thus reducing the dimensionality of
the matrix from L6 down to a more manageable size of L3.
A further reduction in the dimensionality of Eq. (19) may
be achieved by projecting the zero center-of-momentum part
of the transfer matrix onto appropriate representations of the
octahedral group Oh (e.g., in the case of s-wave scattering, the
trivial representation A+

1 ). Performing such a projection makes
numerical diagonalization feasible for lattices at least as large
as L = 64, which is the maximum lattice size we consider in
our numerical studies.

C. Parameter tuning

Unitary fermions in the continuum are a conformal system,
while a lattice simulation necessarily involves finite lattice
spacing and volume, both breaking conformal symmetry.
Critical to a numerical simulation is the ability to tune the
interactions to unitarity and control the systematic errors.
In contrast to chiral symmetry in lattice QCD, for example,
there is no phase transition associated with unitarity, despite
the enhanced symmetry, and so there is no general feature
in the N -body spectrum that allows one to easily evaluate
how far one is from unitarity. It is important therefore to
collect as many results as possible about unitary fermions
in the continuum that are known exactly or to high numerical
precision in order to facilitate the tuning of the lattice action
and to control systematic errors.

What is known exactly about unitary fermions in the
continuum is (i) the spectrum of two unitary fermions in a box
of size L [50–53]; (ii) the spectrum of two and three unitary
fermions in a harmonic trap [18]; (iii) the scaling dimension
of local composite operators involving unitary fermions.5 Not
known exactly but determined to high numerical accuracy are
(iv) the few lowest energy levels for three unitary fermions in
a box, extrapolated from a lattice Hamiltonian diagonalization
very close to the continuum limit, with lattice size up to
L = 50 [29]; and (v) the ground-state energies for 4, 5, 6
unitary fermions in a harmonic trap, obtained by solving the
Schrödinger equation [57]. The ground-state energy for N = 4
fermions in a box has also recently been precisely studied by
several methods in Ref. [37], but involves extrapolation to the
continuum from very small lattices, L ! 8, which makes the
evaluation of potential systematic errors difficult.

Our strategy for utilizing this information to tune our lattice
action and estimate the size of systematic errors is to adjust
our C2n coefficients to correctly reproduce the low-lying two-
particle spectrum in a box in the continuum, subsequently
showing that we can reproduce the correct volume scaling
relations of measured energies, as well as the precisely known
ground-state energies for three fermions in a box or 3–6 trapped

5The scaling of two-body operators was determined in Refs. [2,3]
(see also [54]); the scaling of low dimension three-body operators
was first analyzed by Griesshammer [55,56], and a beautiful general
analysis was subsequently supplied by Nishida and Son [17].
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FIG. 1. (Color online) A plot of the three-dimensional ζ -function
S(η).

fermions. Here we discuss the tuning and energy levels of two
and three untrapped fermions; our results for few-body trapped
fermions are discussed in Sec. III

1. Tuning and scaling of low-lying two-body untrapped
energy levels

The two-particle energies E for s-wave particle pairs in a
box with zero net momentum and phase shift δ0 are given by
the solutions to

p cot δ0 = 1
πL

S(η), S(η) = lim
%→∞

[
∑

|j|<%

1
j2 − η

− 4π%

]

,

(24)

where j is an integer three-vector, η = (pL/2π )2, and p is
related to the energy by E = p2/M [50–53]. If scattering is
due to short-range interactions, then pcot δ0 is analytic in p2 at
sufficiently low p and one has the effective range expansion,

p cot δ0 = −1
a

+ 1
2
r0p

2 + r1p
4 . . . , (25)

where a is the scattering length, r0 is the effective range,
and r1, with dimension of volume, is what we will call the
shape parameter. By means of Eq. (24), knowledge of the
energy eigenvalues for the low-lying two-particle modes in
a box can be used to determine effective range expansion
parameters. Conversely, given a target set of effective range
expansion parameters, we can tune our operator coefficients
C2n in Eq. (20) of our lattice theory until we attain the correct
low-lying energy eigenvalues. This general tuning procedure
was introduced in Ref. [58]. For unitary fermions in the
continuum, we set pcot δ0 = 0 on the left-hand side of Eq. (24)
and find the solutions η∗

k to the equation S(η∗
k ) = 0. The

function S(η) is shown in Fig. 1, and the roots η∗
k correspond

to the points where the function crosses the η axis. The first
27 solutions are listed in Table I.6

On the lattice, the energy eigenvalues are defined from λ =
e−bτ E , where λ are the eigenvalues of the two-particle transfer

6To compute the η∗
k it is very helpful to recognize that the number

of integer three vectors j with equal norm is given by the coefficient
of x |j|2 in the Taylor expansion of [θ3(0,x)]3, where θ3(u,x) is one of
the Jacobi theta functions.
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TABLE I: First 27 roots ⇥�k (k = 1, . . . , 27) of S(⇥).

k ⇥�k k ⇥�k k ⇥�k k ⇥�k

1 -0.0959007 8 7.1962633 15 15.3537376 22 23.0194729

2 0.4728943 9 8.2879537 16 16.1218254 23 24.3306210

3 1.4415913 10 9.5345315 17 17.5325416 24 25.3016129

4 2.6270076 11 10.5505341 18 18.6053932 25 26.6803601

5 3.5366200 12 11.7014958 19 19.5186394 26 27.8780020

6 4.2517060 13 12.3102392 20 20.4033187 27 29.6156511

7 5.5377008 14 13.3831152 21 21.6944179

for momenta small compared to the cuto�. For smaller lattices, there is less of a hierarchy

between the lowlying momentum states and the cuto�, the e�ective range expansion will

break down for lower values of ⇥, and it is conceivable that the tuning procedure could cause

problems. In any case, fewer fermions can be put on a small lattice before one finds that

the ones in the higher shells no longer behave like unitary fermions. For this reason it is

important to check whether the tuning procedure is really producing unitary fermions in

the two-particle sector, and to what momentum shell unitarity is maintained.

In light of the concern raised above, one must compute p cot �0 for momenta well above the

fitted points and check for pathological behavior, given a solution for the C2n coe⇤cients, by

computing eigenvalues of the two particle transfer matrix and plugging them into Lüscher’s

formula Eq. 19. Fig. 2 shows the result of this exercise for up to four tuned couplings for

an L = 32 lattice. In the left panel we plot p cot �0 � 1 over a wide range of momenta,
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Unitarity

to

p cot �0 =
1

⌅L
S(⇥) , S(⇥) = lim

�⇥⇤

�

⇤
⇧

|j|<�

1

j2 � ⇥
� 4⌅�

⇥

⌅ , (24)

where j is an integer three-vector, ⇥ = (pL/2⌅)2, and the energy is E = p2/M . If scattering

is due to short range interactions, then p cot � is analytic in p2 at su⌅ciently low p and one

has the e⇥ective range expansion,

p cot �0 = �1

a
+

1

2
r0p

2 + . . . , (25)

where a is the phase shift, r0 is the e⇥ective range. By means of this formula, knowledge

of the energy eigenvalues for the low lying two-particle modes in a box can be used to

infer the e⇥ective range expansion parameters. We will use this formula in the opposite

sense: given a desired set of e⇥ective range expansion parameters, we can tune our operator

coe⌅cients C2n in Eq. (20) of our lattice theory until we attain the correct low-lying energy

eigenvalues. This general tuning procedure was introduced in [55]. For unitary fermions we

set p cot � = 0 on the lefthand side of Eq. (24) and find the solutions ⇥�k to the equation

S(⇥�k) = 0. The function S(⇥) is shown in Fig. 1, and the roots ⇥�k correspond to the points

where the function crosses the x-axis. The first 27 solutions are listed in Table I 6.

In practice this means that for a set of operator coe⌅cients C2n (for n = 0, . . . , NO � 1)

defined in Eq. 21 we compute the two-particle transfer matrix and compute its NO lowest

eigenvalues ⇤k = exp(�Ek) = exp[�(⇥k/M)(2⌅/L)2]; we then adjust the C2n coe⌅cients

until ⇥k = ⇥�k for each k = 1, . . . , NO. Details of how this tuning was performed numerically

are provided in Sec. A.

A potential worry about our tuning method is that by tuning p cot �0 to exactly equal

zero at NO discrete momenta, we are requiring that p cot �0 in the continuum limit be either

a non-analytic function or that it oscillate with nodes at our fitting points. For large lattices

this is not going to happen so long as the fitting procedure gives rise to O(1) or smaller C2n

operator coe⌅cients, since the On operators are localized on the discretization scale, and

so from general theorems will therefore give rise to an analytic and smooth function p cot �

6 To compute the ��k it is very helpful to recognize that the number of integer three vectors j with equal

norm is given by the coe�cient of x|j|2 in the Taylor expansion of [⇥3(0, x)]
3, where ⇥3(u, x) is one of the

Jacobi theta functions.
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In the case where NO > 1, even semi-analytic solutions
for the C2n coefficients are not feasible, but they may be
determined numerically by explicit diagonalization of Eq. (19).
It is helpful to restrict the transfer matrix to the zero center-
of-momentum subspace, thus reducing the dimensionality of
the matrix from L6 down to a more manageable size of L3.
A further reduction in the dimensionality of Eq. (19) may
be achieved by projecting the zero center-of-momentum part
of the transfer matrix onto appropriate representations of the
octahedral group Oh (e.g., in the case of s-wave scattering, the
trivial representation A+

1 ). Performing such a projection makes
numerical diagonalization feasible for lattices at least as large
as L = 64, which is the maximum lattice size we consider in
our numerical studies.

C. Parameter tuning

Unitary fermions in the continuum are a conformal system,
while a lattice simulation necessarily involves finite lattice
spacing and volume, both breaking conformal symmetry.
Critical to a numerical simulation is the ability to tune the
interactions to unitarity and control the systematic errors.
In contrast to chiral symmetry in lattice QCD, for example,
there is no phase transition associated with unitarity, despite
the enhanced symmetry, and so there is no general feature
in the N -body spectrum that allows one to easily evaluate
how far one is from unitarity. It is important therefore to
collect as many results as possible about unitary fermions
in the continuum that are known exactly or to high numerical
precision in order to facilitate the tuning of the lattice action
and to control systematic errors.

What is known exactly about unitary fermions in the
continuum is (i) the spectrum of two unitary fermions in a box
of size L [50–53]; (ii) the spectrum of two and three unitary
fermions in a harmonic trap [18]; (iii) the scaling dimension
of local composite operators involving unitary fermions.5 Not
known exactly but determined to high numerical accuracy are
(iv) the few lowest energy levels for three unitary fermions in
a box, extrapolated from a lattice Hamiltonian diagonalization
very close to the continuum limit, with lattice size up to
L = 50 [29]; and (v) the ground-state energies for 4, 5, 6
unitary fermions in a harmonic trap, obtained by solving the
Schrödinger equation [57]. The ground-state energy for N = 4
fermions in a box has also recently been precisely studied by
several methods in Ref. [37], but involves extrapolation to the
continuum from very small lattices, L ! 8, which makes the
evaluation of potential systematic errors difficult.

Our strategy for utilizing this information to tune our lattice
action and estimate the size of systematic errors is to adjust
our C2n coefficients to correctly reproduce the low-lying two-
particle spectrum in a box in the continuum, subsequently
showing that we can reproduce the correct volume scaling
relations of measured energies, as well as the precisely known
ground-state energies for three fermions in a box or 3–6 trapped

5The scaling of two-body operators was determined in Refs. [2,3]
(see also [54]); the scaling of low dimension three-body operators
was first analyzed by Griesshammer [55,56], and a beautiful general
analysis was subsequently supplied by Nishida and Son [17].
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fermions. Here we discuss the tuning and energy levels of two
and three untrapped fermions; our results for few-body trapped
fermions are discussed in Sec. III

1. Tuning and scaling of low-lying two-body untrapped
energy levels

The two-particle energies E for s-wave particle pairs in a
box with zero net momentum and phase shift δ0 are given by
the solutions to

p cot δ0 = 1
πL

S(η), S(η) = lim
%→∞

[
∑

|j|<%

1
j2 − η

− 4π%

]

,

(24)

where j is an integer three-vector, η = (pL/2π )2, and p is
related to the energy by E = p2/M [50–53]. If scattering is
due to short-range interactions, then pcot δ0 is analytic in p2 at
sufficiently low p and one has the effective range expansion,

p cot δ0 = −1
a

+ 1
2
r0p

2 + r1p
4 . . . , (25)

where a is the scattering length, r0 is the effective range,
and r1, with dimension of volume, is what we will call the
shape parameter. By means of Eq. (24), knowledge of the
energy eigenvalues for the low-lying two-particle modes in
a box can be used to determine effective range expansion
parameters. Conversely, given a target set of effective range
expansion parameters, we can tune our operator coefficients
C2n in Eq. (20) of our lattice theory until we attain the correct
low-lying energy eigenvalues. This general tuning procedure
was introduced in Ref. [58]. For unitary fermions in the
continuum, we set pcot δ0 = 0 on the left-hand side of Eq. (24)
and find the solutions η∗

k to the equation S(η∗
k ) = 0. The

function S(η) is shown in Fig. 1, and the roots η∗
k correspond

to the points where the function crosses the η axis. The first
27 solutions are listed in Table I.6

On the lattice, the energy eigenvalues are defined from λ =
e−bτ E , where λ are the eigenvalues of the two-particle transfer

6To compute the η∗
k it is very helpful to recognize that the number

of integer three vectors j with equal norm is given by the coefficient
of x |j|2 in the Taylor expansion of [θ3(0,x)]3, where θ3(u,x) is one of
the Jacobi theta functions.
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rendering numerical simulations of certain fermionic theories
at finite density impractical, due to the presence of a complex
effective action for the scalar field φ.

We have since developed a highly improved lattice theory
based upon the construction of Ref. [47], allowing us to study
up to 70 unitary fermions confined to a harmonic trap [50]
and up to 66 unitary fermions confined to a finite box. Results
of the latter study are described in detail in the proceeding
sections. Here, we summarize some of the salient features of
our construction:

(1) We employ open boundary conditions in the time
direction, preventing fermion propagation from wrapping
“around the world.” This choice eliminates φ dependence
in the fermion determinant obtained upon integrating out the
fermion degrees of freedom in the path integral and therefore
yields a trivial effective action for the scalar auxiliary field and
eliminates the need for importance sampling in the simulation.

