Monte Carlo methods for effective theories and lattice nuclei

Lorenzo Contessi

Alessandro Lovato Francesco Pederiva

X

THE HEBREW UNIVERSITY OF JERUSALEM

Theoretical introduction to contact EFT

connect energy scales

connect energy scales

Nuclear interaction

connect energy scales

Separation of scales

- Many particles.
- Cloud of quarks around the nucleus.
- Fewer particles
- Pion cloud

- Nucleons are the only DoFs.
- Only contact interactions

Separation of scales

- Many particles
- Cloud of quarks around the nucleus
- Fewer particles
- Pion cloud

 Nucleons are the only DoFs

Few technicalities of contact EFT $r_{ij} = r_i r_j$

An **EFT is an expansion of operators** with the **relevant symmetries** of the underlying theory.

- Expansion of the Baryon-Baryon interaction in $\{\delta, \nabla^2 \delta \dots\}$
- **#** EFT is an expansion in orders of $\left(\frac{Q}{M}\right)^n$ valid for low exchanged-momentum **Q**.
- Leading Order has one degree of freedom for each possible two- and three-body S-wave state (2 two-body and 1 three-body).
- Contact interaction need to be **regularized/renormalized** introducing a cut-off Λ Result are cut-off independent for $\Lambda \rightarrow \infty$.

$$\delta(r_{ij}) = e^{-\frac{1}{2}|r_{ij}|^2 \Lambda^2}$$

Interaction in coordinate space

$$\delta_{\Lambda}^{ij} = e^{-\frac{1}{2}\left|r_{ij}\right|^2 \Lambda^2}$$

Free parameters to be fitted on "experimental" data (N - N scattering lenghts or boundstates) $V^{LO} = \sum_{i < j} [C_0(\Lambda) + C_1(\Lambda) (\overrightarrow{\sigma_i} \cdot \overrightarrow{\sigma_j})] \delta_{\Lambda}^{ij}$ $+ D_0(\Lambda) \sum_{(i < j) \neq k} \left[\delta_{\Lambda}^{ij} \delta_{\Lambda}^{ik} + \delta_{\Lambda}^{ij} \delta_{\Lambda}^{jk} + \delta_{\Lambda}^{ik} \delta_{\Lambda}^{jk} \right]$ ³H boundstate

> van Kolck, U. Nucl.Phys. A645 (1999) 273-302 Barnea, N. et al. Phys.Rev.Lett. 114 (2015) no.5

Monte Carlo

Quantum Monte carlo in coordinate space

Quantum Monte Carlo is a class of ab initio, numerical, stochastic many-body methods able to solve the Schrödinger equation with improvable uncertainties.

11

Quantum VMC

Variational Monte Carlo:

Hastings, W.K<u>.</u> Biometrika 57 (1970) 97-109

M. Kalos and P. Whitlock, Monte Carlo methods (Wilei 2008)

Quantum VMC

Variational Monte Carlo:

Hastings, W.K. Biometrika 57 (1970) 97-109

M. Kalos and P. Whitlock, Monte Carlo methods (Wilei 2008)

$$E_T = \langle \psi_T | H | \psi_T \rangle = \int \psi_T^*(\mathbf{X}) H \psi_T(\mathbf{X}) d\mathbf{X} = \int |\psi_T(\mathbf{X})|^2 \frac{H \psi_T(\mathbf{X})}{\psi_T(\mathbf{X})} d\mathbf{X} \qquad E_T^n = \frac{1}{n} \sum_{\mathbf{X} \in \mathcal{X}} \left[\frac{1}{n} \int_{\mathbf{X} \in \mathcal{X}} \frac{1}{n} \right] d\mathbf{X}$$

$$E_T^n = \frac{1}{n} \sum_{\boldsymbol{X} \in |\boldsymbol{\psi}_T|^2} \frac{H \boldsymbol{\psi}_T(\boldsymbol{X})}{\boldsymbol{\psi}_T(\boldsymbol{X})}$$

