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Nuclear Physics is plagued by sign problems
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Life is demanding without understanding

@ Sign problem: the suffering of stochastic sampling highly
oscillatory distributions because results require precise cancellations
of positive and negative contributions, generically it is
exponentially bad in particle number, volume, chemical potential
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Many interesting problems in QCD exist at u # 0
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Studying finite density generically have a mixed action
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Studying finite density generically have a mixed action

o For u # 0, Sp is complex =
sign problem :

Sp =
/ APz [ (§ + o + id + m) ¢°]
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Studying finite density generically have a mixed action

o For u # 0, Sp is complex =
sign problem :

Sp =
/ APz [ (§ + o + id + m) ¢°]

@ No choice of Wick rotation,
t — at + b7, can fix this!
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Studying finite density generically have a mixed action
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SF = E 10 g
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e No choice of Wick rotation, N Iw' ' '
t — at + b7, can fix this!
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...but analytically, we know ways to deal!

IM. Cristoforetti et al. “New approach to the sign problem in quantum field theories: High density
QCD on a Lefschetz thimble”. In: Phys. Rev. D86 (2012), p. 074506. arXiv: 1205.3996 [hep-lat].
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we know ways to deal!

J D™ = [T dee= (7 = y/m

Cauchy’s Integral Theorem

nunl\hﬂn
vuuv

T — T+ i

o CIT guarantees holomorphic f(z) (physics) unchanged
e Nonholomorphic f(z), like the average sign, (o), can change!

N e morphi
< > _ f]R D¢€ [#:2] - holomorphic
TIm= f]RN D¢ e~Re(Sel#:A])) ~ non-holomorphic

IM. Cristoforetti et al. “New approach to the sign problem in quantum field theories: High density
QCD on a Lefschetz thimble”. In: Phys. Rev. D86 (2012), p. 074506. arXiv: 1205.3996 [hep-lat].
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Lefschetz thimbles have seemingly optimal properties

o Lefschetz thimbles: steepest descent from isolated critical points

2J. Bloch. “Anatomy of a strong residual sign problem on the thimbles”. In: (2018). arXiv: 1808.00882
[hep-lat].
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o Lefschetz thimbles: steepest descent from isolated critical points
e S; = constant over one thimble = (o)7 ~ 1
@ Thimbles usually unknown; hard to determine correct set.
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o Residual phase can be prohibitive?
N -
2J. Bloch. “Anatomy of a strong residual sign problem on the thimbles”. In: (2018). arXiv: 1808.00882

[hep-lat].
INT-18-2b Complex Solutions August 7, 2018 7/26



http://arxiv.org/abs/1808.00882
http://arxiv.org/abs/1808.00882

Lefschetz thimbles have seemingly optimal properties

o Lefschetz thimbles: steepest descent from isolated critical points
e S; = constant over one thimble = (o)7 ~ 1

@ Thimbles usually unknown; hard to determine correct set.
o Unclear how they can work in gauge theories

o Residual phase can be prohibitive?

( I knew you
were trouble.

[hep-lat].
INT-18-2b Complex Solutions


http://arxiv.org/abs/1808.00882
http://arxiv.org/abs/1808.00882

Lefschetz thimbles have seemingly optimal properties

o Lefschetz thimbles: steepest descent from isolated critical points
e S; = constant over one thimble = (o)7 ~ 1

@ Thimbles usually unknown; hard to determine correct set.
o Unclear how they can work in gauge theories

o Residual phase can be prohibitive?

T

( I knew you
were trouble.

e/
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Can we construct them on the fly?

[hep-lat].

2J. Bloch. “Anatomy of a strong residual sign problem on the thimbles”. In: (201855
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Evolve RY with holomorphic gradient flow?:

3A. Alexandru et al. “Sign problem and Monte Carlo calculations beyond Lefschetz thimbles”. In:
JHEP 05 (2016), p. 053. arXiv: 1512.08764 [hep-lat].
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In gauge theories, formal complications arise
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What is the manifold of a gauge theory?
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What is the manifold of a gauge theory?
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What is the manifold of a gauge theory?

1
AL

Manifold under flow is just M, ® G!
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Stokes’ phenomenon prevent thimble decomposition
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Stokes’ phenomenon prevent thimble decomposition

Effect of Stokes’ phenomenon on flow is (o) < 1 due to “bumps”
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Ain’t no thang but a flow thang.