(2) Due to our choice of temporal boundary conditions,
simulations must be performed at zero temperature and zero
chemical potential. The energy of systems at finite density
is obtained by studying the long-time exponential falloff of
multifermion correlation functions.

(3) We use a continuum single-particle dispersion relation
for fermions, thus reducing lattice discretization errors.

(4) We introduce Galilean invariant derivative interactions
which allow us to eliminate higher-order terms in the effective
range expansion for p cot δ0(p). We are thus able to simulate
fermions close to the unitary limit even at small lattice
volumes.

Several recent papers have indicated that lattice Monte
Carlo methods can be affected by large systematic errors
due to a finite filling factor [51–53]. For a given number of
particles, this systematic error corresponds to a dependence
of the Bertsch parameter on the number of lattice sites. The
improvements referred to above are crucial in reducing these
errors. In this paper, we provide an extensive discussion of the
discretization errors which remain after improvement, based
upon an analysis of the Symanzik action [54,55].

The organization of this paper is as follows: In Sec. II, we
summarize our highly improved lattice construction for nu-
merically simulating untrapped unitary fermions and provide
details regarding the construction of multifermion correlation
functions used to extract the ground-state energy of the system.
In addition, the method used to tune two-body couplings
to the unitary point is briefly reviewed. The details of the
lattice construction are discussed at greater length in Ref. [50];
here we only provide the main ingredients. In Sec. III, we
present exact spectrum results for the two- and three-fermion
systems on a lattice at finite volume and use those results to
try to understand the systematic errors associated with our
construction due to interactions from higher partial waves
and temporal discretization errors; a description of how the
multifermion transfer matrix is constructed is provided in the
appendix, along with the construction of projection operators
onto the irreducible representations (irreps) of the octahedral
group. In Sec. IV, we summarize the techniques used for
extracting the energies of up to 66 unitary fermions in a
finite box and present simulation results for the few- and
many-body system, including an estimate for the Bertsch
parameter.

II. LATTICE CONSTRUCTION

A. Action

We consider a highly improved lattice theory for an
interacting system of nonrelativistic spin- 1

2 fermions of mass
M on a T × L3 Euclidean space-time lattice with temporal
extent T and spatial extent L. The sites of the lattice are labeled
by integers τ ∈ [0,T ) in the time direction and xj ∈ [0,L) in
the space directions with j = (1,2,3). Throughout this work
we impose open boundary conditions in the time direction and
periodic boundary conditions in the space directions. Unless
otherwise noted, we measure all quantities with dimensions of
energy in units of the inverse temporal lattice constant b−1

τ and
all quantities with dimensions of length in units of the spatial
lattice constant bs .

The lattice action for this theory is given by Ref. [50]

S =
∑

σ

ψ†
σKψσ , (3)

where ψσ and ψ†
σ are Grassmann valued (T × L3)-

dimensional vectors associated with each spin component
σ = (↑ , ↓), and K is a (T × L3)-dimensional matrix of
commuting numbers. The matrix elements of the fermion
operator K are given by

Kp,p′(τ,τ ′) = δτ,τ ′Dp,p′ + δτ,τ ′−1Xp,p′ (T − τ ′), (4)

where

Dp,p′ = δp,p′ ×
{

ep2/(2M), |p| < &

∞, |p| ! &,
(5)

and

Xp,p′(τ ) = δp,p′ + C1/2(p − p′)φ̃p−p′(τ ). (6)

The matrix elements are labeled by a time coordinate τ and by
a three-momentum pj = 2πnj/L, where nj ∈ [−L/2,L/2)
for a periodic spatial lattice (assuming even L).

Two-body interactions are induced by the periodic field
φ̃p(τ ), defined as the spatial Fourier transform of a random
auxiliary field φx(τ ) in position space, which satisfies the
conditions

⟨φx(τ )⟩ = 0, ⟨φx(τ )φx′(τ ′)⟩ = δx,x′δτ,τ ′ . (7)

Throughout this work, we take φx(τ ) to be a Z2-valued field
with probability distribution ρ(φ) = (δ1,φ + δ−1,φ)/2 for all x
and τ .2 The two-body coupling C(p) is a periodic function of
momenta and is given by the operator expansion

C(p) = 4π

M

NO−1∑

n=0

C2nO2n(p), (8)

up to some fixed order NO − 1. Throughout this work we use
the operator basis

O2n(p) = Mn
0 (1 − e−p̂2/M0 )n, (9)

2Although we use Z2 auxiliary fields in this work, Gaussian
distributed φ fields with probability distribution ρ(φ) = e−φ2/2 for
every x and τ would work equally well.
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FIG. 2: Left: implied p cot �0 obtained from exact lattice eigenvalues of (using L = 32 and M = 5)

and Lüscher’s formula. Right: Same data on log-log plot exhibits the expected ⇥ scaling as the

first NO terms in the e�ective range expansion are tuned to zero.

extending well beyond that of the � 4 lowest eigenvalues we used to tune the C2n. One

sees that p cot �0 appears relatively smooth despite the questions raised with regards to

analyticity, at least up to the ⇥ 30th shell, at which point momenta are very close to the

inverse lattice spacing, |p| = 1.07/bs. Furthermore, to eye, p cot � seems to be successively

higher order in ⇥ ⇤ p2 with each tuning.

Seeing p cot � look progressively flatter with each tuning is only a qualitative indication

that we are attaining unitarity with improvement at each order. To fit this curve with a

polynomial and extract range expansion coe⌅cients would be a big mistake, since virtually

any smooth curve can be successfully fit with a polynomial with success if enough terms

are included, yet that fit would lead to wrong results if we did not know a priori what the

radius of convergence of the e�ective range expansion was (in ⇥), and only try to fit over

that range. The situation is clarified in the right panel of Fig. 2 which plots p cot � on a

log-log plot. This plot shows clear evidence that with each successive tuning we are tuning

to zero successive terms in the e�ective range expansion. Furthermore, the convergence of

the dashed lines in the plot at ⇥ ⇥ 30 demonstrates that the radius of convergence for the

e�ective range expansion is ⇥ ⇥ 30, with deviations of the plotted points from the dashed

lines indicating significant breakdown of the expansion at ⇥ � 15, or |p| ⇥ 0.76/bs. Note

that for free fermions, ⇥ is an integer which denotes the energy shell, and that a degenerate

fermi gas filled to the ⇥ = 15 shell would contain 251 fermions of each spin, far above the
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- For a few low-lying energy eigenvalues systematically tune the operators 
               to reproduce

- Found that we are close to unitarity even beyond the exactly tuned states.
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In the case where NO > 1, even semi-analytic solutions
for the C2n coefficients are not feasible, but they may be
determined numerically by explicit diagonalization of Eq. (19).
It is helpful to restrict the transfer matrix to the zero center-
of-momentum subspace, thus reducing the dimensionality of
the matrix from L6 down to a more manageable size of L3.
A further reduction in the dimensionality of Eq. (19) may
be achieved by projecting the zero center-of-momentum part
of the transfer matrix onto appropriate representations of the
octahedral group Oh (e.g., in the case of s-wave scattering, the
trivial representation A+

1 ). Performing such a projection makes
numerical diagonalization feasible for lattices at least as large
as L = 64, which is the maximum lattice size we consider in
our numerical studies.

C. Parameter tuning

Unitary fermions in the continuum are a conformal system,
while a lattice simulation necessarily involves finite lattice
spacing and volume, both breaking conformal symmetry.
Critical to a numerical simulation is the ability to tune the
interactions to unitarity and control the systematic errors.
In contrast to chiral symmetry in lattice QCD, for example,
there is no phase transition associated with unitarity, despite
the enhanced symmetry, and so there is no general feature
in the N -body spectrum that allows one to easily evaluate
how far one is from unitarity. It is important therefore to
collect as many results as possible about unitary fermions
in the continuum that are known exactly or to high numerical
precision in order to facilitate the tuning of the lattice action
and to control systematic errors.

What is known exactly about unitary fermions in the
continuum is (i) the spectrum of two unitary fermions in a box
of size L [50–53]; (ii) the spectrum of two and three unitary
fermions in a harmonic trap [18]; (iii) the scaling dimension
of local composite operators involving unitary fermions.5 Not
known exactly but determined to high numerical accuracy are
(iv) the few lowest energy levels for three unitary fermions in
a box, extrapolated from a lattice Hamiltonian diagonalization
very close to the continuum limit, with lattice size up to
L = 50 [29]; and (v) the ground-state energies for 4, 5, 6
unitary fermions in a harmonic trap, obtained by solving the
Schrödinger equation [57]. The ground-state energy for N = 4
fermions in a box has also recently been precisely studied by
several methods in Ref. [37], but involves extrapolation to the
continuum from very small lattices, L ! 8, which makes the
evaluation of potential systematic errors difficult.

Our strategy for utilizing this information to tune our lattice
action and estimate the size of systematic errors is to adjust
our C2n coefficients to correctly reproduce the low-lying two-
particle spectrum in a box in the continuum, subsequently
showing that we can reproduce the correct volume scaling
relations of measured energies, as well as the precisely known
ground-state energies for three fermions in a box or 3–6 trapped

5The scaling of two-body operators was determined in Refs. [2,3]
(see also [54]); the scaling of low dimension three-body operators
was first analyzed by Griesshammer [55,56], and a beautiful general
analysis was subsequently supplied by Nishida and Son [17].
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FIG. 1. (Color online) A plot of the three-dimensional ζ -function
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fermions. Here we discuss the tuning and energy levels of two
and three untrapped fermions; our results for few-body trapped
fermions are discussed in Sec. III

1. Tuning and scaling of low-lying two-body untrapped
energy levels

The two-particle energies E for s-wave particle pairs in a
box with zero net momentum and phase shift δ0 are given by
the solutions to

p cot δ0 = 1
πL

S(η), S(η) = lim
%→∞

[
∑

|j|<%

1
j2 − η

− 4π%

]

,

(24)

where j is an integer three-vector, η = (pL/2π )2, and p is
related to the energy by E = p2/M [50–53]. If scattering is
due to short-range interactions, then pcot δ0 is analytic in p2 at
sufficiently low p and one has the effective range expansion,

p cot δ0 = −1
a

+ 1
2
r0p

2 + r1p
4 . . . , (25)

where a is the scattering length, r0 is the effective range,
and r1, with dimension of volume, is what we will call the
shape parameter. By means of Eq. (24), knowledge of the
energy eigenvalues for the low-lying two-particle modes in
a box can be used to determine effective range expansion
parameters. Conversely, given a target set of effective range
expansion parameters, we can tune our operator coefficients
C2n in Eq. (20) of our lattice theory until we attain the correct
low-lying energy eigenvalues. This general tuning procedure
was introduced in Ref. [58]. For unitary fermions in the
continuum, we set pcot δ0 = 0 on the left-hand side of Eq. (24)
and find the solutions η∗

k to the equation S(η∗
k ) = 0. The

function S(η) is shown in Fig. 1, and the roots η∗
k correspond

to the points where the function crosses the η axis. The first
27 solutions are listed in Table I.6

On the lattice, the energy eigenvalues are defined from λ =
e−bτ E , where λ are the eigenvalues of the two-particle transfer

6To compute the η∗
k it is very helpful to recognize that the number

of integer three vectors j with equal norm is given by the coefficient
of x |j|2 in the Taylor expansion of [θ3(0,x)]3, where θ3(u,x) is one of
the Jacobi theta functions.
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rendering numerical simulations of certain fermionic theories
at finite density impractical, due to the presence of a complex
effective action for the scalar field φ.

We have since developed a highly improved lattice theory
based upon the construction of Ref. [47], allowing us to study
up to 70 unitary fermions confined to a harmonic trap [50]
and up to 66 unitary fermions confined to a finite box. Results
of the latter study are described in detail in the proceeding
sections. Here, we summarize some of the salient features of
our construction:

(1) We employ open boundary conditions in the time
direction, preventing fermion propagation from wrapping
“around the world.” This choice eliminates φ dependence
in the fermion determinant obtained upon integrating out the
fermion degrees of freedom in the path integral and therefore
yields a trivial effective action for the scalar auxiliary field and
eliminates the need for importance sampling in the simulation.

(2) Due to our choice of temporal boundary conditions,
simulations must be performed at zero temperature and zero
chemical potential. The energy of systems at finite density
is obtained by studying the long-time exponential falloff of
multifermion correlation functions.

(3) We use a continuum single-particle dispersion relation
for fermions, thus reducing lattice discretization errors.

(4) We introduce Galilean invariant derivative interactions
which allow us to eliminate higher-order terms in the effective
range expansion for p cot δ0(p). We are thus able to simulate
fermions close to the unitary limit even at small lattice
volumes.

Several recent papers have indicated that lattice Monte
Carlo methods can be affected by large systematic errors
due to a finite filling factor [51–53]. For a given number of
particles, this systematic error corresponds to a dependence
of the Bertsch parameter on the number of lattice sites. The
improvements referred to above are crucial in reducing these
errors. In this paper, we provide an extensive discussion of the
discretization errors which remain after improvement, based
upon an analysis of the Symanzik action [54,55].

The organization of this paper is as follows: In Sec. II, we
summarize our highly improved lattice construction for nu-
merically simulating untrapped unitary fermions and provide
details regarding the construction of multifermion correlation
functions used to extract the ground-state energy of the system.
In addition, the method used to tune two-body couplings
to the unitary point is briefly reviewed. The details of the
lattice construction are discussed at greater length in Ref. [50];
here we only provide the main ingredients. In Sec. III, we
present exact spectrum results for the two- and three-fermion
systems on a lattice at finite volume and use those results to
try to understand the systematic errors associated with our
construction due to interactions from higher partial waves
and temporal discretization errors; a description of how the
multifermion transfer matrix is constructed is provided in the
appendix, along with the construction of projection operators
onto the irreducible representations (irreps) of the octahedral
group. In Sec. IV, we summarize the techniques used for
extracting the energies of up to 66 unitary fermions in a
finite box and present simulation results for the few- and
many-body system, including an estimate for the Bertsch
parameter.

