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® Motivation: unitary fermi gas

e (Cold atom experiments
BEC-BCS crossover

Jin, D et.al Boulder Summer School 2004
unitarity
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e Approximation to low-density nuclear matter
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® Fermions at unitarity

e Definition: Non-relativistic spin |/2 fermions with an attractive interaction
i 10—~ 0 << nm3 << |al—= > §

Range of interaction = s-wave scattering length

Interparticle spacing
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- M pcefdy —ip §

Strongly-coupled conformal system
No intrinsic length scales except density

O Universality; Physics at low k doesn'’t care of the

details of the interaction.
zero energy bound state

>
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Pairing gap gUmtary () — Ae%ee(n)




@ Chronology of the Bertsch parameter
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] e analytical

e experiment

e simulation

Endres, Kaplan,
— JWL, Nicholson
(2013)
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The Bertsch parameter is approaching 0.37 at a few percent level !




@ Pairing gap from cold atom experiments

IIII|IIII|IIII|IIII/

|

O
U

B This work
BCS mean-field

Experiment
(quasiparticle spectroscopy)

A V' Theory (QMC)

lll|lll|lll|lll|ll

-
w

L
Ly
N
<

a
O
bl
loY0)]
-
=
©
Q
O
-
borm
S
(D)
o
-
(V)]

Experiments:
O Bragg spectroscopy
A RF spectroscopy (ref. 25)
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@ Pairing gap from numerical simulations

A = 0.504(30)

| | | | |
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(k/ kF)2 Carlson & Reddy (2005)

Any recent update from numerical simulations?
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® Low energy nuclear EFT - continuum
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D. B. Kaplan, M. Savage, M.Wise (1998)




@ Lattice construction for non-relativistic fermions

e Interaction & Lattice action
J. -W. Chen, D. B. Kaplan (2004)

S = bTb:;Z {wx,T(aﬂb)x — —¢x T(v2 ) (\/7§b)x wa k-1

T,X

Integrating out

/) 2
C(Pxrtxr1) (1) Four-Fermi interaction via auxiliary
| fields, ¢p=x1 or Gaussian, on time-links

— Only fermion loop with forward propagators

<¢X,T> =0 3 <¢X,T¢X’,T,> — 5x,x’67',7"

/—-—-—P

{
‘ source (2) Open B.C.in time and periodic B.C.

-t in space

3 : : Restricted to zero temperature
I'x L Euclidean Lattice




@ Lattice construction for non-relativistic fermions

e Fermion matrix |( p ~X(T-1) 0
D —X(T - 2)

S =YKy K =

o . 2
Open B.C.in time D—1_ ;_M 7 X(1)=1- \/ECI)(T)

det K is independent of the ’ No nontrivial probability measure

auxiliary field Quenched simulation & sign free

e Propagator (K™) & Transfer matrix (T)

K_l(T;O) _ D127 p—1/2 T — D_l/zX(T)D_l/Q




@® Measurement of the ground state energy
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Remarks

1) Canonical approaches on an Euclidean space-time lattice
2) Zero temperature (open b. c.)

3) No trapping potentials

4) Ground state energies of Nup=Ndown and Nup+1=Ndown unitary
fermions

5) Numerical results for Nup+1=Ngown unitary fermions are very
preliminary (single volume V=167, selected values of N).
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2) Systematics

I. Unitarity limit and discretization/finite volume effects




@ Improvement: single particle sector

free fermions

’ T = D! and

2sin?(p/2
e Standard: 1+ Sm]\;p/)

e Perfect: Separable interaction and FFT algorithm
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@ Tuning: four-fermi interaction

L 1 5 2(i+1)
X < > p cot dg — + 57op +;rip

0

VC(P' —a')/C(p' —q)

Discretized & FiniteV Continuum & InfiniteV

(zalilean-invariant interaction




@ Improvement: two-body sector , Luscher (1986, 1991)

Beane, Bedaque,
Parreno & Savage (2004)
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@ Improvement: two-body sector , Luscher (1986, 1991)

