Path Integral Monte Carlo for Quantum Boltzmannons

WILLIAM DAWKINS ADVISOR: ALEXANDROS GEZERLIS

UNIVERSITY OF GUELPH

PROGRAM INT-18-2B

INSTITUTE FOR NUCLEAR THEORY

AUGUST 29, 2018

Outline

- 1. What are boltzmannons?
 - Purpose of studying boltzmannon physics
- 2. Path Integral Monte Carlo (PIMC) method
- 3. PIMC method applied to 2-body system
- 4. Many boltzmannon system calculation

Quantum Boltzmannons

- When a system reaches sufficient conditions of density and temperature, particles of the same species are indistinguishable ($\lambda_T \approx \rho^{-1/3}$)
- For this case Bose-Einstein (bosons) or Fermi-Dirac (fermions) statistics are used in many-body calculations
- At higher temperatures or lower densities, Maxwell-Boltzmann statistics are obeyed, particles are distinguishable
- If particles belong to distinct species, M-B statistics are obeyed regardless of temperature/density (boltzmannons, still quantum mechanical!)

Quantum Boltzmannons

 Currently interest in cold-atom physics in experimentally probing systems with increasing number of species

• Theoretical limit: $N_{species} \rightarrow N_{particles}$, boltzmannon calculations may guide future experiments

 Boltzmannon calculations can attempt to disentangle the effects of statistics from that of interactions

Path Integral Monte Carlo

- Used to calculate thermodynamic properties of systems
- Use Feynman path integral formalism to describe partition function as integrals over coordinate space
- Use Monte Carlo methods to calculate these integrals
- We apply this method to distinguishable, quantum hard spheres

Path Integral Form of Partition Function

PIMC formalism begins with the thermal density matrix of the system:

$$\hat{\rho} = e^{-\beta \hat{H}} = \sum_{i} e^{-\beta E_{i}} |\psi_{i}\rangle \langle \psi_{i}|$$

The partition function is the trace of the thermal density matrix:

$$Z = Tr(\hat{\rho})$$

The trace can be performed in the position basis:

$$Z = \int dR < R |\hat{\rho}|R >$$

Note: R = {r1, r2, ..., r N}

Path Integral Form of Partition Function

• Possible to expand partition function as path integral:

$$Z = \int dR < R \left| e^{\beta \hat{H}} \right| R >$$
$$Z = \int dR dR_2 < R \left| e^{-(\beta/2)\hat{H}} \right| R_2 > < R_2 \left| e^{-(\beta/2)\hat{H}} \right| R >$$

 $Z = \int ... \int dR dR_1 ... dR_{M-1} \rho(R, R_1; \beta/M) \rho(R_1, R_2; \beta/M) ... \rho(R_{M-1}, R; \beta/M)$

• Made possible by:

$$e^{-(\beta_1+\beta_2)\hat{H}} = e^{-\beta_1\hat{H}}e^{-\beta_2\hat{H}}$$
 $\hat{1} = \int |R| < R|dr$

Calculating Observables

• The full functional form of the partition function is now known

$$Z = \int d\boldsymbol{\mathcal{R}} \prod_{N=1}^{M} \left[\rho_{free}(R_N, R_{N+1}) \prod_{i,j} \rho_{ij}(r_{ij}, r'_{ij}) \right] , \ \boldsymbol{\mathcal{R}} = \{R_N\}$$

• Splitting up 'free' and 2-body terms requires approximations that become more exact at larger values of 'M', smaller 'thermal time step'

• Thermodynamic observables are functions of ${\cal R}$ by taking the appropriate derivatives of the partition function

$$\langle \hat{O} \rangle = Z^{-1} Tr(\hat{O}\hat{\rho}) = Z^{-1} \int d\mathcal{R}O(\mathcal{R})W(\mathcal{R})$$

Two Particle Hard Sphere, Hard Cavity System

• The first system we studied was an infinite spherical well in the separation distance ($\sigma < r < r_{cav}$)

 Two different previously derived two-body density matrices used in calculations (Image Approximation, Cao-Berne)

• Test convergence vs 'M' to analytically solved energy of system for both

 Convergence studies important to test effectiveness of density matrix approximation

Convergence in Energy of Two Hard Sphere Particles Inside Hard Cavity

- Convergence seems to be similar between density matrices
- Same calculation performed at varying temperature
- Convergence behaviour very similar over varying temperature

• Next, we studied a many-body boltzmannon system

- The particles' interactions were taken to be a hard sphere repulsion
- The Cao-Berne two body density matrix was used
- Study was done in periodic simulation box, finite-size effects must be considered

- Energy/Particle for increasing particle number at fixed temperature and density
- Cao-Berne density matrix is used
- Goal is to find thermodynamic limit for practical use

 Energy/Particle at converged 'M' and thermodynamic limit at varying T

• Find linear dependence at higher temperatures

 Pressure at converged 'M' and thermodynamic limit at varying T

• Find linear dependence at higher temperatures

 Specific heat at converged 'M' and thermodynamic limit at varying T

• At higher T find expected result given by equipartition theorem

Summary

- Carried out calculations for system of distinguishable hard spheres, 'Boltzmannons'
- For the two-body problem we found no difference between IA and CB density matrices
- For the larger system we found thermodynamic limit at the N=400 range
- Found expected behaviour at higher T, with quantum effects taking over at lower T

Thank-you

CANADA FOUNDATION FOR INNOVATION

FONDATION CANADIENNE POUR L'INNOVATION

MINISTRY OF RESEARCH AND INNOVATION MINISTÈRE DE LA RECHERCHE ET DE L'INNOVATION

Advisor: Alex Gezerlis