II. LATTICE CONSTRUCTION

A. Action

We consider a highly improved lattice theory for an
interacting system of nonrelativistic spin- 1

2 fermions of mass
M on a T × L3 Euclidean space-time lattice with temporal
extent T and spatial extent L. The sites of the lattice are labeled
by integers τ ∈ [0,T ) in the time direction and xj ∈ [0,L) in
the space directions with j = (1,2,3). Throughout this work
we impose open boundary conditions in the time direction and
periodic boundary conditions in the space directions. Unless
otherwise noted, we measure all quantities with dimensions of
energy in units of the inverse temporal lattice constant b−1

τ and
all quantities with dimensions of length in units of the spatial
lattice constant bs .

The lattice action for this theory is given by Ref. [50]

S =
∑

σ

ψ†
σKψσ , (3)

where ψσ and ψ†
σ are Grassmann valued (T × L3)-

dimensional vectors associated with each spin component
σ = (↑ , ↓), and K is a (T × L3)-dimensional matrix of
commuting numbers. The matrix elements of the fermion
operator K are given by

Kp,p′(τ,τ ′) = δτ,τ ′Dp,p′ + δτ,τ ′−1Xp,p′ (T − τ ′), (4)

where

Dp,p′ = δp,p′ ×
{

ep2/(2M), |p| < &

∞, |p| ! &,
(5)

and

Xp,p′(τ ) = δp,p′ + C1/2(p − p′)φ̃p−p′(τ ). (6)

The matrix elements are labeled by a time coordinate τ and by
a three-momentum pj = 2πnj/L, where nj ∈ [−L/2,L/2)
for a periodic spatial lattice (assuming even L).

Two-body interactions are induced by the periodic field
φ̃p(τ ), defined as the spatial Fourier transform of a random
auxiliary field φx(τ ) in position space, which satisfies the
conditions

⟨φx(τ )⟩ = 0, ⟨φx(τ )φx′(τ ′)⟩ = δx,x′δτ,τ ′ . (7)

Throughout this work, we take φx(τ ) to be a Z2-valued field
with probability distribution ρ(φ) = (δ1,φ + δ−1,φ)/2 for all x
and τ .2 The two-body coupling C(p) is a periodic function of
momenta and is given by the operator expansion

C(p) = 4π

M

NO−1∑

n=0

C2nO2n(p), (8)

up to some fixed order NO − 1. Throughout this work we use
the operator basis

O2n(p) = Mn
0 (1 − e−p̂2/M0 )n, (9)

2Although we use Z2 auxiliary fields in this work, Gaussian
distributed φ fields with probability distribution ρ(φ) = e−φ2/2 for
every x and τ would work equally well.
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• Improvement in 2-body sector (S-wave): 

22

A =
4⇤

M

1

p cot �0 � ip
(3.7)

1/L9 (3.8)

It is challenging or impossible to estimate true mean value from taking ensemble average

of some data which don’t have a Gaussian distribution. One of our interest is measuring

a many-body correlator which is generated from stochastic process. As shown in previous

section, the correlator has a nearly Log-Normal (LN) distribution and a long tail with

small probability. This has motivated us to consider a new statistical measurement for the

correlator.

Consider a correlator C with positive definite real number and a new variable Z = lnC

which has some probability distribution P (Z). Then it is generally true that

ln⌅C⇧ =
��

n=1

⇥n
n!

, (3.9)

where ⇥n is the nth cumulant of the lnC:

⇥1 = ⌅lnC⇧, ⇥2 = ⌅(lnC)2⇧ � ⌅lnC⇧2, etc.

Proof of Eq. 3.8: The characteristic function for Z is

�Z(t) =

⇥
P (Z)eiZtdZ. (3.10)

Define ⌅ = it, then we have

�Z(⌅) =

⇥
P (Z)eZ�dZ

=

⇥
P (Z)dZ +

⇥
P (Z)ZdZ⌅ +

⇥
P (Z)Z2dZ

⌅2

2!
+ · · ·

= 1 + ⌅Z⇧⌅ + ⌅Z2⇧⌅
2

2!
+ · · · (3.11)

and

ln�Z(⌅) = ⌅Z⇧⌅ + (⌅Z2⇧ � ⌅Z⇧2)⌅
2

2!
+ · · ·

=
��

n=1

⇥n
⌅n

n!
, (3.12)

with 5 operators tuned

• No improvement in 2-body sector (P-wave): 
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FIG. 6: Energy of N = 2 + 1 unitary fermions in a zero total momentum eigenstate as a function

of 1/L3. Blue data points and associated error bars were obtained from numerical simulation,

short blue dashed lines at L = 8 and L = 10 indicate results from exact diagonalization of the

three fermion transfer matrix. Red error band indicates the infinite volume extrapolation result

previously reported in [49] using simulation data. Black dashed line indicated the exact infinite

volume result of Pricoupenko and Castin reported in [57].

an untuned two-derivative two-body p-wave operator. Subleading corrections are expected

to be of order 1/L�4.33, due to the lowest dimension three-body operator, which has ` = 0

and scaling dimension 4.67 [59, 60]. Performing a fit to the data using the functional form

c
0

+ c
1

/L3 yields an infinite volume extrapolation result of E/E
Free

= 0.3735+0.0014

�0.0007

, and is

consistent with the exact infinite volume result of Pricoupenko and Castin [57] within 0.3%

uncertainties.

In Fig. 7, we have summarized simulation results for the ground state energy of four

unitary fermions for up to NO = 5 tuned couplings and lattice sizes up to L = 18. Exact

lattice energies obtained for L = 4 are plotted in Fig. 7 for NO = 1 and 2 couplings tuned

to unitarity. In each case the exact ground state energies obtained from the transfer matrix

are consistent with the simulation results within uncertainties. In a high precision check,

we found that the ground state energy of four unitary fermions at L = 4 and NO = 2

obtained from ensembles of approximately 4B configurations agreed with exact results to

within errors of 0.05%.

For NO = 1, the leading volume correction to the ground state energy for four fermions

will be of order 1/L, due to the untuned e↵ective range operator. To extract the ground
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FIG. 7: Ground state energy of N = 2 + 2 unitary fermions as a function of b
s

/L. Error bars

include statistical and fitting systematic errors combined in quadrature. The blue and yellow bands

represent fit results to NO = 1 and NO = 5 data as discussed in the text, with error bands reflecting

both statistical and systematic errors. Black dashed lines indicate the error band obtained from

an infinite volume extrapolation of exact benchmark calculations reported in [61].

state energy at L = 1, we therefore used c
0

+ c
1

/L as our fit function for the extrapolation.

We take into account systematic errors in the infinite volume extrapolation by varying the

fit interval from L = [4, 14] to L = [10, 14], and obtain E/E
Free

= 0.2122(40) for the ground

state energy. For the highly tuned NO = 5 case, we expect the leading volume dependence

for four fermions to be L�3, using the same reasons as for three unitary fermions. Unlike the

case for three fermions, however, the lowest dimension three-fermion operator is expected

to be 4.27 corresponding to ` = 1, rather than ` = 0. The reason is that three of the four

fermions are not restricted to a specific angular momentum state. The subleading volume

dependence is therefore expected to scale as L�3.55. Additional subleading terms scale as

L�4.33 and L�5 corresponding to the ` = 0 three-body operator and the four-derivative p-

wave and d-wave two-body operators, respectively. By considering the leading L-dependence

of these operators, we use the fit function: c
0

+ c
1

/L3 + c
2

/L3.55 to extrapolate the energy

in the case of NO = 5. The fit result over the interval L = [10, 16] is shown in Fig. 7, and

at infinite volume we obtain E/E
Free

= 0.2130(26). Both our NO = 1 and NO = 5 results

for the ground state energy of four unitary fermions are consistent with the benchmark

calculation reported [61], within the given uncertainties.
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III. EXACT RESULTS FOR FEW-BODY STATES

In Appendix A we derive exact expressions for the N-particle transfer matrix, as well

as the projection operators onto the center of mass (CM) frame and various irreducible

representations (irreps) of the octahedral group O
h

. Using these results, we have performed

exact digonalizations of the N = 1 + 1, N = 2 + 1 and N = 2 + 2 unitary fermion transfer

matrices on small to moderate lattice volumes. 3 Armed with exact numerical results for the

eigenstates and energies, we may investigate the systematic errors associated with partial

wave scattering from non-zero angular momentum interactions in the two-body sector, as

3 The dimensionality of the transfer matrix after projecting onto the CM frame and irrep r scales like

cL3(N�1), where c is a rational number ranging between 1/48 and unity, depending both on the dimen-

sionality of the irrep and lattice size. Hence, for a fixed amount of computer memory or computing time,

the maximum allowable lattice size decreases sharply with increasing N.
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III. EXACT RESULTS FOR FEW-BODY STATES

In Appendix A we derive exact expressions for the N-particle transfer matrix, as well

as the projection operators onto the center of mass (CM) frame and various irreducible

representations (irreps) of the octahedral group O
h

. Using these results, we have performed

exact digonalizations of the N = 1 + 1, N = 2 + 1 and N = 2 + 2 unitary fermion transfer

matrices on small to moderate lattice volumes. 3 Armed with exact numerical results for the

eigenstates and energies, we may investigate the systematic errors associated with partial

wave scattering from non-zero angular momentum interactions in the two-body sector, as

3 The dimensionality of the transfer matrix after projecting onto the CM frame and irrep r scales like

cL3(N�1), where c is a rational number ranging between 1/48 and unity, depending both on the dimen-

sionality of the irrep and lattice size. Hence, for a fixed amount of computer memory or computing time,

the maximum allowable lattice size decreases sharply with increasing N.
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= e�b� (H+V)+O(b3� ) (31)

and we see that temporal discretization errors appear atO(b2⇥ ), despite the fact that temporal

discretization errors are absent from the untrapped Hamiltonian H.8

As was the case for noninteracting fermions in a harmonic trap, interacting fermions will

possess discretization and finite volume errors that scale as bs/L0 and L/L0, respectively.

These errors must be explored numerically, and will be presented in detail in Sec. V.

E. Observables

Multi-fermion sources may be constructed from direct products of single particle states

|��
i ⌃, where i = 1, . . . , N� labels each state with quantum number � and ⇥ = (�, ⇥) labels

the species. In order to satisfy Fermi-Dirac statistics, fermions of the same species must

have di�erent quantum numbers. As is well-known from quantum mechanics, a simple way

to impose the proper anti-symmetrization requirements on multi-fermion states is to use of

Slater-determinants. Thus correlation functions of N = N⇥+N⇤ fermions may be expressed

as:

CN⇥,N�(⇤) = ⇧detS⇤(⇤) detS⇥(⇤)⌃ , (32)

where S� is an N�-dimensional Slater matrix corresponding to the species ⇥, given by

S�
i,j(⇤) = ⇧��

i |K�1(⇤, 0)|��
j ⌃ . (33)

Although it is not a requirement, a convenient choice for the single particle states |��
i ⌃ is to

use eigenstates of the non-interacting system. For trapped fermions, they are SHO states

(� = n) in the Cartesian basis. A list of the sources used in our simulations is provided in

Table II.

Typically multi-particle sources constructed from single particle states possess poor over-

lap with the unitary Fermi gas ground state. This may easily be seen from the fact that

at early times, where few interactions have occurred, the correlation function falls o� ex-

ponentially like that of free fermions with a Z-factor near unity. A better approach is to

8 Higher order time discretizations errors may be achieved with with the use of higher order decompositions

of operator exponentials. For interacting fermions, this would require additional auxiliary fields at each

time-like link, however, such constructions are beyond the scope of this work.
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As was the case for noninteracting fermions in a harmonic trap, interacting fermions will
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use eigenstates of the non-interacting system. For trapped fermions, they are SHO states

(� = n) in the Cartesian basis. A list of the sources used in our simulations is provided in

Table II.

Typically multi-particle sources constructed from single particle states possess poor over-

lap with the unitary Fermi gas ground state. This may easily be seen from the fact that

at early times, where few interactions have occurred, the correlation function falls o� ex-

ponentially like that of free fermions with a Z-factor near unity. A better approach is to

8 Higher order time discretizations errors may be achieved with with the use of higher order decompositions

of operator exponentials. For interacting fermions, this would require additional auxiliary fields at each

time-like link, however, such constructions are beyond the scope of this work.
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Improvement: N-body correlators

= e�b� (H+V)+O(b3� ) (31)

and we see that temporal discretization errors appear atO(b2⇥ ), despite the fact that temporal

discretization errors are absent from the untrapped Hamiltonian H.8

As was the case for noninteracting fermions in a harmonic trap, interacting fermions will

possess discretization and finite volume errors that scale as bs/L0 and L/L0, respectively.

These errors must be explored numerically, and will be presented in detail in Sec. V.

E. Observables

Multi-fermion sources may be constructed from direct products of single particle states

|��
i ⌃, where i = 1, . . . , N� labels each state with quantum number � and ⇥ = (�, ⇥) labels

the species. In order to satisfy Fermi-Dirac statistics, fermions of the same species must

have di�erent quantum numbers. As is well-known from quantum mechanics, a simple way

to impose the proper anti-symmetrization requirements on multi-fermion states is to use of

Slater-determinants. Thus correlation functions of N = N⇥+N⇤ fermions may be expressed

as:

CN⇥,N�(⇤) = ⇧detS⇤(⇤) detS⇥(⇤)⌃ , (32)

where S� is an N�-dimensional Slater matrix corresponding to the species ⇥, given by

S�
i,j(⇤) = ⇧��

i |K�1(⇤, 0)|��
j ⌃ . (33)

Although it is not a requirement, a convenient choice for the single particle states |��
i ⌃ is to

use eigenstates of the non-interacting system. For trapped fermions, they are SHO states

(� = n) in the Cartesian basis. A list of the sources used in our simulations is provided in

Table II.