Beane, Bedaque,

X Parreno & Savage (2004)
1
< > p cotdy = n—LS(n)
= / ™~

4T
C(p) — M Z OZnO?n(p) free space confined in a box

n=0

_ M1 _ oD/ Moyn 1

A—0o0 2
_ |j|<A'] d
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@ Realization of unitarity

100 150 200 30.0

- For a few low-lying energy eigenvalues systematically tune the operators
O2,(p) to reproduce

pcotdy = 0  for sufficiently small p
- Found that we are close to unitarity even beyond the exactly tuned states.

- For non-zero net CoM is the tuning affected by the hard momentum cut-

off for the single particle?
Gilbreth & Jensen in private conversation




@® Beyond two-body sector

L. Pricoupenko &Y. Castin (2007)

036000 00005 00010 00015  0.0020
(bs/L)?

o Improvement in 2-body sector (S-wave): 1/ L? withs operators tuned

o No improvement in 2-body sector (P-wave): @
N=4 N=3

o Contribution of 3-body operators : (g —1) L43({=0)

S.Tan (2004) Y. Nishida & D. T. Son (2007)
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2) Systematics

II. Interpolating field overlap




@ N-body correlators é v * N

e Slater-Determinant to take account of Fermi-Dirac Statistics

Cn,.n, (T) = (det S¥(7) det ST(7)) L=10, N=4
1.0
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@ N-body correlators

Cn, N, (7) = (det S¥(7) det ST(7))

S7i(1) = (a7 [K7H(7,0)[f)

|a?) is a momentum eigenstate of non-
interacting fermions

tlyunitary(r ) ~1/r

Unitary fermions have small
wave function overlap with
non-interacting fermions.
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@® Improvement: N-body correlators

e Slater-Determinant to take account of Fermi-Dirac Statistics

Cv, oy (1) = (det S*(r)det ST(7)) Cy, v, (7) = (det S (7))

. - . 4 Wy — -1 -1 Lot
S7.(7) = (7| K~ 1(,0)[a?) ¥ Sii(1) = (UK (7,0) @ K~ (7,0)]aja;)

|a?) is a momentum eigenstate of non- W) is a two-fermions state.

interacting fermions
For Ny = N| — 1, replace j-th row by

(@ |K~H(7,0)|ay), (af| K71 (7,0)ag), -, (af|K~'(7,0)]ay,)

qjunitary(r ) ~1/r

In momentum space

Unitary fermions have small
wave function overlap with o
non-interacting fermions. untrapped(P)

e bp
B p2

w()a p:O




@® Improvement: N-body correlators

Blue: products of single-
fermion wave function
product of single-fermion | (momentum eigenstate)

wave function
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Large overlap of the wave function significantly
improves the results.
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I1. Statistical overlap/noise




@ Statistical noise & overlap problems

N=46 (N,=N,=23), L=12, Ar=3
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e Noise & drifted upward at large Euclidean time

=)  no plateau

e Worse for larger number of fermions




@® Conventional method for small N
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Good agreement for ~4M configurations, but systematically deviated
for smaller number of configurations

The error bar doesn’t represent the uncertainty of the estimator correctly.




@® Correlator distribution

0.04}

0.03}

= 0.02} -

long tails at

0.01f Vo= o )
-/ Iate times

0.00t

Most configurations are far off the true ground state.

Insufficient sampling for the long tail leads to the shift in the true
ground state energy.

Distribution overlap problem




@® Log-correlator distribution

1 Solid lines: Gaussian

1 fits

Conventional sample average and the estimate of errors by
standard deviation work well.




@® Log-normal distribution?

not exactly

cf: Product of random numbers has a log-normal distribution.




@® Cumulant expansion

o General relation between In<C> and <ln C>

where k1 = (InC), ke = {((InC)?) — (InC)?,  etc.

e Lowest few cumulants don’t suffer from the distribution
overlap problem & converge quickly.

