
1	

Dean Lee 
Facility for Rare Isotope Beams 

Department of Physics and Astronomy 
Michigan State University 

Nuclear Lattice EFT Collaboration 

INT Workshop 
Advances in Monte Carlo Techniques  

for Many-Body Systems  
August 15, 2018  

Monte Carlo algorithms for nuclear lattice simulations 



Dr.	Bing-Nan	Lu	
Avik	Sarkar	

Rongzheng	He	 Dillon	Frame	 Dr.	Ning	Li	

Not	shown:	Joseph	BonitaB,	Caleb	Hicks		

2	



3	

Outline 

Lattice effective field theory 

Pinhole algorithm 

Applications to nuclear structure 

Applications to thermodynamics 

Eigenvector continuation 

Applications of eigenvector continuation 

Summary and outlook 



4	

n 

n 

p 

p 

Lattice effective field theory 

π

π

Review: D.L, Prog. Part. Nucl. Phys. 63 117-154 (2009) 
TALENT summer school lectures:  qmc2016.wordpress.ncsu.edu 
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Construct the effective potential order by order 
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Figure courtesy of Ning Li 
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Euclidean time projection 



We can write exponentials of the interaction using a Gaussian integral 
identity 

We remove the interaction between nucleons and replace it with the 
interactions of each nucleon with a background field. 

13	

Auxiliary field method 
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There has been no efficient algorithm available for auxiliary field Monte 
Carlo simulations to determine the density distribution of particles relative 
to the center of mass.  The problem is that the particle wave functions in 
the auxiliary field simulation are a superposition of many values for the 
center of mass. 

Challenge 



Pinhole algorithm 

Consider the density operator for nucleon with spin i and isospin j 

We construct the normal-ordered A-body density operator 

16	

In the simulations we do Monte Carlo sampling of the amplitude 
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Elhatisari, Epelbaum, Krebs, Lähde, D.L., Li, Lu, Meißner, Rupak, PRL 119, 222505 (2017) 



Model-independent measure of alpha cluster geometry   

For the carbon isotopes, we can map out the alpha cluster geometry 
by computing the density correlations of the three spin-up protons.  
We compute these density correlations using the pinhole algorithm. 
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In order to compute thermodynamic properties of finite nuclei, nuclear 
matter, and neutron matter, we need to compute the partition function  

The standard method for computing the partition function involves 
calculating determinants of matrices of size 4V × 4V, where V  is the number 
of lattice points filling the spatial volume.  Since V  is usually several 
hundred or several thousand, these calculations are very expensive.   
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Challenge 



We compute the quantum mechanical trace over A-nucleon states by 
summing over pinholes (position eigenstates) for the initial and final states   

Pinhole trace algorithm 
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We have developed an alternative method using pinholes that calculates 
determinants of matrices of size A × A, where A is the number of nucleons.  
The method does not suffer from severe sign oscillations. 

This can be used to calculate the partition function in the canonical ensemble. 
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A common challenge faced in many fields of quantum physics is finding the 
extremal eigenvalues and eigenvectors of a Hamiltonian matrix too large to 
store in computer memory.   

Challenge 

There are numerous efficient methods developed for this task.  All existing 
methods either use Monte Carlo simulations, diagrammatic expansions, 
variational methods, or some combination. 

The problem is that they generally fail when some control parameter in the 
Hamiltonian matrix exceeds some threshold value. 
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We demonstrate that when a control parameter in the Hamiltonian matrix 
is varied smoothly, the extremal eigenvectors do not explore the large 
dimensionality of the linear space.  Instead they trace out trajectories with 
significant displacements in only a small number of linearly-independent 
directions.   

Eigenvector continuation 

We prove this empirical observation using analytic function theory and the 
principles of analytic continuation.  

Since the eigenvector trajectory is a low-dimensional manifold embedded in 
a very large space, we can find the desired eigenvector using methods 
similar to image recognition in machine learning. 
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D. Frame, R. He, I. Ipsen, Da. Lee, De. Lee, E. Rrapaj, PRL 121, 032501 (2018) 



Consider a one-parameter family of Hamiltonian matrices of the form 

where H0 and H1 are Hermitian.  Let the eigenvalues and eigenvectors be 

28	

We can perform series expansions around the point c = 0. 