Typically multi-particle sources constructed from single particle states possess poor over-

lap with the unitary Fermi gas ground state. This may easily be seen from the fact that

at early times, where few interactions have occurred, the correlation function falls o� ex-

ponentially like that of free fermions with a Z-factor near unity. A better approach is to

8 Higher order time discretizations errors may be achieved with with the use of higher order decompositions

of operator exponentials. For interacting fermions, this would require additional auxiliary fields at each

time-like link, however, such constructions are beyond the scope of this work.
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For N⇤ = N⌅ = N/2, these considerations lead us to study correlation functions of the

form:

CN⇥,N�(⇤) = ⇧detS⌅⇤(⇤)⌃ , (34)

where

S⌅⇤
i,j(⇤) = ⇧�|K�1(⇤, 0)⇥K�1(⇤, 0)|�⌅

i�
⇤
j⌃ (35)

and |�⌅�⇤⌃ = |�⌅⌃ ⇥ |�⇤⌃. In the coordinate basis, we consider two-fermion states |�⌃ of

the form ⇧x⌅x⇤|�⌃ = �(rrel) where rrel = x⌅ � x⇤ is the relative coordinate of the two

fermions. It is helpful to express the two-particle wave functions as a Fourier transform:

�(rrel) =
⇤
dp�̃(p)e�p·rrel , allowing Eq. 35 to be written as

S⌅⇤
i,j(⇤) =

⌅

p

�̃(p)⇧p|K�1(⇤, 0)|�⌅
i ⌃⇧�p|K�1(⇤, 0)|�⇤

j⌃ . (36)

Since the projection onto the sink involves only a single sum over momenta, evaluation of

Eq. 35 scales like O(L3) rather than the usual O(L6),

Numerical evidence suggests that the best choice for �(rrel) is a lattice approximation to

the two-particle s-wave solution to the continuum Schrodinger equation for unitary fermions,

which possess a 1/|rrel| singularity. We therefore consider a momentum space wave-function

of the form

�̃(p) =
2⇥

|p|d
�
|p|
2⇥

⇥
, (37)

where d(x) is Dawson’s integral function. Note that the wave-function has a free parameter

⇥ which may be tuned to maximize the overlap with the ground state. Physically one expects

⇥ ⇤ 1/
�
2L0, and this is what we use in practice.

For odd numbers of fermions, such as in our few-body studies, one may construct a mixed

matrix built out of both single and two fermion wave functions. In the case N⌅ = N⇤ + 1,

one may may construct such a Slater matrix by replacing row i of S⇤⌅ with the same row of

S⇤. This replacement corresponds to a removal of the i-th single fermion state �⇤
i from the

source and thus also breaking the pair involving state i at the sink.

III. SIMULATION DETAILS

The lattice theory described in Sec. II has been implemented on a number of clusters

and massively parallel architectures. As a result of the low memory footprint, which scales
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discretization errors are absent from the untrapped Hamiltonian H.8

As was the case for noninteracting fermions in a harmonic trap, interacting fermions will

possess discretization and finite volume errors that scale as bs/L0 and L/L0, respectively.

These errors must be explored numerically, and will be presented in detail in Sec. V.

E. Observables

Multi-fermion sources may be constructed from direct products of single particle states

|��
i ⌃, where i = 1, . . . , N� labels each state with quantum number � and ⇥ = (�, ⇥) labels

the species. In order to satisfy Fermi-Dirac statistics, fermions of the same species must

have di�erent quantum numbers. As is well-known from quantum mechanics, a simple way

to impose the proper anti-symmetrization requirements on multi-fermion states is to use of

Slater-determinants. Thus correlation functions of N = N⇥+N⇤ fermions may be expressed

as:

CN⇥,N�(⇤) = ⇧detS⇤(⇤) detS⇥(⇤)⌃ , (32)

where S� is an N�-dimensional Slater matrix corresponding to the species ⇥, given by

S�
i,j(⇤) = ⇧��

i |K�1(⇤, 0)|��
j ⌃ . (33)

Although it is not a requirement, a convenient choice for the single particle states |��
i ⌃ is to

use eigenstates of the non-interacting system. For trapped fermions, they are SHO states

(� = n) in the Cartesian basis. A list of the sources used in our simulations is provided in

Table II.

Typically multi-particle sources constructed from single particle states possess poor over-

lap with the unitary Fermi gas ground state. This may easily be seen from the fact that

at early times, where few interactions have occurred, the correlation function falls o� ex-

ponentially like that of free fermions with a Z-factor near unity. A better approach is to

8 Higher order time discretizations errors may be achieved with with the use of higher order decompositions

of operator exponentials. For interacting fermions, this would require additional auxiliary fields at each

time-like link, however, such constructions are beyond the scope of this work.
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is a momentum eigenstate of non-
interacting fermions

is a two-fermions state.

22

|⇥⌥ (3.7)

T = D�1/2XD�1/2 , (3.8)

It is challenging or impossible to estimate true mean value from taking ensemble average

of some data which don’t have a Gaussian distribution. One of our interest is measuring

a many-body correlator which is generated from stochastic process. As shown in previous

section, the correlator has a nearly Log-Normal (LN) distribution and a long tail with

small probability. This has motivated us to consider a new statistical measurement for the

correlator.

Consider a correlator C with positive definite real number and a new variable Z = lnC

which has some probability distribution P (Z). Then it is generally true that

ln⌃C⌥ =
⇥�

n=1

�n
n!

, (3.9)

where �n is the nth cumulant of the lnC:

�1 = ⌃lnC⌥, �2 = ⌃(lnC)2⌥ � ⌃lnC⌥2, etc.

Proof of Eq. 3.9: The characteristic function for Z is

�Z(t) =

⇥
P (Z)eiZtdZ. (3.10)

Define ⇥ = it, then we have

�Z(⇥) =

⇥
P (Z)eZ�dZ

=

⇥
P (Z)dZ +

⇥
P (Z)ZdZ⇥ +

⇥
P (Z)Z2dZ

⇥2

2!
+ · · ·

= 1 + ⌃Z⌥⇥ + ⌃Z2⌥⇥
2

2!
+ · · · (3.11)

and

ln�Z(⇥) = ⌃Z⌥⇥ + (⌃Z2⌥ � ⌃Z⌥2)⇥
2

2!
+ · · ·

=
⇥�

n=1

�n
⇥n

n!
, (3.12)

Unitary fermions have small 
wave function overlap with 
non-interacting fermions.

In momentum space
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The suggested form of the two-fermion waves function in a finite box of lattice is

⇥untrapped(p) =

⇤
⇧

⌅

e�bp

p2 , p ⌃= 0

⇥0, p = 0
(3.6)

where p is the momentum of each fermion in the center of momentum frame, p = |p|, and

b and ⇥0 are tunable parameters. The free parameter b and ⇥0 may be tuned to maximize

the overlap with the true ground state. Since the only relevant scale near unitary regime is

density, physically one expects b ⇤ 1/n1/3. In practice, we consider three di⇤erent values of

b which make the e⇤ective masses approach to each other at large � , one from below, above,

and middle. The variety of sources makes our findings of the ground state to be reliable.

The result is not sensitive to ⇥0 and we consider ⇥0 = 100 in this work.

For odd numbers of fermions, such as in an our few-body studies, one may construct a

mixed slater matrix built out of both single and two-fermion wave functions. In the case

of N⇥ = N⇤ + 1, we replace the kth row by ⌥pk|K�1(� ; 0)|pj� with j = 1, 2, · · · , N/2. This

replacement corresponds to a removal of the ith single spin-down fermion from the system

and thus also breaking the pair involving ith state at the sink.

3.2 Measurement

The basic philosophy of the Euclidean lattice formulation is that the correlation function

C(�), which corresponds to the transfer matrix sandwiched between initial state at time

zero and final state at time slice � , exponentially decays with multiple energy eigenstates

in the Euclidean time,

C(�) = Z0e
�E0� + Z1e

�E1� + Z2e
�E2� · · · , (3.7)

where E0 < E1 < E2 < · · · . In the limit of � ⌅ ⇧, one can extract the ground state energy

by

E0 = �1

�
log [C(�)/Z0] . (3.8)

More practical and powerful way of extracting the ground state energy is to define a gener-

alized e⇤ective mass by

meff (�) =
1

��
log

�
C(� ⌅)

C(�)

⇥
, (3.9)

• Slater-Determinant to take account of Fermi-Dirac Statistics
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The suggested form of the two-fermion waves function in a finite box of lattice is

⇥̃unitary(p) =

⇤
⇧

⌅

e�bp

p2 , p ⌃= 0

⇥0, p = 0
(3.6)

where p is the momentum of each fermion in the center of momentum frame, p = |p|, and

b and ⇥0 are tunable parameters. The free parameter b and ⇥0 may be tuned to maximize

the overlap with the true ground state. Since the only relevant scale near unitary regime is

density, physically one expects b ⇤ 1/n1/3. In practice, we consider three di⇤erent values of

b which make the e⇤ective masses approach to each other at large � , one from below, above,

and middle. The variety of sources makes our findings of the ground state to be reliable.

The result is not sensitive to ⇥0 and we consider ⇥0 = 100 in this work.

For odd numbers of fermions, such as in an our few-body studies, one may construct a

mixed slater matrix built out of both single and two-fermion wave functions. In the case

of N⇥ = N⇤ + 1, we replace the kth row by ⌥pk|K�1(� ; 0)|pj� with j = 1, 2, · · · , N/2. This

replacement corresponds to a removal of the ith single spin-down fermion from the system

and thus also breaking the pair involving ith state at the sink.

3.2 Measurement

The basic philosophy of the Euclidean lattice formulation is that the correlation function

C(�), which corresponds to the transfer matrix sandwiched between initial state at time

zero and final state at time slice � , exponentially decays with multiple energy eigenstates

in the Euclidean time,

C(�) = Z0e
�E0� + Z1e

�E1� + Z2e
�E2� · · · , (3.7)

where E0 < E1 < E2 < · · · . In the limit of � ⌅ ⇧, one can extract the ground state energy

by

E0 = �1

�
log [C(�)/Z0] . (3.8)

More practical and powerful way of extracting the ground state energy is to define a gener-

alized e⇤ective mass by

meff (�) =
1

��
log
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, (3.9)
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FIG. 6: Logarithm of the N=4 fermion correlations function for untrapped unitary fermions of

mass M = 5 on an L = 10 lattice as a function of sample size. Dashed line indicates the result

obtained using Nconf = 2B configurations.
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FIG. 7: N = 4 fermion correlator and log-correlator distributions at various time separations � for

unitary fermions of mass M = 5 on an L = 10 lattice. Solid curves in the log-correlator distribution

plot correspond to Gaussian fits to the distribution.

A plot of the correlator distribution, taking Y (⇥) = C�(�), is shown in Fig. 7 for N = 4

fermions at several values of � , and shows the formation of a long tail in the late time limit.

Also shown is a corresponding plot of the distribution for the logarithm of the correlation

function, taking Y (⇥) = logC�(�) along with results from a Gaussian fit to the data. The

excellent agreement between the fit results and the measured histogram suggest that the

multi-fermion correlation function is log-normally distributed, or nearly so. Such distribu-

tions are known to possess very long tails which dominate the distribution mean. However,

undersampling the tail can result in an underestimate in the correlation function, and thus

an overestimate in the energy obtained from Eq. 38 at large times, as was evident in Fig. 6.
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Good agreement for ~4M configurations, but systematically deviated 
for smaller number of configurations

The error bar doesn’t represent the uncertainty of the estimator correctly.

Conventional method for small N



Insufficient sampling for the long tail leads to the shift in the true 
ground state energy.

Most configurations are far off the true ground state.

0 50 100 150 200 250 300
0.00

0.01

0.02

0.03

0.04

c

�

⇥�32
⇥�16
⇥�8
⇥�4

�2 0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

log�c⇥

⇥

⇥�32
⇥�16
⇥�8
⇥�4

FIG. 18: N = 4 fermion correlator and log-correlator distributions at various time separations

� for unitary fermions of mass M = 5 on an L = 10 lattice. Solid curves in the log-correlator

distribution plot correspond to Gaussian fits to the distribution.

on a background field configuration ⇧ is given by:

P (y) =

�
[d⇧]⇥(⇧)�(Y (⇧)� y) . (C2)

A plot of the correlator distribution, taking Y (⇧) = C�(⌅) and y = c, is shown in Fig. 18 for

N = 4 fermions at several values of ⌅ , and demonstrates the formation of a long tail in the

late time limit. Also shown is a corresponding plot of the distribution for the logarithm of

the correlation function, taking Y (⇧) = log C�(⌅) and y = log c, along with the results from

a Gaussian fit to the histograms. The excellent agreement between the fit results and the

measured log-correlator distribution suggests that the multi-fermion correlation function is

log-normally distributed, or nearly so. Such distributions are known to possess very long

tails which dominate the distribution mean, and undersampling the tail can result in an

underestimate in the correlation function, and thus an overestimate in the energy obtained

from Eq. C1 at large times, as was evident in Fig. 17.

Provided we know the underlying distribution for the correlation function, we may esti-

mate the number of configurations required such that the sample average C̄(⌅) is normally

distributed. Deviations of the sample mean from the normal distribution may result in an

overlap problem and reflect the fact that the sample size is too small for the central limit

theorem to apply. In particular, if ⇤ and ⇥ are the second and third central moments of

the correlator distribution function, then by the Berry-Esseen theorem, one should show

that the condition Nconf ⇥ ⇥2/⇤3 holds before invoking the central limit theorem. This

condition comes from quantifying the deviation in the cumulative distribution function for

41
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FIG. 18: N = 4 fermion correlator and log-correlator distributions at various time separations

� for unitary fermions of mass M = 5 on an L = 10 lattice. Solid curves in the log-correlator

distribution plot correspond to Gaussian fits to the distribution.

on a background field configuration ⇧ is given by:

P (y) =

�
[d⇧]⇥(⇧)�(Y (⇧)� y) . (C2)

A plot of the correlator distribution, taking Y (⇧) = C�(⌅) and y = c, is shown in Fig. 18 for

N = 4 fermions at several values of ⌅ , and demonstrates the formation of a long tail in the

late time limit. Also shown is a corresponding plot of the distribution for the logarithm of

the correlation function, taking Y (⇧) = log C�(⌅) and y = log c, along with the results from

a Gaussian fit to the histograms. The excellent agreement between the fit results and the

measured log-correlator distribution suggests that the multi-fermion correlation function is

log-normally distributed, or nearly so. Such distributions are known to possess very long

tails which dominate the distribution mean, and undersampling the tail can result in an

underestimate in the correlation function, and thus an overestimate in the energy obtained

from Eq. C1 at large times, as was evident in Fig. 17.

Provided we know the underlying distribution for the correlation function, we may esti-

mate the number of configurations required such that the sample average C̄(⌅) is normally

distributed. Deviations of the sample mean from the normal distribution may result in an

overlap problem and reflect the fact that the sample size is too small for the central limit

theorem to apply. In particular, if ⇤ and ⇥ are the second and third central moments of

the correlator distribution function, then by the Berry-Esseen theorem, one should show

that the condition Nconf ⇥ ⇥2/⇤3 holds before invoking the central limit theorem. This

condition comes from quantifying the deviation in the cumulative distribution function for
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standard deviation work well.
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FIG. 7: N = 4 fermion correlator and log-correlator distributions at various time separations � for

unitary fermions of mass M = 5 on an L = 10 lattice. Solid curves in the log-correlator distribution

plot correspond to Gaussian fits to the distribution.

