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Nuclear Physics is plagued by sign problems
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Life is demanding without understanding

Sign problem: the suffering of stochastic sampling highly
oscillatory distributions because results require precise cancellations
of positive and negative contributions, generically it is
exponentially bad in particle number, volume, chemical potential∫ 1
−1 dx

∫ 1
−1 dy [Θ(−x)−Θ(x)] = 0

+1 -1
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Many interesting problems in QCD exist at µ 6= 0

INT-18-2b Complex Solutions August 7, 2018 4 / 26



Many interesting problems in QCD exist at µ 6= 0

INT-18-2b Complex Solutions August 7, 2018 4 / 26



Studying finite density generically have a mixed action

For µ 6= 0, SF is complex =⇒
sign problem :

SF =∫
dDx

[
ψ̄a
(
/∂ + µγ0 + i /A+m

)
ψa
]

No choice of Wick rotation,
t→ at+ ibτ , can fix this!
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...but analytically, we know ways to deal1

∫
Dφe−S =

∫ +∞
−∞ dxe−(x−iα)

2
=
√
π

Cauchy’s Integral Theorem

x→ x+ iα

CIT guarantees holomorphic f(x) (physics) unchanged

Nonholomorphic f(x), like the average sign, 〈σ〉, can change!

〈σ〉M =

∫
RN Dφ e−Seff [φ;λ]

∫
RN Dφ e−Re(Seff [φ;λ])

=
holomorphic

non-holomorphic

1M. Cristoforetti et al. “New approach to the sign problem in quantum field theories: High density
QCD on a Lefschetz thimble”. In: Phys. Rev. D86 (2012), p. 074506. arXiv: 1205.3996 [hep-lat].
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Lefschetz thimbles have seemingly optimal properties

Lefschetz thimbles: steepest descent from isolated critical points

SI = constant over one thimble =⇒ 〈σ〉T ≈ 1
Thimbles usually unknown; hard to determine correct set.
Unclear how they can work in gauge theories
Residual phase can be prohibitive2

φ̃ εCN I knew you
were trouble.

Can we construct them on the fly?

2J. Bloch. “Anatomy of a strong residual sign problem on the thimbles”. In: (2018). arXiv: 1808.00882
[hep-lat].
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Evolve RN with holomorphic gradient flow3: dφi
dt = ∂S

∂φi

φ̃ εCN

3A. Alexandru et al. “Sign problem and Monte Carlo calculations beyond Lefschetz thimbles”. In:
JHEP 05 (2016), p. 053. arXiv: 1512.08764 [hep-lat].
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In gauge theories, formal complications arise

?
φ̃ εCN
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What is the manifold of a gauge theory?

A
‖
µ

A⊥µ

Ãµ εC

[
∂S
∂A⊥

,G
]

= 0

Manifold under flow is justMg ⊕ G!
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Stokes’ phenomenon prevent thimble decomposition

φ̃ εCN

Effect of Stokes’ phenomenon on flow is 〈σ〉 < 1 due to “bumps”
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Ain’t no thang but a flow thang.
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QED1+1 with Nf = 3 staggered fermions

In the continuum:

S =

∫
d2x

[
FµνF

µν + ψ̄a(/∂ + µQγ0 +m− gQa /A)ψa
]

which we discretize and integrate out the fermions to obtain:

S =
1

g2

∑

r

(1− cosPr)−
∑

a

ln detD(a)
xy

Pr ≡ A1(r) +A0(r + x̂)−A1(r + t̂)−A0(r) .

D(a)
xy = maδxy +

1

2

∑

ν∈{0,1}

ην
[
eiQaAν(x)+µδν0δx+ν̂,y − e−iQaAν(x)−µδν0δx,y+ν̂

]
.

g = 0.50 and ma = 0.05, Q1 = Q+ = +2 and Q2,3 = Q− = −1

Baryon with amB ≈ 0.6
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QED1+1
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The Jacobian must be flowed as well:
dJij
dt = ∂2S

∂ζi∂ζk
J̄kj

Wrongians: J ≈ 1 or Im(J) = 0 =⇒ Speed up but reweighting4

φ̃ εCN Prohibitive reweighting from W − J
from exceptional configurations
when T is large

Gets worse in: d > 1, g →∞, gauge theories, and at transition5

4A. Alexandru et al. “Fast estimator of Jacobians in the Monte Carlo integration on Lefschetz
thimbles”. In: Phys. Rev. D93.9 (2016), p. 094514. arXiv: 1604.00956 [hep-lat].

5A. Alexandru et al. “Deep Learning Beyond Lefschetz Thimbles”. In: Phys. Rev. D96.9 (2017),
p. 094505. arXiv: 1709.01971 [hep-lat].
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Wrongians: J ≈ 1 or Im(J) = 0 =⇒ Speed up but reweighting4

φ̃ εCN Prohibitive reweighting from W − J
from exceptional configurations
when T is large

Gets worse in: d > 1, g →∞, gauge theories, and at transition5

4A. Alexandru et al. “Fast estimator of Jacobians in the Monte Carlo integration on Lefschetz
thimbles”. In: Phys. Rev. D93.9 (2016), p. 094514. arXiv: 1604.00956 [hep-lat].