Im A,

—0.05 T
—0.6 —0.4 0.0
Re A,




QEDi4; with Ny = 3 staggered fermions

In the continuum:

S = / &z [Fu F* + (@ + pero +m — gQa )]
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QEDi4; with Ny = 3 staggered fermions

In the continuum:

S = / &z [Fu F* + (@ + pero +m — gQa )]

which we discretize and integrate out the fermions to obtain:
1 ,
S = p Z (1 —cosP,)— Z In det Dl,(,;,‘]’/)
' a

PT = Al(T) = Ao(r T i’) — Al(r T f) — A()(T’) o
) . 1 e 7 s o 7S s
D(I(II/) = 7”(10;_(/ I E Z Ty [('{1(2“;11/(" )+H0v0 (>,1*A1)_1/ 7 (7’71(2“;}’/('()7/107/“()

vef{0,1}

.1'.;1/+17} .
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QEDi4; with Ny = 3 staggered fermions

In the continuum:

S = / &z [Fu F* + (@ + pero +m — gQa )]

which we discretize and integrate out the fermions to obtain:
1 R
S = p Z (1 —cosP,)— Z Indet D)
' a

PT = Al(T) o Ao(r T i’) — Al(?’ T ?f) — A()(T’) o
D,’({'('Il/) _ rn“()ﬂ/ + 5 Z M [(,{/,Q(_,l,/(.: )+ 100 (>,I’AI7.]/ o (,,7/,(2“‘\,/(,()7/10,/11()
ve{0,1}

.1'.]/4»17]
e g=0.50 and mg = 0.05, Q1 = Q+ = +2 and Q23 =Q_ = —1
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QEDi4; with Ny = 3 staggered fermions

In the continuum:

S = / &z [Fu F* + (@ + pero +m — gQa )]

which we discretize and integrate out the fermions to obtain:
1 R
S = p Z (1 —cosP,)— Z Indet D)
' a

PT = Al(T) +A0(7’ +§J) — Al(r +£) — A()(T’).

1 S Qo Ay ()+pduo S —iQa Ay (x)—pdo §
Dv,(('(y) = MgOzy + 5 E Ny [({ J (z)+10v0 Sripy — € 2 ()=t U().r.gﬁ»f/]
ve{0,1}

e g=0.50 and mg = 0.05, Q1 = Q+ = +2 and Q23 =Q_ = —1
e Baryon with amp ~ 0.6
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The Jacobian must be flowed as well:

4A. Alexandru et al. “Fast estimator of Jacobians in the Monte Carlo integration on Lefschetz
thimbles”. In: Phys. Rev. D93.9 (2016), p. 094514. arXiv: 1604.00956 [hep-lat].

5A. Alexandru et al. “Deep Learning Beyond Lefschetz Thimbles”. In: Phys. Rev. D96.9 (2017),
p. 094505. arXiv: 1709.01971 [hep-lat].
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The Jacobian must be flowed as well:

Wrongians: J =~ 1 or Im(J) =0 == Speed up but reweighting®
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The Jacobian must be flowed as well: =

Wrongians: J =~ 1 or Im(J) =0 == Speed up but reweighting®

Mr

peCN S - -
Prohibitive reweighting from W — J
from exceptional configurations
RY"  when T is large

Gets worse in: d > 1, g — oo, gauge theories, and at transition®

4A. Alexandru et al. “Fast estimator of Jacobians in the Monte Carlo integration on Lefschetz
thimbles”. In: Phys. Rev. D93.9 (2016), p. 094514. arXiv: 1604.00956 [hep-lat].

5A. Alexandru et al. “Deep Learning Beyond Lefschetz Thimbles”. In: Phys. Rev. D96.9 (2017),
p- 094505. arXiv: 1709.01971 [hep-lat].
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A sufficiently good learnifold avoids all these issues

learnifold: M C CY obtained by supervised machine learning®
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6A. Alexandru et al. “Deep Learning Beyond Lefschetz Thimbles”. In: Phys. Rev. D96.9 (2017),
p. 094505. arXiv: 1709.01971 [hep-lat].
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Use a feed-forward neural network to learn f(7;¢)

OO0
ST
202020

Use cos A,,sin A,, to insure that L7 obeys CIT
Vj =0 <bj =F Z wijvi>
i

Perform a backward propagate with gradient descent to adjust b;, w;;
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1+1 Thirring model with Wilson fermions

S= Z]ZF (1 — cos Ay ( +Zwa AW, (2

and with the hopping parameter x = 1 / (2m +4),

: Ay ()=
Dl =day—n 3, [(A— ) Ar@FTeh0s, 414y et A @i, L], (@)
v=0,1

The integration over the fermion fields leads to

S = Np ( S Z —cos Ay (x)) — log det D(A)) . (4)
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1+1 Thirring model with Wilson fermions

S = Z]ZF (1 cos Ay ( +Zwa A, (@)

x,V

and with the hopping parameter x = 1 / (2m +4),
DY =bay—r > [A=m)etAr@Trov0s 4 (14 y)e A @05, L ()

v=0,1

The integration over the fermion fields leads to

S = Np ( S Z —cos Ay (x)) — log det D(A)) . (4)