A plot of the correlator distribution, taking Y (⇥) = C�(�), is shown in Fig. 7 for N = 4

fermions at several values of � , and shows the formation of a long tail in the late time limit.

Also shown is a corresponding plot of the distribution for the logarithm of the correlation

function, taking Y (⇥) = logC�(�) along with results from a Gaussian fit to the data. The

excellent agreement between the fit results and the measured histogram suggest that the

multi-fermion correlation function is log-normally distributed, or nearly so. Such distribu-

tions are known to possess very long tails which dominate the distribution mean. However,

undersampling the tail can result in an underestimate in the correlation function, and thus

an overestimate in the energy obtained from Eq. 38 at large times, as was evident in Fig. 6.
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cf: Product of random numbers has a log-normal distribution.

Log-normal distribution?



22

section, the correlator has a nearly Log-Normal (LN) distribution and a long tail with

small probability. This has motivated us to consider a new statistical measurement for the

correlator.

Consider a correlator C with positive definite real number and a new variable Z = lnC

which has some probability distribution P (Z). Then it is generally true that

ln⇤C⌅ =
��

n=1

�n
n!

, (3.6)

where �n is the nth cumulant of the lnC:

�1 = ⇤lnC⌅, �2 = ⇤(lnC)2⌅ � ⇤lnC⌅2, etc.

Proof of Eq. 3.6: The characteristic function for Z is

�Z(t) =

⇥
P (Z)eiZtdZ. (3.7)

Define ⇥ = it, then we have

�Z(⇥) =

⇥
P (Z)eZ�dZ

=

⇥
P (Z)dZ +

⇥
P (Z)ZdZ⇥ +

⇥
P (Z)Z2dZ

⇥2

2!
+ · · ·

= 1 + ⇤Z⌅⇥ + ⇤Z2⌅⇥
2

2!
+ · · · (3.8)

and

ln�Z(⇥) = ⇤Z⌅⇥ + (⇤Z2⌅ � ⇤Z⌅2)⇥
2

2!
+ · · ·

=
��

n=1

�n
⇥n

n!
, (3.9)

where �n is the n’th cumulant of lnC. For ⇥ = it = 1 Eq. 3.7 is ⇤C⌅ and finally we have

ln⇤C⌅ = ln�Z(⇥ = 1)

=
��

n=1

�n
1

n!
. (3.10)

Q.E.D.

where

• General relation between 
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.

• Lowest few cumulants don’t suffer from the distribution 
overlap problem & converge quickly.

truncate the cumulant expansion at which the 
statistical error and truncation error are comparable.

Cumulant expansion
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FIG. 10: Left: data points are the energies obtained using the cumulant e↵ective mass for N = 10

fermions, purple band is the energy obtained by using the conventional method. Right: data points

are the energies obtained using the cumulant e↵ective mass for N = 50 fermions.
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FIG. 11: (Left) E↵ective mass plot truncated at N


= 4 for N = 60 untrapped unitary fermions

on a L = 14 lattice. Yellow diamonds, purple squares, and blue circles correspond to ensembles

with sinks using � = 1.0, 0.75, and 0.5, respectively. The dashed line represents the statistical

uncertainty from a simultaneous fit, while the purple band represents the combined fitting statistical

and systematic uncertainties. (Right) Results for simultaneous fits to the data in the left plot as

a function of the beginning of the time interval used for fitting. The endpoint was held fixed at

⌧
max

= 25.

lattices, L = 10, 12, and 14. For N & 20 we find that the ground state energies for L = 10

are systematically smaller than those for L = 12, 14, with a discrepancy between central

values of about 1 ⇠ 2%. This result is similar to the finite volume dependence observed

in the case of N = 4; there, the energy for L ! 1 is about 5% smaller than those for
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on a L = 14 lattice. Yellow diamonds, purple squares, and blue circles correspond to ensembles

with sinks using � = 1.0, 0.75, and 0.5, respectively. The dashed line represents the statistical

uncertainty from a simultaneous fit, while the purple band represents the combined fitting statistical

and systematic uncertainties. (Right) Results for simultaneous fits to the data in the left plot as

a function of the beginning of the time interval used for fitting. The endpoint was held fixed at
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lattices, L = 10, 12, and 14. For N & 20 we find that the ground state energies for L = 10

are systematically smaller than those for L = 12, 14, with a discrepancy between central

values of about 1 ⇠ 2%. This result is similar to the finite volume dependence observed

in the case of N = 4; there, the energy for L ! 1 is about 5% smaller than those for
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Purple band represents the energy 
calculated using conventional method

Convergence of cumulant expansion



Ground state energies: (Nup+1,Ndown) unitary fermions
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n (⌧) is the n-th cumulant of the distribution for ln C

+

� (⌧).

For fermions near unitarity, the Bertsch parameter has been determined from exper-
iments and Monte Carlo simulations with great precision. However, It is challenging or
impossible to take ensemble average of some data which don’t have a Gaussian distribution.
One of our interest is measuring a many-body correlator which is generated from stochastic
process. The correlator has a nearly Log-Normal (LN) distribution and a long tail with
small probability. This have motivated us to consider a new statistical measurement for the
correlator.
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Not all of correlators are positive.
But, the long-tail develops in the distribution for positive correlators.
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n (⌧) is the n-th cumulant of the distribution for ln C
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� (⌧).

For fermions near unitarity, the Bertsch parameter has been determined from exper-
iments and Monte Carlo simulations with great precision. However, It is challenging or
impossible to take ensemble average of some data which don’t have a Gaussian distribution.
One of our interest is measuring a many-body correlator which is generated from stochastic
process. The correlator has a nearly Log-Normal (LN) distribution and a long tail with
small probability. This have motivated us to consider a new statistical measurement for the
correlator.
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Ground state energies: (Nup+1,Ndown) unitary fermions
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For fermions near unitarity, the Bertsch parameter has been determined from exper-
iments and Monte Carlo simulations with great precision. However, It is challenging or
impossible to take ensemble average of some data which don’t have a Gaussian distribution.
One of our interest is measuring a many-body correlator which is generated from stochastic
process. The correlator has a nearly Log-Normal (LN) distribution and a long tail with
small probability. This have motivated us to consider a new statistical measurement for the
correlator.
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n (⌧) is the n-th cumulant of the distribution for ln C
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� (⌧).

For fermions near unitarity, the Bertsch parameter has been determined from exper-
iments and Monte Carlo simulations with great precision. However, It is challenging or
impossible to take ensemble average of some data which don’t have a Gaussian distribution.
One of our interest is measuring a many-body correlator which is generated from stochastic
process. The correlator has a nearly Log-Normal (LN) distribution and a long tail with
small probability. This have motivated us to consider a new statistical measurement for the
correlator.
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For fermions near unitarity, the Bertsch parameter has been determined from exper-
iments and Monte Carlo simulations with great precision. However, It is challenging or
impossible to take ensemble average of some data which don’t have a Gaussian distribution.
One of our interest is measuring a many-body correlator which is generated from stochastic
process. The correlator has a nearly Log-Normal (LN) distribution and a long tail with
small probability. This have motivated us to consider a new statistical measurement for the
correlator.
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For fermions near unitarity, the Bertsch parameter has been determined from exper-
iments and Monte Carlo simulations with great precision. However, It is challenging or
impossible to take ensemble average of some data which don’t have a Gaussian distribution.
One of our interest is measuring a many-body correlator which is generated from stochastic
process. The correlator has a nearly Log-Normal (LN) distribution and a long tail with
small probability. This have motivated us to consider a new statistical measurement for the
correlator.
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For fermions near unitarity, the Bertsch parameter has been determined from exper-
iments and Monte Carlo simulations with great precision. However, It is challenging or
impossible to take ensemble average of some data which don’t have a Gaussian distribution.
One of our interest is measuring a many-body correlator which is generated from stochastic
process. The correlator has a nearly Log-Normal (LN) distribution and a long tail with
small probability. This have motivated us to consider a new statistical measurement for the
correlator.

Collect some past work on cumulant expansion

1

✓
1� ✏

finite

F

✏

thermo

F

◆
⇥ 100 (10)

 
1�

✏

finite

unitary

✏

thermo

unitary

!
⇥ 100 (11)

✓
1� E

finite

F

E

thermo

F

◆
⇥ 100 (12)

 
1�

E

finite

unitary

E

thermo

unitary

!
⇥ 100 (13)

"

unitary(2N" + 1) = E(N", N" + 1)�
E(N", N") + E(N" + 1, N" + 1)

2
(14)

N = 66, V = 163 (15)

CN",N#�1

(⌧) =
1

N

c

NcX

i

C�i(⌧) (16)

=
1

N

c

N�
cX

i

C

�
�i
(⌧) +

N

+

c

N

c

0

@ 1

N

+

c

N+
cX

i

C

+

�i
(⌧)

1

A (17)

=
1

N

c

N�
cX

i

C

�
�i
(⌧) +

N

+

c

N

c

Exp

" 1X

n



+

n (⌧)

n!

#
(18)



+

n (⌧) is the n-th cumulant of the distribution for ln C

+

� (⌧).

For fermions near unitarity, the Bertsch parameter has been determined from exper-
iments and Monte Carlo simulations with great precision. However, It is challenging or

2

·

·

·

·
·

·

·

·
·

0 10 20 30 40 50 600.0

0.2

0.4

0.6

0.8

1.0

NHN≠, N≠+1L

D
k=
k F



·

·

·

·

·

·

·

·

·

·

·
·
·
·
·
·

·
·
·
·
·
·
·
·

·
·
·
·
·
·

·
·
·
·
·
·
·
··
··
··
··
··
··
··
··
·

··
··
··
··
··
···
···
···
···
··

···
···
···
···

···
···
···
···
···
···
····
····
····

····
····
····
····
·····
···

Ê Ê

Ê

Ê

Ê

Ê

Ê

0 50 100 150 200 250
-30

-20

-10

0

10

20

30

N

%
de
vi
at
io
n

Ê Unitary fermions
· Free fermions

Blue: Red: 

Shell structure at finite N: Pairing gap

✓
1� "

finite

F

"

thermo

F

◆
⇥ 100 (10)

 
1�

"

finite

unitary

"

thermo

unitary

!
⇥ 100 (11)

✓
1� E

finite

F

E

thermo

F

◆
⇥ 100 (12)

 
1�

E

finite

unitary

E

thermo

unitary

!
⇥ 100 (13)

"

unitary(2N" + 1) = E(N", N" + 1)�
E(N", N") + E(N" + 1, N" + 1)

2
(14)

�k=kF (N) = �thermo

k=kF + C

✓
1� "

finite

F

"

thermo

F

◆
(15)

N = 66, V = 163 (16)

CN",N#�1

(⌧) =
1

N

c

NcX

i

C�i(⌧) (17)

=
1

N

c

N�
cX

i

C

�
�i
(⌧) +

N

+

c

N

c

0

@ 1

N

+

c

N+
cX

i

C

+

�i
(⌧)

1

A (18)

=
1

N

c

N�
cX

i

C

�
�i
(⌧) +

N

+

c

N

c

Exp

" 1X

n



+

n (⌧)

n!

#
(19)

2

✓
1� "

finite

F

"

thermo

F

◆
⇥ 100 (10)

 
1�

"

finite

unitary

"

thermo

unitary

!
⇥ 100 (11)

✓
1� E

finite

F

E

thermo

F

◆
⇥ 100 (12)

 
1�

E

finite

unitary

E

thermo

unitary

!
⇥ 100 (13)

"

unitary(2N" + 1) = E(N", N" + 1)�
E(N", N") + E(N" + 1, N" + 1)

2
(14)

�k=kF (N) = �thermo

k=kF + C

✓
1� "

finite

F

"

thermo

F

◆
(15)

N = 66, V = 163 (16)

CN",N#�1

(⌧) =
1

N

c

NcX

i

C�i(⌧) (17)

=
1

N

c

N�
cX

i

C

�
�i
(⌧) +

N

+

c

N

c

0

@ 1

N

+

c

N+
cX

i

C

+

�i
(⌧)

1

A (18)

=
1

N

c

N�
cX

i

C

�
�i
(⌧) +

N

+

c

N

c

Exp

" 1X

n



+

n (⌧)

n!

#
(19)

2



Red: data
Blue: fit results·

·

·

·
·

·

·

·
·

Á

Á

Á
Á
Á
Á

Á
Á
Á Á Á Á Á Á Á Á Á Á

Á Á Á Á Á Á Á Á

Á Á Á Á Á Á

Á

0 10 20 30 40 50 600.0

0.2

0.4

0.6

0.8

1.0

NHN≠, N≠+1L

D
k=
k F

Shell structure at finite N: Pairing gap

✓
1� "

finite

F

"

thermo

F

◆
⇥ 100 (10)

 
1�

"

finite

unitary

"

thermo

unitary

!
⇥ 100 (11)

✓
1� E

finite

F

E

thermo

F

◆
⇥ 100 (12)

 
1�

E

finite

unitary

E

thermo

unitary

!
⇥ 100 (13)

"

unitary(2N" + 1) = E(N", N" + 1)�
E(N", N") + E(N" + 1, N" + 1)

2
(14)

�k=kF (N) = �thermo

k=kF + C

✓
1� "

finite

F

"

thermo

F

◆
(15)

N = 66, V = 163 (16)

CN",N#�1

(⌧) =
1

N

c

NcX

i

C�i(⌧) (17)

=
1

N

c

N�
cX

i

C

�
�i
(⌧) +

N

+

c

N

c

0

@ 1

N

+

c

N+
cX

i

C

+

�i
(⌧)

1

A (18)

=
1

N

c

N�
cX

i

C

�
�i
(⌧) +

N

+

c

N

c

Exp

" 1X

n



+

n (⌧)

n!