5A. Alexandru et al. “Deep Learning Beyond Lefschetz Thimbles”. In: Phys. Rev. D96.9 (2017),
p. 094505. arXiv: 1709.01971 [hep-lat].
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A sufficiently good learnifold avoids all these issues

learnifold : M⊂ CN obtained by supervised machine learning6

φ̃i(φ) = φi + if(Tiφ) (1)

6A. Alexandru et al. “Deep Learning Beyond Lefschetz Thimbles”. In: Phys. Rev. D96.9 (2017),
p. 094505. arXiv: 1709.01971 [hep-lat].
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Use a feed-forward neural network to learn f(Tiφ)

sin(Re(A0))

cos(Re(A0))

sin(Re(A1))

cos(Re(A1))

Im(A0)

Im(A1)

Use cosAµ, sinAµ to insure that LT obeys CIT

vj = σ

(
bj +

∑

i

wijvi

)

Perform a backward propagate with gradient descent to adjust bj , wij
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1+1 Thirring model with Wilson fermions

S =
∑

x,ν

NF

g2
(1− cosAν(x)) +

∑

x,y

ψ̄α(x)DW
xy(A)ψα(y) , (2)

and with the hopping parameter κ = 1/(2m+ 4),

D
W
xy = δxy − κ

∑
ν=0,1

[
(1− γν)e

iAν (x)+µδν0δx+ν,y + (1 + γν)e
−iAν (x)−µδν0δx,y+ν

]
, (3)

The integration over the fermion fields leads to

S = NF

(
1

g2

∑

x,ν

(1− cosAν(x))− log detD(A)

)
. (4)

The parameters used: g = 1.0, m = −0.25, NF = 2

amf = 0.30(1) and amb = 0.44(1) =⇒ mb/mf = 1.5(2)
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1+1 Thirring 40× 10
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〈e−iSI+i Im log det J〉 and 〈n〉/mf as a function of µ/mf for 40× 10 with
amf = 0.30(1). The dashed curve represents the free fermion gas with the
same mass.
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What about avoiding flow all together?

Perhaps we don’t try and reach thimbles at all!

CIT guarantees physics unchanged for any M

? ?
?

?

What if thimbles aren’t optimal? Perhaps we instead seek the
exact surface of maximal 〈σ〉78

7A. Alexandru et al. “Finite-Density Monte Carlo Calculations on Sign-Optimized Manifolds”. In:
(2018). arXiv: 1804.00697 [hep-lat].

8Y. Mori et al. “Application of a neural network to the sign problem via the path optimization
method”. In: PTEP 2018.2 (2018), 023B04. arXiv: 1709.03208 [hep-lat].
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Sign-optimized manifold methods: Find MS ⊂Mλ
9

∇λ |〈σ〉| = |〈σ〉|
∫
RN Dφ e−Re(Seff [φ;λ])

[
∇λSR − ReTrJ−1∇λJ

]
∫
RN Dφ e−Re(Seff [φ;λ])

9A. Alexandru et al. “Finite-Density Monte Carlo Calculations on Sign-Optimized Manifolds”. In:
(2018). arXiv: 1804.00697 [hep-lat].
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What Mλ should one choose?

For fermionic theories, we find a useful Mλ to be

Ã0(A0, Ai1) = A0 + i (λ0 + λ1 cosA0 + λ2 cos 2A0)

Ãi(A0, Ai) = Ai

For bosonic theories, other groups have shown that
nearest-neighbor correlations are important10

10F. Bursa and M. Kroyter. “A simple approach towards the sign problem using path optimisation”. In:
(2018). arXiv: 1805.04941 [hep-lat].
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Ãi(A0, Ai) = Ai

For bosonic theories, other groups have shown that
nearest-neighbor correlations are important10

10F. Bursa and M. Kroyter. “A simple approach towards the sign problem using path optimisation”. In:
(2018). arXiv: 1805.04941 [hep-lat].

INT-18-2b Complex Solutions August 7, 2018 22 / 26

http://arxiv.org/abs/1805.04941


HMC on Manifolds

H(π,A) =
1

2

∑

x

πx[J(A)J†(A)]−1xy πy + SR(Ã(A))

P (π,A) ∝ e−H(π,A) marginalize
======⇒

over

∑

π

P (π,A) ∝ |det J |e−S(A)

Within our Mλ, we can analytically compute [J(A)J†(A)]−1xy
⇒ so MS as fast as RN
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Prelim. 2+1 Thirring with Staggered Fermions
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Prelim. 2+1 Thirring with Staggered Fermions NS = 62
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Forward Unto Dawn?

Complexification is a systematic way to reduce the sign problem

QED1+1 (and other abelian gauge theories) don’t have any
theoretical issues

The computational expense requires novel developments that can
be model-dependent

Ongoing work toward non-abelian and 3+1 theories!

Questions?
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