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Outline

1. What are boltzmannons?
o Purpose of studying boltzmannon physics

2. Path Integral Monte Carlo (PIMC) method
3.  PIMC method applied to 2-body system

4.  Many boltzmannon system calculation




Quantum Boltzmannons

- When a system reaches sufficient conditions of density and temperature,
particles of the same species are indistinguishable (A = p~1/3 )

* For this case Bose-Einstein (bosons) or Fermi-Dirac (fermions) statistics are
used in many-body calculations

* At higher temperatures or lower densities, Maxwell-Boltzmann statistics
are obeyed, particles are distinguishable

* If particles belong to distinct species, M-B statistics are obeyed regardless
of temperature/density (boltzmannons, still guantum mechamcal!%




Quantum Boltzmannons

* Currently interest in cold-atom physics in experimentally probing systems
with increasing number of species

* Theoretical limit: Ngpecies = Nparticies, POltzmannon calculations may
guide future experiments

* Boltzmannon calculations can attempt to disentangle the effects of
statistics from that of interactions




Path Integral Monte Carlo

* Used to calculate thermodynamic properties of systems

* Use Feynman path integral formalism to describe partition function
as integrals over coordinate space

* Use Monte Carlo methods to calculate these integrals

* We apply this method to distinguishable, qguantum hard spheres




Path Integral Form of Partition Function

PIMC formalism begins with the thermal density matrix of the system:

5= Pl = Ze-ﬁwi >< ;|

]

The partition function is the trace of the thermal density matrix:

Z=Tr(p)
The trace can be performed in the position basis:
/ = de<R|ﬁ|R>

Note: R={rl,r2, ..., r N}




Path Integral Form of Partition Function

* Possible to expand partition function as path integral:
7 = f dR < R|ePH|R >

7 = J’cﬂuﬂ?2 < R|e B/DH|R, >< R,|e"B/DH|R >

Z = [ ..JdRdR; ..dRy_1p(R,Ry; B/M)p(Ry, Ro; B/M) ... p(Ry-1, R; B/M)

* Made possible by:
o~ (Bi4BA — g=Pifl ,— P2l - f R >< R|dr




Calculating Observables

* The full functional form of the partition function is now known

M
/ = j del_[ lpfree(RN: Ry+1) 1_[ pij(rij'ri,j)] R ={Ry}
N=1 lr]

* Splitting up 'free’ and 2-body terms requires approximations that become
more exact at larger values of ‘M’, smaller ‘thermal time step’

* Thermodynamic observables are functions of R by taking the appropriate
derivatives of the partition function

<0>=27"1Tr(0p) =271 f dRO(R)W (R)




Two Particle Hard Sphere, Hard Cavity
System

* The first system we studied was an infinite spherical well in the separation
distance (o0 <1 < 7.4y)

* Two different previously derived two-body density matrices used in calculations
(Image Approximation, Cao-Berne)

* Test convergence vs ‘M’ to analytically solved energy of system for both

* Convergence studies important to test effectiveness of density matrix
approximation




Convergence in Energy of Two Hard Sphere Particles
Inside Hard Cavity
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Many-Particle System

* Next, we studied a many-body boltzmannon system

* The particles’ interactions were taken to be a hard sphere repulstion
* The Cao-Berne two body density matrix was used

* Study was done in periodic simulation box, finite-size effects must be
considered




Many Particle System
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88—
particle number at fixed |

N=20

T
L 4

temperature and density e
* Cao-Berne density matrix is used T
* Goalis to find thermodynamic

limit for practical use 8

T(h?/mo?kg)™t = 2.0,n(c3)"1 = 0.2063




Many Particle System
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Many Particle System

* Pressure at converged 'M' and
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Many Particle System

* Specific heat at converged 'M'
and thermodynamic limit at 25—
varying T !
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Summary

e Carried out calculations for system of distinguishable hard spheres, 'Boltzmannons’

For the two-body problem we found no difference between IA and CB density matrices
* For the larger system we found thermodynamic limit at the N=400 range

* Found expected behaviour at higher T, with quantum effects taking over at lower T
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