#
(19)

2



1 Introduction

E

unitary(n) = ⇠E

free(n) (1)

"

unitary(n) = �"

free
F (n) (2)

� = 0.504(30) (3)

kFa = 1 (4)

"(k) / "F (5)

K

�1(T ; 0) = D

�1
X(T � 1)D�1

X(T � 2) · · ·X(0)D�1 (6)

K

�1(⌧ ; 0) = D

�1/2
T

⌧
D

�1/2 (7)

T = D

�1/2
X(⌧)D�1/2 (8)

��k=kF (N) = �Fit
k=kF (N)��data

k=kF (N) (9)

1

·

·
·

··
······

0.00 0.05 0.10 0.15 0.200.0

0.2

0.4

0.6

0.8

1êNHN≠, N≠+1L

D
k=
k F

th
er
m
o
+
dD

k=
k F
HNL

Finite N correction and thermodynamic limit



Outline

1) Model

2) Systematics

I. Unitarity limit and discretization/finite volume effects

3) Numerical results

II. Interpolating field overlap

II. Statistical overlap/noise

II. Thermodynamic limit

4) Summary and Conclusions



Lattice calculation for unitary fermions in a finite box Jong-Wan Lee
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Figure 5: (Preliminary) Ground state energies for
N ≤ 38. The red circle and blue square represent the
ground state energies for unpolarized and slightly
polarized unitary fermions.
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Figure 6: (Preliminary) Pairing gap in unit of µ f ree
for N ≤ 37, where µ f ree is the free Fermi energy.
The solid line represents the fitting range for the ex-
tracted value of ∆.

discussed in Ref. [4], the ground state energy for odd N depends on the momentum of the unpaired
spin up fermion. For N ≤ 37, the minimum energies are obtained by placing the unpaired fermion
on the first momentum shell, and used for Fig. 5 and the gap calculation. In Fig. 5, we plot the
ground state energy of both the unpolarized and the slightly polarized unitary fermi gas. The
staggering between even and odd indicates a non-zero pairing gap. Using this data, we calculate
the pairing gap as

∆= E(N↑,N↓)−
E(N↑,N↓+1)+E(N↑−1,N↓)

2
, (4.1)

and the results are shown in Fig. 6. By fitting the data in the second momentum shell, we obtain
∆= 0.52(1). The most recent QMC calculation [4] and ultra-cold atomic experiment [13] reported
∆= 0.50(3) and ∆= 0.43(3), respectively.

5. Conclusion

In these proceedings, we explored up to 38 unitary fermions in a finite box, and extracted
preliminary values for the Bertsch parameter and pairing gap. The absence of volume dependence,
a consequence of the tuning method for the four-Fermi contact interaction, allows us to study the
infinite volume, continuum properties of unitary fermions with a moderately sized lattice. Our
analysis also shows that a careful choice of the interpolating operators, which are designed to have
large overlap with the state of interest, plays a crucial role in simulating the interacting many-
particle system on the lattice. In the future, we hope to extend our simulations to larger numbers
of unitary fermions using a recently developed tuning procedure2 and more careful study of the
correlated two-particle sinks.

2We have recently developed a new tuning method which has Hermitian, Galilean invariant and analytic interaction.

6

Odd-even Staggering at unitarity

function when !p!0 for !kp!"kF and =0 for !kp ! #kF.
We also consider systems having unpaired particles. In

particular, we can have M pairs and one unpaired up- or
down-spin particle. This generalization is necessary as the
gap energy $ is calculated from the odd-even staggering of
the ground state energy [16]. With one unpaired (↑ or ↓ spin)
particle in the state %ku"r#, with momentum ku, the trial wave
function is given by [22]

&BCS"R# =A$%'"r11!# ¯ '"rMM!#&%ku"r#' . "29#

The ground state is expected to have !ku!(!kF! in the weakly
interacting regime and ku→0 in the strongly interacting re-
gime. This wave function can be calculated as a determinant
[22,16], which makes the numerical calculations relatively
simple.
Quantum Monte Carlo calculations use a finite number of

particles in a cubic periodic box of volume L3 to simulate the
infinite uniform system. The momentum vectors in this box
are discrete,

kp =
2(

L
"npxx̂ + npyŷ + npzẑ# , "30#

and the system has a shell structure with closures occurring
when the total number of particles =2,14,38,54, . . . for spin-
1 /2 fermions. The shell number I is defined such that I=nx

2

+ny
2+nz

2, and EI= ")2 /2m#"4(2 /L2#I.
In the present calculations, the pair wave function '"r#

has the assumed form

'"r# = *̃"r# + )
p,I"IC

!Ieikp·r,

*̃"r# = *"r# + *"L − r# − 2*"L/2# for r " L/2,

=0 for r # L/2,

*"r# = %1 + +br&%1 − e−cbr&
e−br

cbr
. "31#

Here Ic=4 is a cutoff shell number. We assume that the con-
tributions of shells with I# Ic to the pair wave function can
be approximated by a spherically symmetric function *̃"r# of
range L /2. We further reduce the statistical fluctuations by
using the Jastrow factor along with &BCS in the variational
wave function,

&V"R# =*
i,j!

f"rij!#&BCS"R# . "32#

The Jastrow factor does not change the nodal structure. Thus,
the average value of the estimated energy is independent of
f"r#, but the statistical error is reduced by using the f"r# from
LOCV calculations.
It is convenient to require that "*̃ /"r=0 at r=0. This is

because the local energy has terms like "1/r#""*̃ /"r#, which
can have large fluctuations at the origin when "*̃ /"r!0 at
r=0. The factor %1−e−cbr& cuts off 1 /cbr dependence of * at
br,1/c. The energies are not too sensitive to the parameter

c, and its value is fixed at 10. In addition, + is chosen such
that "*̃ /"r=0 at r=0; its value is 6 in the limit L→-.
The variational parameters are $!0 ,!1 , . . . ,!Ic

' and b. We
wish to find a set of these parameters that minimize the
fixed-node GFMC estimate of energy. However, considering
that we have to allow simultaneous variation of all the pa-
rameters, methods based on unguided variation become dif-
ficult, if not infeasible. Again, we rely on the GFMC proce-
dure itself to optimize these parameters. Initial
configurations are obtained with a random distribution of the
parameters centered around a reasonable guess. Each of them
is propagated according to the nodal constraints provided by
their parameters with a single ET. The paths with the smallest
+H,mix acquire large amplitudes or weights as .→-. The
average among these paths gives an optimization over the
initial random distribution. This process is repeated several
times until convergence is achieved.
When we have an odd number of particles, the ground-

state momentum ku [Eq. (29)] is an additional variational
parameter. We minimize the fixed-node GFMC energy of
systems with odd A by varying ku. As discussed in the next
section, the magnitude of ku changes from kF to 0 as the
interaction strength increases and we go from the weakly
interacting BCS to the strongly interacting BEC regime. The
gap energy is obtained from the odd-even staggering of the
total energy

$"2M + 1# = E"2M + 1# −
1
2

%E"2M# + E"2M + 2#& .

"33#

In doing so, the effects of interaction among quasiparticles
are neglected.
Results for akF=- are shown in Fig. 5. The energy per

particle E /A and the gap $ do not have a significant A de-
pendence in this case. These results were reported in Ref. 16,
and results for other values of akF are presented in the next
section.

IV. RESULTS

The values of the parameters, !0–4 and b, of the BCS
wave function are to be determined by minimizing the fixed-
node GFMC mixed energy for each value of akF and A. The

FIG. 5. E"A# when akF=−- from Ref. 16.

QUANTUM MONTE CARLO STUDIES OF SUPERFLUID… PHYSICAL REVIEW A 70, 043602 (2004)

043602-7

Carlson, Chang, Pandharipande 
& Schmidt, Phys. Rev. Lett. 91, 
050401 (2003)

Endres, Kaplan, JWL & 
Nicholson, PoS 
Lattice2010 197, (2010)

Preliminary

Odd-even staggering in the ground state energies of unitary 
fermions has been found both in QMC and Lattice MC calculations.



Quasiparticle Dispersion in cold Atoms
Add one       to fully-paired system
Energy cost for an unpaired particle:  μ + Δ 
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1 Introduction

E

unitary(n) = ⇠E

free(n) (1)

"

unitary(n) = �"

free
F (n) (2)

� = 0.504(30) (3)

kFa = 1 (4)

"(k) / "F (5)

For fermions near unitarity, the Bertsch parameter has been determined from exper-
iments and Monte Carlo simulations with great precision. However, It is challenging or
impossible to take ensemble average of some data which don’t have a Gaussian distribution.
One of our interest is measuring a many-body correlator which is generated from stochastic
process. The correlator has a nearly Log-Normal (LN) distribution and a long tail with
small probability. This have motivated us to consider a new statistical measurement for the
correlator.

Collect some past work on cumulant expansion

1

Single particle dispersion relation at unitarity

Carlson & Reddy (2005)

This work (statistical error only ~ 1.5%)

Preliminary

Preliminary result from the ensemble with largest N and V shows 
that the pair-breaking energies are lower than QMC results for all k.
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Chronology of Pairing gap at unitarity

Preliminary
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Lett. 103, 210403 (2009)
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- Horikoshi et al, Phys. Rev. X 7, 041004 
(2017)

- Ketterle et al, Phys. Rev. Lett. 101, 140403 
(2017)
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• Highly improved lattice technique for strongly interacting non-
relativistic fermions at unitarity

- eliminate finite lattice spacings/finite volume effects systematically

• Results of the pairing gap are still preliminary.

Summary and conclusions

- improve the overlap of the interpolating field

- use the cumulant expansion method to calculate the energies of 
ground states with high precision by improving the statistical overlap

- agree with the recent cold-atom experiments

- take account for the finite V and N effects carefully
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Signal-to-Noise (S/N) problems in numerical 
simulations of many-body quantum systems

• Lattice QCD calculation for many baryons (a canonical 
approach with zero chemical potential)

4

that, after integrating out fermionic degrees of freedom (and thus making it only a function

of the stochastic bosonic field ⇤), the measure in the partition function can be interpreted

as a probability measure. This makes it possible to apply Monte Carlo techniques. The

standard approach is to compute the N-body correlator CN (⇥,⇤) = ⌃0|�N (⇥)�†
N (0)|0⌥⇥,

where �†
N (0) and �N (⇥) are interpolating fields which create an N -body state at time zero

and annihilate it at time ⇥ . The correlation function can be estimated by the sample mean

of the correlator for finite sample size N . For large ⇥ one finds

CN (⇥) =
1

N

N⇤

i=1

CN (⇥,⇤i) ⇤ Ze�EN
0 � , (1.1)

where EN
0 is the ground state energy of the system.

The main obstacle of lattice QCD at non-zero baryon chemical potential is that the

fermion determinant, a part of the measure, is complex and cannot be interpreted as a

probability measure. This problem is called a sign problem, where computational di⇤culty

grows exponentially with the number of particles in general [58]1. This problem might be

avoided by considering lattice simulations in a canonical ensemble at zero chemical potential

with fixed N : constructing N -body correlators as N ⇥N Slater determinants of one-body

propagators where the di⇤culty of computation arises as N3. However, we encounter the

another computational di⇤culty where the signal-to-noise ratio exponentially decreases with

both time ⇥ and particle number N . This is known as the signal-to-noise (S/N) problem.

This implies that the sign problem is closely related to the S/N problem, but does not arise

simply due to Fermi statistics. In fact, a famous “Lepage argument” suggests that S/N

problems appear when the multi-particle state of interest is not the lowest energy state

[61]. As an example, let us consider the expectation of a 3A quark correlator in QCD for a

nucleus of atomic number A and mass MA at large time,

⌃CA⌥ ⇤ e�MA� . (1.2)

The variance of this estimate for sample size N is given by

�2 =
1

N

�
⌃C†

ACA⌥ � ⌃C†
A⌥⌃CA⌥

⇥
⇤ 1

N e�3Am�� . (1.3)

1In the �-regime of QCD at nonzero baryon chemical potential µ the strength of the sign problem grows
exponentially with volume for µ > m�/2, where m� is the pion mass [59, 60].
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that, after integrating out fermionic degrees of freedom (and thus making it only a function
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N (0)|0⌥⇥,

where �†
N (0) and �N (⇥) are interpolating fields which create an N -body state at time zero

and annihilate it at time ⇥ . The correlation function can be estimated by the sample mean
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CN (⇥) =
1
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CN (⇥,⇤i) ⇤ Ze�EN
0 � , (1.1)

where EN
0 is the ground state energy of the system.
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propagators where the di⇤culty of computation arises as N3. However, we encounter the
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simply due to Fermi statistics. In fact, a famous “Lepage argument” suggests that S/N

problems appear when the multi-particle state of interest is not the lowest energy state

[61]. As an example, let us consider the expectation of a 3A quark correlator in QCD for a

nucleus of atomic number A and mass MA at large time,

⌃CA⌥ ⇤ e�MA� . (1.2)

The variance of this estimate for sample size N is given by

�2 =
1
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�
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A⌥⌃CA⌥

⇥
⇤ 1

N e�3Am�� . (1.3)

1In the �-regime of QCD at nonzero baryon chemical potential µ the strength of the sign problem grows
exponentially with volume for µ > m�/2, where m� is the pion mass [59, 60].
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Since CA and C†
A correspond to 3A quark and 3A anti-quark propagators, respectively, the

first term in the variance prefers to form 3A pions instead of 2A nucleons with m� ⇤ 2MA/3

while the second term decays with 2MA. Therefore, the variance is dominated by the state

with 3A pions at large time and the signal-to-noise ratio R falls o⇥ exponentially with time

⇥ and atomic number A:

R =
�CA 
�

⇥
⌦
N e�A(MA�3/2m�)⇥ . (1.4)

The exponentially small expectation value �CA may be a result of subsequent cancellations

while averaging over background gauge fields where each correlator CA(⇥,A) in a particular

gauge field A has magnitude ⇥ e�3A/2m�⇥

Since interactions in QCD are quite complicated, it is di⌅cult to understand the origin

of the S/N problem in lattice QCD simulations for a large number of baryons. On the

other hand, systems of unitary fermions have a very simple interaction, a four-Fermi contact

interaction, and might be a good starting point for understanding the nature of S/N problem

generally arising in quantum many-body simulation. As shown in this paper, the S/N

problem still arises in simulations of N unitary fermions. However, we argue that the

Lepage analysis, where one assumes that the distribution of CA(⇥,A) is normal and that

the standard ensemble average is a good estimation for CA(⇥), is not the correct description

for this case since the N -body correlator has a heavy tailed and extremely non-Gaussian

distribution for large N . As discussed in Chap. 3, we refer this problem as a distribution

overlap problem and devise an e⌅cient strategy for extracting the ground state energy,

called the cumulant expansion method. This technique could be applicable to other noisy

systems, including QCD at finite baryon density.