’ truncate the cumulant expansion at which the
statistical error and truncation error are comparable.




@ Example: N=46 unitary fermions
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@ Convergence of cumulant expansion

Purple band represents the energy
calculated using conventional method
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© Ground state energies: (Nu+1,Ndown) unitary fermions

Not all of correlators are positive.

But, the long-tail develops in the distribution for positive correlators.

Cn, N, —1(7)

(1) is the n-th cumulant of the distribution for In C;( ).




@ Ground state energies: (Nu+1,Ngown) unitary fermions

Purple: Nx=8, + and - separate
Red: all configs

e e e 'Ai' . Pricoupenko & Castin (2007)
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Blue: Nx=8, + configs
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L=8, M=5, N=3, At=10

For positive configurations cumulant expansion method and the
conventional approach agree to each other at large Euclidean time,
so do for all configurations.




@ Ground state energies: (Nu+1,Ngown) unitary fermions

Purple: Nx=4, + and - separate
Red: all configs
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A contribution from negative correlators is getting smaller as the
number of fermions increases.
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IT. Thermodynamic limit




Shell structure at finite N: Bertsch parameter

Eunitary (n) _ fEfree (n)
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@ Shell structure at finite N: Pairing gap

8Umitaury (n) _ Ag%ee (n)

N(N1, N1+1)

E(NT, NT) + E(NT + 1, NT + 1)

gunitary(QNT + 1) = E(NT, NT + 1) —




Shell structure at finite N: Pairing gap

O Free fermions

® Unitary fermions
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@ Shell structure at finite N: Pairing gap

Red: data
Blue: fit results

N(N1, N++1)

Apeip (N) = A0 4+ C (1 -

thermo
Ep




Finite N correction and thermodynamic limit

. 015
1/N(N1~,N1~+1)

0Ap—ir(N) = A2, (N) — AR (N)
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3) Numerical results




@® Odd-even Staggering at unitarity

Pairing gap (A) =0.993) E_. M

odd A >4

- ~
ﬂ;fﬂ‘ E=044(1) AE_,

10 20 30 0 30
A N
Carlson, Chang, Pandharipande Endres, Kaplan, JWL &

& Schmidt, Phys. Rev. Lett. 91, Nicholson, PoS
050401 (2003) Lattice2010 197, (2010)

Preliminary

Odd-even staggering in the ground state energies of unitary
fermions has been found both in QMC and Lattice MC calculations.




@ Single particle dispersion relation at unitarity

N =65, V =16

kpa =00 |- ‘xﬁ\‘b’ﬂq
&
Qs

Carlson & Reddy (2005)

(xl § §
a (z]

This work (statistical error only ~ 1.5%)

| | | | |
0.4 0.6 0.8

(k/ky’

Preliminary result from the ensemble with largest N and V shows
that the pair-breaking energies are lower than QMC results for all k.




® Chronology of Pairing gap at unitarity

Simulation
Experiment

| QMC + Exp.
0.6} This work

0.5

i

0.4|

o3
2000 2005 2010
year

- Carlson, Chang, Pandharipande & Schmidet, Phys.
Rev. Lett. 91,050401 (2003) - Ketterle et al, Phys. Rev. Lett. 101, 140403

- Carlson & Reddy, Phys. Rev. Lett. 95,060401 (2005) (2017)

- Bulgac, Drut, Magierski, & Wlazlowski, Phys. Rev. '2"'Ocl>;i'<05hi et al, Phys. Rev. X 7,041004
Lett. 103,210403 (2009) (2017)

- Carlson & Reddy, Phys. Rev. Lett. 100, 150403 (2008) - Hoinka et al, Nature 13, 943-946 (2017)
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4) Summary and Conclusions




@® Summary and conclusions

e Highly improved lattice technique for strongly interacting non-
relativistic fermions at unitarity

- eliminate finite lattice spacings/finite volume effects systematically
- improve the overlap of the interpolating field

- use the cumulant expansion method to calculate the energies of
ground states with high precision by improving the statistical overlap

e Results of the pairing gap are still preliminary.