@ The parameters used: g = 1.0, m = —0.25, Np = 2
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1+1 Thirring model with Wilson fermions

§=3" (1~ cos Ay +Zwa A, (@)

x,V g
and with the hopping parameter x = 1 / (2m +4),

DY — by 3 [ m ) A D s, (g e A @R, L) )
v=0,1

The integration over the fermion fields leads to

S = Np ( S Z —cos Ay (x)) — log det D(A)) . (4)

@ The parameters used: g = 1.0, m = —0.25, Np = 2
e amy = 0.30(1) and am;, = 0.44(1) = my/my = 1.5(2)
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141 Thirring 40 x 10

147

1hse - RN . TRY
3 M = Ay(z) +iA —— 12— M= Ay(x) +iA
08 . [ —m 2| =
__0. Mg —— | [ —— Ms EERAN
< 1 oy
E 06 S 08}
I o4 £06 i
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(e~iSr+ilmlogdet Jy and (n)/my as a function of y/my for 40 x 10 with

mys = 0.30(1). The dashed curve represents the free fermion gas with the
same mass.
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What about avoiding flow all together?

TA. Alexandru et al. “Finite-Density Monte Carlo Calculations on Sign-Optimized Manifolds”. In:
(2018). arXiv: 1804.00697 [hep-lat].

8Y. Mori et al. “Application of a neural network to the sign problem via the path optimization
method”. In: PTEP 2018.2 (2018), 023B04. arXiv: 1709.03208 [hep-lat].
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What about avoiding flow all together?

@ Perhaps we don’t try and reach thimbles at all!
o CIT guarantees physics unchanged for any M

c ?
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TA. Alexandru et al. “Finite-Density Monte Carlo Calculations on Sign-Optimized Manifolds”. In:

(2018). arXiv: 1804.00697 [hep-lat]

8Y. Mori et al. “Application of a neural network to the sign problem via the path optimization
method”. In: PTEP 2018.2 (2018), 023B04. arXiv: 1709.03208 [hep-lat].
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What about avoiding flow all together?

@ Perhaps we don’t try and reach thimbles at all!
o CIT guarantees physics unchanged for any M

c ?

R

o What if thimbles aren’t optimal? Perhaps we instead seek the
exact surface of maximal ()78

TA. Alexandru et al. “Finite-Density Monte Carlo Calculations on Sign-Optimized Manifolds”. In:

(2018). arXiv: 1804.00697 [hep-lat]

8Y. Mori et al. “Application of a neural network to the sign problem via the path optimization
method”. In: PTEP 2018.2 (2018), 023B04. arXiv: 1709.03208 [hep-lat].
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Sign-optimized manifold methods: Find Mg C M,?

9A. Alexandru et al. “Finite-Density Monte Carlo Calculations on Sign-Optimized Manifolds”. In:
(2018). arXiv: 1804.00697 [hep-lat].
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What M, should one choose?

o For fermionic theories, we find a useful M to be

flO(Ao, A1) = Ag + i (Mo + A1 cos Ag + Ag cos 24g)

Ai(Ag, A;) = A;

o For bosonic theories, other groups have shown that
nearest-neighbor correlations are important!'®

10F,. Bursa and M. Kroyter. “A simple approach towards the sign problem using path optimisation”. In:
(2018). arXiv: 1805.04941 [hep-lat].

INT-18-2b Comple ions August 7, 2018 22 /26


http://arxiv.org/abs/1805.04941

HMC on Manifolds

INT-18-2b Complex Solutions August 7, 2018 23 /26



HMC on Manifolds

Hr, A) = 3 3 malJ(A) T} ()] m, + Sp(A(4))

INT-18-2b Complex Solutions August 7, 2018 23 /26



HMC on Manifolds

Hr, A) = 3 3 malJ(A) T} ()] m, + Sp(A(4))

P(r, A) c e H(mA) s ZP(ﬂ', A) o | det J|e5A)
over

INT-18-2b Complex Solutions August 7, 2018 23 /26
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Hr, A) = 3 3 malJ(A) T} ()] m, + Sp(A(4))

P(r, A) c e H(mA) s ZP(ﬂ', A) o | det J|e5A)
over

Within our M, we can analytically compute [J(A)JT(A)];y1
= 50 Mg as fast as RV
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Prelim. 241 Thirring with Staggered Fermions
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Forward Unto Dawn?

o Complexification is a systematic way to reduce the sign problem

® QED14+1 (and other abelian gauge theories) don’t have any
theoretical issues

o The computational expense requires novel developments that can
be model-dependent

@ Ongoing work toward non-abelian and 3+1 theories!

Questions?
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