1.2 Low Energy Quantum Scattering Theory and E�ective Range Expansion

The low energy elastic scattering of two non-relativistic particles can be described in the

context of quantum scattering theory. The time-dependent Schrödinger equation we want

to solve is

i
⌃

⌃t
�(r, t) =

�
�↵2

2m
+ V

⇥
�(r, t), (1.5)
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P. Lepage (1989)

David B. Kaplan ~ Lattice 2011 ~ July 15, 2011

Canonical approach?
Compute correlator of N quarks with μ=0
No sign problem...but now a noise problem

T C(A)

nucleon correlator
signal: � e�mN T

C†(A)C(A)

3q
3q, 3q

_

noise: � 1�
Nconf.

e�
3
2 m�T

�
�

Nconf.e
�3T(mN

3 �m�
2 )signal

noise
____ Same factor as 

grand canonical

Parisi, Lepage
1980’s

David B. Kaplan ~ Lattice 2011 ~ July 15, 2011

Canonical approach?
Compute correlator of N quarks with μ=0
No sign problem...but now a noise problem

T C(A)

nucleon correlator
signal: � e�mN T

C†(A)C(A)

3q
3q, 3q

_

noise: � 1�
Nconf.

e�
3
2 m�T

�
�

Nconf.e
�3T(mN

3 �m�
2 )signal

noise
____ Same factor as 

grand canonical

Parisi, Lepage
1980’s

Estimate of A-baryon correlation function:

closely related to the Sign problem of lattice QCD with a 
finite chemical potential starting at 
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III. EXACT RESULTS FOR FEW-BODY STATES

In Appendix A we derive exact expressions for the N-particle transfer matrix, as well

as the projection operators onto the center of mass (CM) frame and various irreducible

representations (irreps) of the octahedral group O
h

. Using these results, we have performed

exact digonalizations of the N = 1 + 1, N = 2 + 1 and N = 2 + 2 unitary fermion transfer

matrices on small to moderate lattice volumes. 3 Armed with exact numerical results for the

eigenstates and energies, we may investigate the systematic errors associated with partial

3 The dimensionality of the transfer matrix after projecting onto the CM frame and irrep r scales like

cL3(N�1), where c is a rational number ranging between 1/48 and unity, depending both on the dimen-

sionality of the irrep and lattice size. Hence, for a fixed amount of computer memory or computing time,

the maximum allowable lattice size decreases sharply with increasing N.
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Why do log-normal like distribution arise?

Typically, multiplicative stochastic process

Little has been known about products of random 
matrices

Toy model - one particle, one spatial site

C(⌧) =
⌧Y

i

(1 + g�
i

), (19)

(1 + g�
1

) (20)

(1 + g�
2

) (21)

(1 + g�
⌧

) (22)

�
i

2 [�1, 1] (23)

E
⌧

�! � 1

⌧

"
1

N

NX

i=1

C(⌧,�
i

)

#
(24)

E
⌧

�! � 1

⌧

1X

n=1


n

(⌧)

n!
(25)


n

(⌧) = cumulants of lnC(⌧,�) (26)

e�K(1�
p
C�)e�K (27)

III. EXACT RESULTS FOR FEW-BODY STATES

In Appendix A we derive exact expressions for the N-particle transfer matrix, as well

as the projection operators onto the center of mass (CM) frame and various irreducible

representations (irreps) of the octahedral group O
h

. Using these results, we have performed

exact digonalizations of the N = 1 + 1, N = 2 + 1 and N = 2 + 2 unitary fermion transfer

matrices on small to moderate lattice volumes. 3 Armed with exact numerical results for the

eigenstates and energies, we may investigate the systematic errors associated with partial

wave scattering from non-zero angular momentum interactions in the two-body sector, as

well as finite volume and lattice spacing artifacts in the three-body sector. In addition to

these studies, we may perform consistency checks with numerical simulation in both the

three- and four-body sectors. Those results, however, will be presented in Sec. IV.

3 The dimensionality of the transfer matrix after projecting onto the CM frame and irrep r scales like

cL3(N�1), where c is a rational number ranging between 1/48 and unity, depending both on the dimen-

sionality of the irrep and lattice size. Hence, for a fixed amount of computer memory or computing time,

the maximum allowable lattice size decreases sharply with increasing N.
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Remember that correlators are products of t and N 
matrices of the form

Random diagonal matrix

constant matrix



Toy model

3

where E
0

(N) = 3NE
F

/5 is the total energy of N free
degenerate fermions (N/2 of each spin), and Z is the
overlap of the source and sink with the free fermion state.
The leading term in the mean field expansion for P (y)

can therefore be expressed as P (y) / exp
h
� (y�y)

2

2�

2

i
with

y = ln Z � ⌧E
0

(N) , �2 =
40

9⇡
E

0

(N) ⌧ . (6)

This describes a log-normal distribution for the N -
fermion propagator C

N

(⌧, �), with both mean and vari-
ance growing with time in units of the energy of N free
degenerate fermions. In Fig. 2 we plot the quantities
� 1

E0

@y

@⌧

and 1

E0

@�

2

@⌧

as a function of N obtained from cor-
relator distribution data for unitary fermions at late ⌧ ,
and find that the gross features of the results are com-
patible with the mean field estimates of unity and 40/9⇡
obtained from eq. (6).

IV. A TOY MODEL

It would be useful to devise an algorithm to reliably
estimate energies without having to exhaustively sample
the long tail of the correlator distribution, yet without
making incorrect assumptions about the exact functional
form of that tail. An approach we suggest here is to ex-
ploit the general relationship between stochastic variables
X and Y = ln X:

lnhXi =
1X

n=1


n

n!
(7)

where 
n

is the nth cumulant of Y . This relation can
be proved by noting that the generating function for the

n

is ln �
Y

(t) where �
Y

(t) = heY ti = hXti is the mo-
ment generating function for Y , and evaluating at t = 1,
assumed to be within the radius of convergence. The mo-
tivation for investigating eq. (7) is that if the distribution
P (X) were exactly log-normal, the above sum would end
after the second term, as 

n>2

would all vanish; therefore
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FIG. 2: The quantities � 1
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@⌧ as a function of N
for unitary fermions at late times on a lattice of size L = 10,
compared to mean field prediction eq. (6) (dashed lines).

TABLE I: E determined from 250 blocks of 50,000 configu-
rations each for the model eq. (8) with ⌧ = 1000, g = 1/2.

Method E stat. error syst. error
conventional 0.014932 0.002485 –

n2 -0.002159 0.000304 -0.002165
n3 -0.000412 0.001618 -0.000324
n4 -0.000647 0.008379 0.000050
n5 -0.001794 0.037561 3.34⇥ 10�6

n6 0.010943 0.147739 �1.22⇥ 10�6

by replacing the 
n

by sampled cumulants and truncat-
ing the sum at finite order, one might hope to have a
reliable estimator for lnhXi provided P (X) was nearly
log-normal, in the sense that the 

n

fall o↵ rapidly for
n > 2.

Distributions with log-normal-like tails arise naturally
in products of stochastic variables. The propagator
C

N

(⌧, �) for unitary fermions can be expressed in a trans-
fer matrix formalism as the product of a ⌧ matrices —
one per time hop — each of which is the direct product of
N V ⇥V matrices of the form e�K/2(1+g')e�K/2, where
K is a constant matrix (the spatial kinetic operator), ' is
a random diagonal matrix with O(1) entries correspond-
ing to stochastic � fields living on the time links, and g is
a coupling constant (identified with 1/m2 in Eq. 3) that
has been tuned to a particular critical value that is O(1).
Unfortunately, little seems to be known about products
of random matrices, beyond the study in [9] which deals
with large products of weakly random matrices. There-
fore we analyze instead a toy model where we define a
“correlator” C

⌧

as a product of random numbers, and an
“energy” E = lim

⌧!1

E
⌧

where:

C
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=
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where 0  g  1 and the '
i

are independent and iden-
tically distributed random numbers with a uniform dis-
tribution on the interval [�1, 1]. The exact value for the
energy is obviously E

⌧

= 0 for any ⌧ since the statistical
average of the correlator is hC

⌧

i = 1. The cumulants of
the variable Y = ln(C

⌧

) are given by
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for n � 2; for small g one finds that the 
n

rapidly de-
crease as n increases for g < 1. Table I shows how the
systematic error in eq. (7) when truncated at n = n

max

,
converges to the exact answer E

⌧

= 0 as a function of
n
max

for g = 1/2, and shows that even though the distri-
bution is not log-normal (

n>2

6= 0) the convergence is
rapid.

In Fig. 3 we show the results of a simulation where
we compute E

⌧

for g = 1

2

and ⌧ = 1, . . . , 1000. At each
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• Analytical result of cumulants of ( ln C )

D. B. Kaplan ~ INT Gauge Field Dynamics ~ 3/16/12

Toy model:
C(T ) =

T�

i=1

(1 + g�i)

�i � [�1, 1] uniform dist.

Can compute cumulants of (ln C) analytically:

�1 = ⇥
�

1
2 log

�
1� g2

�
+ tanh�1(g)

g � 1
�

,

�n

n!
= ⇥

�
(�1)n

n � Li1�n

�
1+g
1�g

� (2 tanh�1(g))n

n!

�
n > 1

in Table III. This tunable parameter was typically chosen so as to minimize excited state

contamination in the correlation function for large N . The N fermion system appears to be

insensitive to the free parameter  
0

, which defines the pairing wavefunction on the lattice

at zero momentum, provided it is su�ciently large. Throughout this work we therefore take

this parameter to be  
0

= 100.

C. Parameter tuning

The lattice action defined in Eq. 3 contains NO couplings C
2n

(n = 0, . . . , NO � 1) which

must be tuned to scattering data. The details of the tuning procedure are descibed at length

in [49], and is similar to the method used in [50]; here we summarize the main points. The

couplings C
2n

are tuned by matching the lowest s-wave eigenvalues � = e�E of the two-

body transfer matrix defined on the lattice at finite volume onto the lowest NO solutions to

Lüscher’s formula, given by [51–54]:

p cot �
0

(p) =
1

⇡L
S(⌘) , ⌘ =

✓
pL

2⇡

◆
2

, (16)

where S(⌘) is the three-dimensional Zeta function:

S(⌘) = lim
⇤!1

2

4
X

|j|<⇤

1

|j|2 � ⌘
� 4⇡⇤

3

5 . (17)

In the unitary limit, the solutions to Lüscher’s formula are just the roots of the function

S(⌘), which may be easily calculated numerically and related to the energies by p =
p
ME.

It was shown in [49] that this tuning procedure may be used to systematically eliminate the

leading NO terms in the e↵ective range expansion

p cot �
0

(p) = �1

a
+

1

2

X

n=1

r
n�1

p2n (18)

up to negligible residual contributions to r
n�1

for n < NO.
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where E
0

(N) = 3NE
F

/5 is the total energy of N free
degenerate fermions (N/2 of each spin), and Z is the
overlap of the source and sink with the free fermion state.
The leading term in the mean field expansion for P (y)

can therefore be expressed as P (y) / exp
h
� (y�y)

2

2�

2

i
with

y = ln Z � ⌧E
0

(N) , �2 =
40

9⇡
E

0

(N) ⌧ . (6)

This describes a log-normal distribution for the N -
fermion propagator C

N

(⌧, �), with both mean and vari-
ance growing with time in units of the energy of N free
degenerate fermions. In Fig. 2 we plot the quantities
� 1

E0

@y

@⌧

and 1

E0

@�

2

@⌧

as a function of N obtained from cor-
relator distribution data for unitary fermions at late ⌧ ,
and find that the gross features of the results are com-
patible with the mean field estimates of unity and 40/9⇡
obtained from eq. (6).

IV. A TOY MODEL

It would be useful to devise an algorithm to reliably
estimate energies without having to exhaustively sample
the long tail of the correlator distribution, yet without
making incorrect assumptions about the exact functional
form of that tail. An approach we suggest here is to ex-
ploit the general relationship between stochastic variables
X and Y = ln X:

lnhXi =
1X

n=1


n

n!
(7)

where 
n

is the nth cumulant of Y . This relation can
be proved by noting that the generating function for the

n

is ln �
Y

(t) where �
Y

(t) = heY ti = hXti is the mo-
ment generating function for Y , and evaluating at t = 1,
assumed to be within the radius of convergence. The mo-
tivation for investigating eq. (7) is that if the distribution
P (X) were exactly log-normal, the above sum would end
after the second term, as 

n>2

would all vanish; therefore
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FIG. 2: The quantities � 1
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@y
@⌧ and 1
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@�2

@⌧ as a function of N
for unitary fermions at late times on a lattice of size L = 10,
compared to mean field prediction eq. (6) (dashed lines).

TABLE I: E determined from 250 blocks of 50,000 configu-
rations each for the model eq. (8) with ⌧ = 1000, g = 1/2.

Method E stat. error syst. error
conventional 0.014932 0.002485 –

n2 -0.002159 0.000304 -0.002165
n3 -0.000412 0.001618 -0.000324
n4 -0.000647 0.008379 0.000050
n5 -0.001794 0.037561 3.34⇥ 10�6

n6 0.010943 0.147739 �1.22⇥ 10�6

by replacing the 
n

by sampled cumulants and truncat-
ing the sum at finite order, one might hope to have a
reliable estimator for lnhXi provided P (X) was nearly
log-normal, in the sense that the 

n

fall o↵ rapidly for
n > 2.