This is the strategy of perturbation theory.  We can compute each term in 
the series when the eigenvalues and eigenvectors of H0 are known or 
computable. 
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Perturbation theory 

convergence	region	
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Perturbation theory fails at strong attractive coupling 

Bose-Hubbard model 
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Restrict the linear space to the span of three vectors 
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analy-c	con-nua-on	



The eigenvector can be well approximated as a linear combination of a 
few vectors, using either the original series expansion 
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or the rearranged multi-series expansion we obtained through analytic 
continuation  

As c is varied the eigenvector does not explore the large dimensionality of 
the linear space, but is instead well approximated by a low-dimension 
manifold. 



-10

-8

-6

-4

-2

 0

 2

 4

 6

-5 -4 -3 -2 -1  0  1  2

E 0
/t

U/t

exact energies
EC with 1 sampling point

EC with 2 sampling points
EC with 3 sampling points
EC with 4 sampling points
EC with 5 sampling points

sampling points

37	

We can “learn” the eigenvector trajectory in one region and perform 
eigenvector continuation to another region 

D. Frame, R. He, I. Ipsen, Da. Lee, De. Lee, E. Rrapaj, PRL 121, 032501 (2018) 
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The Riemann surfaces of the degenerate eigenvectors are entwined at 
branch point singularities. 
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Applying eigenvector continuation to more than one eigenvector at a time 
accelerates convergence near avoided level crossings. 



Solve the generalized eigenvalue problem by finding the eigenvalues and 
eigenvectors of 

Use Monte Carlo simulations to compute projection amplitudes 

Eigenvector continuation with quantum Monte Carlo 
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Application: Neutron matter simulations 

We consider lattice effective field theory simulations of the neutron matter at 
the leading order. 

As a challenge to the eigenvector continuation technique, we use a lattice 
action for one-pion exchange that causes severe Monte Carlo sign oscillations. 

D.L., in “An Advanced Course in Computational Nuclear Physics”, Hjorth-Jensen, Lombardo,  
van Kolck, Eds., Lecture Notes in Physics, Volume 936 [arXiv:1609.00421] 

gA 

gA 



42	

 10

 12

 14

 16

 18

 20

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

en
er

gy
 (M

eV
)

projection time (MeV-1)

direct calculation
best fit

error bands

Direct calculation of six neutrons (L = 8 fm) 



 35

 40

 45

 50

 55

 60

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

en
er

gy
 (M

eV
)

projection time (MeV-1)

direct calculation
best fit

error bands

Direct calculation of fourteen neutrons (L = 8 fm) 

43	



Eigenvector continuation for six neutrons (L = 8 fm) 
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Eigenvector continuation for fourteen neutrons (L = 8 fm) 
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As a test of eigenvector continuation, we use it to improve perturbation 
theory for the anharmonic oscillator with a quartic interaction. 

In this case perturbation theory has a zero radius of convergence. This 
fact can deduced from the observation that H(c) is unbounded below for 
any negative c.  Mathematically what happens is that we have branch 
points that accumulate near c = 0. 

Anharmonic oscillator 

Bender, Wu, Phys. Rev. 184, 1231 (1969) 	
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For the eigenvector continuation calculations we project onto the subspace  

The order of the eigenvector continuation calculation is the dimensionality of 
the subspace.  
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54	Note the acceleration in the rate of convergence 
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Summary and Outlook 

These are exciting times for the nuclear 
theory community.  In lattice EFT, we have 
new projects in motion which are pushing 
the current frontiers. 
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Using the pinhole algorithm to study the 
d e t a i l e d s t r u c tu r e o f nu c l e i and 
thermodynamics of finite nuclei, nuclear 
matter, and neutron matter. 

Implementing eigenvector continuation to 
treat all higher-order interactions in chiral 
effective field theory and other applications. 



Applying the adiabatic projection method to 
low-energy nucleon-nucleus and alpha-
nucleus  scattering and reactions. 
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Calculating the two-body density matrix to 
measure pairing correlations in neutron 
matter and finite nuclei. 

Improving our understanding of the detailed 
connection between bare nuclear forces and 
nuclear structure for light and medium-mass 
nuclei. 