- agree with the recent cold-atom experiments

- take account for the finite V and N effects carefully




Thanks!






@ Effective mass plot of single particle excitation

L=16,M=5, N=55, 4th shell,
cut at 4th cumulant [

Red and blue colors denote two different sinks.

No source dependence at large Euclidean time.




©® Signal-to-Noise (S/N) problems in humerical
simulations of many-body quantum systems

e Lattice QCD calculation for many baryons (a canonical
approach with zero chemical potential)

Estimate of A-baryon correlation function:

(Ca) ~ e M7 L (Whow - @hyion) ~ pe iy

C(A) CH(A)C(A)

3q, 3q
o Q o Variance -

S/N ratio: _{Ca) \//T/Q—AT.

g P Lepage (1989)

closely related to the Sign problem of lattice QCD with a

finite chemical potential starting at |1 = T, / 2
P. E. Gibbs (1986)




® Actual QCD data

5 c ® 1 @ ~U ( _ § )
Signal to noise: —7 In 1) MN = 5 M

04

1 I | Ll 1 L1 1 1
—&— proton
LN?LQCD d&t& —O—— proton-proton

| qualitatively
| agrees with
Lepage argument

Signal to Noise Effective Mass




Why do log-normal like distribution arise?

Typically, multiplicative stochastic process

Remember that correlators are products of tand N
matrices of the form

— constant matrix

e_K?1 — \/Eg) e "

Random diagonal matrix

Little has been known about products of random
matrices

# Toy model - one particle, one spatial site




® Toy model

T

o) =T[(1+g6), 0<g<1 (1 + go,) I

1

Define “Energy” : &, = ! In(C';) : ¢

' (1+ gobo)

o If ¢ € [—-1, 1], then & =0 (1+ géy)
Uniform Dist. Exact

®

® Analytical result of cumulants of (In C)

T {% log (1 — ¢*) - tanh__ (9)




® Simulation with finite sample size N

® Measurement of the energy

conventional method

N

1|1 '
87' — — — NZC(Tagbz)

T )
1=1

truncated cumulant expansion method

cumulants of In C(7, ¢)

estimate the lowest few cumulants from sample

Then, compare results with exact answers !




® Effective mass plot for toy model

4 - )

C(r) = H(1 + 99:) sample size N=50,000 for each dot

v Y,

at late t, drift upward & spread

::> simulation errors can’t be estimated
correctly by typical standard deviation

exact: £, =0

.. iondldy
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500 1000 Same phenomenon
as in real simulation




@ Appearance of LN distribution in lattice QCD

Yes, at early time in a Lambda-Lambda correlator

NPLQCD data
distribution of log Caa

- Each curve: 100,000 samples

! | ! ! ! !
45

In(Cpp (1)




@ Appearance of LN distribution in lattice QCD

At very late time, however, the distribution of correlator
for A baryons presumably goes like a Gaussian with large
variance and small mean.

Consider the real part of correlator for A baryons
r = Re|Cy(T)]

—A3KM T

even moments: (z°*) ~ e
2k+1>

—AMNT —A3km,T

odd moments: (x e e

P. Lepage & M. Savage

Since My > M, , odd moments die out faster and we
expect symmetric distribution at late time.




@ Appearance of LN distribution in lattice QCD

Yes, at early time in a SU(N) baryon correlator
T. DeGrand (2012)

- J =7/2 baryon in SU(7) SU(H) J = 5/2 state
ol SRR A A I B I

©) 5 (b)

40 |

t =38

30 |

20 | : I @ ] (3rd)
i i == 1 My + 3M._.

l : dF+= 6M, (4th)
10¢ - - 7 My (Ist)
- : - 1 3Mx (2nd)

O | 1 1 ] | 1 1 I 1 | 1 1
-10 —8 —6
log C(t)

Probability dist. Mass spectrum of moments

both ki and k2 roughly consistent with Lepage
scale ~t argument or just noise?