Distributions with log-normal-like tails arise naturally
in products of stochastic variables. The propagator
C

N

(⌧, �) for unitary fermions can be expressed in a trans-
fer matrix formalism as the product of a ⌧ matrices —
one per time hop — each of which is the direct product of
N V ⇥V matrices of the form e�K/2(1+g')e�K/2, where
K is a constant matrix (the spatial kinetic operator), ' is
a random diagonal matrix with O(1) entries correspond-
ing to stochastic � fields living on the time links, and g is
a coupling constant (identified with 1/m2 in Eq. 3) that
has been tuned to a particular critical value that is O(1).
Unfortunately, little seems to be known about products
of random matrices, beyond the study in [9] which deals
with large products of weakly random matrices. There-
fore we analyze instead a toy model where we define a
“correlator” C

⌧

as a product of random numbers, and an
“energy” E = lim

⌧!1

E
⌧

where:

C
⌧

=
⌧Y

i=1

(1 + g'
i

) , E
⌧

= �1

⌧
lnhC

⌧

i (8)

where 0  g  1 and the '
i

are independent and iden-
tically distributed random numbers with a uniform dis-
tribution on the interval [�1, 1]. The exact value for the
energy is obviously E

⌧

= 0 for any ⌧ since the statistical
average of the correlator is hC

⌧

i = 1. The cumulants of
the variable Y = ln(C

⌧

) are given by


1

= ⌧
h
1

2

log
�
1 � g2

�
+ tanh

�1
(g)

g

� 1
i

,


n

n!
= ⌧

✓
(�1)

n

n

� Li
1�n

⇣
1+g

1�g

⌘
(2 tanh

�1
(g))n

n!

◆

for n � 2; for small g one finds that the 
n

rapidly de-
crease as n increases for g < 1. Table I shows how the
systematic error in eq. (7) when truncated at n = n

max

,
converges to the exact answer E

⌧

= 0 as a function of
n
max

for g = 1/2, and shows that even though the distri-
bution is not log-normal (

n>2

6= 0) the convergence is
rapid.

In Fig. 3 we show the results of a simulation where
we compute E

⌧

for g = 1

2

and ⌧ = 1, . . . , 1000. At each
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III. EXACT RESULTS FOR FEW-BODY STATES

In Appendix A we derive exact expressions for the N-particle transfer matrix, as well

as the projection operators onto the center of mass (CM) frame and various irreducible

representations (irreps) of the octahedral group O
h

. Using these results, we have performed

exact digonalizations of the N = 1 + 1, N = 2 + 1 and N = 2 + 2 unitary fermion transfer

matrices on small to moderate lattice volumes. 3 Armed with exact numerical results for the

eigenstates and energies, we may investigate the systematic errors associated with partial

wave scattering from non-zero angular momentum interactions in the two-body sector, as

well as finite volume and lattice spacing artifacts in the three-body sector. In addition to

these studies, we may perform consistency checks with numerical simulation in both the

three- and four-body sectors. Those results, however, will be presented in Sec. IV.

A. Two unitary fermions

As discussed in Sec. II C, the unitary limit corresponds to the limit that p cot �
0

= 0 for

all momenta, where �
0

is the s-wave scattering phase shift. It is tacitly assumed that in

3 The dimensionality of the transfer matrix after projecting onto the CM frame and irrep r scales like

cL3(N�1), where c is a rational number ranging between 1/48 and unity, depending both on the dimen-

sionality of the irrep and lattice size. Hence, for a fixed amount of computer memory or computing time,

the maximum allowable lattice size decreases sharply with increasing N.
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to order n over the time interval 45-60 (n=2,3) and 13-60
(n=4,5,6). Inset: conventional e↵ective mass.

value of ⌧ we independently generated an ensemble of
values for C

⌧

of size N = 50, 000. From that ensemble
we computed E

⌧

by (i) using the conventional estimator
E
⌧

= � 1

⌧

ln C
⌧

(blue), which shows a striking system-
atic error for ⌧ & 50, and statistical noise increasing up
to ⌧ ' 500 but decreasing beyond that; (ii) using eq.
(7) truncated at n = 2 using conventional estimators for
the 

n

(green), showing a ⌧ -independent systematic error
with smaller but slowly growing statistical error; (iii) eq.
(7) truncated at n = 3 (red) with a negligible constant
systematic error but a larger statistical error, growing
with ⌧ . Evidently, one trades systematic error for sta-
tistical error by truncating eq. (7) at increasingly large

n
max

.
Table I displays results of a simulation of 1.25 ⇥ 107

� configurations blocked into 250 blocks of 50,000 each,
for the model eq. (8) at ⌧ = 1000 and g = 1/2. For
each case we give the mean and the square root of the
variance; for the truncated cumulant expansion we also
give the theoretical systematic error from truncating eq.
(7) using our analytic expressions for 

n

. These numbers
show how the conventional method gives a wrong answer
with deceptively small statistical error. One sees again
the trade of systematic error for statistical error as one
increases the order n

max

where one truncates the sum in
eq. (7). Table I suggests the place to stop for the smallest
combined error is at n

max

= 3, justified by noting that
the n

max

= 4 result with statistical errors encompasses
the n

max

= 3 result; we suggest this as a practical al-
gorithm for determining where to truncate the cumulant
expansion in general. Fig. 4 shows how this works in a
real simulation for 50 trapped unitary fermions [1].

V. DISCUSSION

Heavy-tail distributions are likely to be ubiquitous in
N -body simulations, and perhaps even in other types of
noisy calculations. With such distributions theoretical
statistical means can deviate wildly from sample means
for any realizable sample size and render conventional
estimates of expected fluctuations irrelevant. We have
shown that there are more e�cient estimators for ground
state energies using the cumulants of the log of the corre-
lator instead of the conventional e↵ective mass, at least
for positive correlators. This method is presumably only
e↵ective for nonpositive data when when the heavy-tail is
asymmetric. It may be useful to think of this procedure
in a renormalization group language, where the higher
cumulants behave like irrelevant operators a↵ecting the
flow toward a log-normal distribution.
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This describes a log-normal distribution for the N -
fermion propagator C
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(⌧, �), with both mean and vari-
ance growing with time in units of the energy of N free
degenerate fermions. In Fig. 2 we plot the quantities
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as a function of N obtained from cor-
relator distribution data for unitary fermions at late ⌧ ,
and find that the gross features of the results are com-
patible with the mean field estimates of unity and 40/9⇡
obtained from eq. (6).

IV. A TOY MODEL

It would be useful to devise an algorithm to reliably
estimate energies without having to exhaustively sample
the long tail of the correlator distribution, yet without
making incorrect assumptions about the exact functional
form of that tail. An approach we suggest here is to ex-
ploit the general relationship between stochastic variables
X and Y = ln X:

lnhXi =
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is the nth cumulant of Y . This relation can
be proved by noting that the generating function for the
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(t) where �
Y

(t) = heY ti = hXti is the mo-
ment generating function for Y , and evaluating at t = 1,
assumed to be within the radius of convergence. The mo-
tivation for investigating eq. (7) is that if the distribution
P (X) were exactly log-normal, the above sum would end
after the second term, as 
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would all vanish; therefore
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ing the sum at finite order, one might hope to have a
reliable estimator for lnhXi provided P (X) was nearly
log-normal, in the sense that the 
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has been tuned to a particular critical value that is O(1).
Unfortunately, little seems to be known about products
of random matrices, beyond the study in [9] which deals
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for n � 2; for small g one finds that the 
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crease as n increases for g < 1. Table I shows how the
systematic error in eq. (7) when truncated at n = n
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converges to the exact answer E
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= 0 as a function of
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for g = 1/2, and shows that even though the distri-
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rapid.
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Are distributions approaching log-normal appearing in QCD?
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Appearance of LN distribution in lattice QCD

Yes, at early time in a Lambda-Lambda correlator



Appearance of LN distribution in lattice QCD

At very late time, however, the distribution of correlator 
for A baryons presumably goes like a Gaussian with large 
variance and small mean.

Consider the real part of correlator for A baryons

C(⌧) =
⌧Y

i

(1 + g�
i

), (19)

(1 + g�
1

) (20)

(1 + g�
2

) (21)

(1 + g�
⌧

) (22)

�
i

2 [�1, 1] (23)

E
⌧

�! � 1

⌧

"
1

N

NX

i=1

C(⌧,�
i

)

#
(24)

E
⌧

�! � 1

⌧

1X

n=1


n

(⌧)

n!
(25)


n

(⌧) = cumulants of lnC(⌧,�) (26)

e�K(1�
p
C�)e�K (27)

x ⌘ Re[C
A

(T )] (28)

(29)

III. EXACT RESULTS FOR FEW-BODY STATES

In Appendix A we derive exact expressions for the N-particle transfer matrix, as well

as the projection operators onto the center of mass (CM) frame and various irreducible

representations (irreps) of the octahedral group O
h

. Using these results, we have performed

exact digonalizations of the N = 1 + 1, N = 2 + 1 and N = 2 + 2 unitary fermion transfer

matrices on small to moderate lattice volumes. 3 Armed with exact numerical results for the

eigenstates and energies, we may investigate the systematic errors associated with partial

wave scattering from non-zero angular momentum interactions in the two-body sector, as

well as finite volume and lattice spacing artifacts in the three-body sector. In addition to

these studies, we may perform consistency checks with numerical simulation in both the

three- and four-body sectors. Those results, however, will be presented in Sec. IV.

3 The dimensionality of the transfer matrix after projecting onto the CM frame and irrep r scales like

cL3(N�1), where c is a rational number ranging between 1/48 and unity, depending both on the dimen-

sionality of the irrep and lattice size. Hence, for a fixed amount of computer memory or computing time,

the maximum allowable lattice size decreases sharply with increasing N.

9

D. B. Kaplan ~ INT Gauge Field Dynamics ~ 3/16/12

...But at late time we do not expect log normal for baryon 
propagators in QCD
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Since                  , odd moments die out faster and we 
expect symmetric distribution at late time.
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Appearance of LN distribution in lattice QCD

FIG. 6: Effective mass for moments of the highest-spin baryon (higher moments lie higher, so the

baryon effective mass is given by crosses, the effective mass of the squared correlator is given by
octagons, for the cubed correlator, by squares, and the fancy diamonds are for M4): (a) SU(3),
κ = 0.125; (b) SU(5), κ = 0.1265; (c) SU(7), κ = 0.128.
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FIG. 1: Histogram of values of log C(t) for the propagator of a J = 7/2 baryon in SU(7). Panels

(a), (b), and (c) show results for t = 4, 6, and 8 respectively.

where m2 is the lightest state which can be created by the squared operator. For the
pseudoscalar or the rho, the lightest state is the two-pseudoscalar state and σ(t)/C(t) should
be roughly a constant for the pseudoscalar, roughly increasing exponentially as exp((mρ −
mπ))t for the rho. (The energy of two particle states in a box includes an interaction
term[11], which will reappear below.) For the (N color) baryon correlator, two different
classes of behavior are expected for the moments[12]: when the moment number n is even,
the correlator should couple to nN/2 pseudoscalars and when n is odd, the lightest state

4
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FIG. 1: Histogram of values of logC(t) for the propagator of a J = 7/2 baryon in SU(7). Panels
(a), (b), and (c) show results for t = 4, 6, and 8 respectively.

where m2 is the lightest state which can be created by the squared operator. For the
pseudoscalar or the rho, the lightest state is the two-pseudoscalar state and σ(t)/C(t) should
be roughly a constant for the pseudoscalar, roughly increasing exponentially as exp((mρ −
mπ))t for the rho. (The energy of two particle states in a box includes an interaction
term[12], which will reappear below.) For the (N color) baryon correlator, two different
classes of behavior are expected for the moments[13]: when the moment number n is even,
the correlator should couple to nN/2 pseudoscalars and when n is odd, the lightest state
will be a single baryon plus (n − 1)N/2 pseudoscalars. Sometimes the squared correlator
can couple to the vacuum, in which case σ2(t) would be a constant. This is the situation for
the scalar glueball mass or any Wilson loop.

Now consider the situation for a log-normal correlator. The average value of the nth
moment is
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. Using these results, we have performed

exact digonalizations of the N = 1 + 1, N = 2 + 1 and N = 2 + 2 unitary fermion transfer

matrices on small to moderate lattice volumes. 3 Armed with exact numerical results for the

eigenstates and energies, we may investigate the systematic errors associated with partial

wave scattering from non-zero angular momentum interactions in the two-body sector, as

well as finite volume and lattice spacing artifacts in the three-body sector. In addition to

these studies, we may perform consistency checks with numerical simulation in both the

three- and four-body sectors. Those results, however, will be presented in Sec. IV.

3 The dimensionality of the transfer matrix after projecting onto the CM frame and irrep r scales like

cL3(N�1), where c is a rational number ranging between 1/48 and unity, depending both on the dimen-

sionality of the irrep and lattice size. Hence, for a fixed amount of computer memory or computing time,
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FIG. 5: Cumulants of logMn(t) from quenched SU(3) simulations at β = 6.0175. for the (a)

second and (b) third moments of the r = (1, 1, 1) Wilson loop. Labels are octagons for κ2, squares
for κ3, diamonds for κ4, crosses for κ5.

lattice units). Apparently Eq. 5 is only an asymptotic result. This is no surprise: the simple
story was too simple. The correlator couples to everything with its quantum numbers, not
just the lightest state:

Mn(t) =
∑

j

Zj exp(−mjt) (10)

where mj can include the n− baryon state. Presumably this is a dominant state, since some
attempt was made to optimize the operators to produce a single baryon state in C(t). So
the asymptotic form may appear only at very late time.

Let’s next test Eq. 9. I just take effective masses and, under a jackknife, compute ∆M =
nM − Mn. This should be linear in n(n + 1), and the slope should be given by the part
of κ2 for logC(t) which is linear in t. Fig. 7 shows this behavior quite nicely for hadron
correlators in SU(3). The line is a fit to S (see Eq. 9) over the range 3 ≤ t ≤ 8.

Recall panel (b) of Fig. 6, showing the evolution of mass parameters at large t. Fig. 8
shows cumulants and the mass splitting for our SU(5) J = 5/2 state. Log-normal behavior
works well at shorter t and fails at the largest t.

Finally, we return to potentials. Figs. 4, 9 and 10 show the consistency of log-normal
behavior (dominant κ2, effective masses scaling as in Eq. 9) at short distances, and when
the effective mass for the moments falls, dominance of κ2 goes away.

So to summarize: At small and intermediate t, hadronic correlators show log-normal
behavior. This is the t range where the Lepage formula does not describe the effective mass
of the moments of C(t). At large t, the Lepage formula does appear to describe the effective
mass of the moments and correlators cease to be log-normal.

As a last observation, we can ask about volume dependence. I have two volumes for some
of my quenched data sets. Figs. 11-12 show that the S parameter, the slope of κ2 with t,
often scales inversely with the simulation volume. I do not have enough other data sets to
say more about this.

Are there any consequences of this observation? I can think of two.
First, the authors of Refs. [1–7] have shown that, for their data sets, noisy signals can
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