"Linear Method" Optimization

Considering a ψ_T dependent from a set of parameters $\{p_1, \ldots, p_k\}$:

λT

$$\left| \bar{\psi}_{\mathrm{T}}(\boldsymbol{p}) \right\rangle = rac{\left| \psi_{\mathrm{T}}(\boldsymbol{p}) \right\rangle}{\sqrt{\langle \psi(\boldsymbol{p}) | \psi(\boldsymbol{p}) \rangle}}$$

It can be expanded

$$\left|\bar{\psi}_{\mathrm{T}}^{lin}(\boldsymbol{p})\right\rangle = \left|\bar{\psi}_{T}(\boldsymbol{p}^{0})\right\rangle = \sum_{i=1}^{N_{p}} \Delta p_{i} \left|\bar{\psi}_{T}^{i}(\boldsymbol{p}^{0})\right\rangle$$

The first variation $\Delta \boldsymbol{p}$ that minimizes the energy

$$E_{lin}(\boldsymbol{p}) = \frac{\left\langle \bar{\psi}_{\mathrm{T}}^{lin}(\boldsymbol{p}) | H | \bar{\psi}_{\mathrm{T}}^{lin}(\boldsymbol{p}) \right\rangle}{\left\langle \bar{\psi}_{\mathrm{T}}^{lin}(\boldsymbol{p}) | \bar{\psi}_{\mathrm{T}}^{lin}(\boldsymbol{p}) \right\rangle}$$

Can be found solving the linear equation

$$\overline{H} \Delta \boldsymbol{p} = \Delta E \ \overline{S} \ \Delta \boldsymbol{p}$$

D. Ceperley and B. Alder, Science 231, 555–560 (1986)

M. Kalos and P. Whitlock, Monte Carlo methods (Wilei 2008)

Diffusion Monte Carlo:

$$F_{0} = \frac{\langle \psi_{0} | H | \psi_{T} \rangle}{\langle \psi_{0} | \psi_{T} \rangle} = \frac{\int \psi_{0}^{*}(\mathbf{X}) H \psi_{T}(\mathbf{X}) d\mathbf{X}}{\int \psi_{0}^{*}(\mathbf{X}) \psi_{T}(\mathbf{X}) d\mathbf{X}} = \frac{\int (\psi_{0}^{*}(\mathbf{X}) \psi_{T}(\mathbf{X})) \frac{H \psi_{T}(\mathbf{X})}{\psi_{T}(\mathbf{X})} d\mathbf{X}}{\int \psi_{0}^{*}(\mathbf{X}) \psi_{T}(\mathbf{X}) d\mathbf{X}}$$

Ground state is calculated evolving in the imaginary time:

$$|\psi_0\rangle = e^{-(H-E_0)\tau}|\psi\rangle = c_0|\psi_0\rangle + \sum_{n=1}^{\infty} c_n \ e^{-(E_n - E_0)\tau}|\psi_n\rangle \rightarrow^{\tau \to \infty} |\psi_0\rangle$$

Symmetric wave functions have the smallest energy \rightarrow **Sign problem.**

Fixed node / \rightarrow Alleviates the sign problem.Fixed phase / \rightarrow Introduces a systematic errorConstrained path approximation:(reduce the available Hilbert space).

Single particle spin base is not close with respect not-quadratic spin operators.

For 3 particles:

(

$$(\overrightarrow{\sigma_{2}}\cdot\overrightarrow{\sigma_{3}})\begin{pmatrix}a_{\uparrow\uparrow\uparrow}\\a_{\uparrow\uparrow\downarrow}\\a_{\uparrow\downarrow\uparrow}\\a_{\uparrow\downarrow\uparrow}\\a_{\downarrow\uparrow\uparrow}\\a_{\downarrow\uparrow\uparrow}\\a_{\downarrow\uparrow\uparrow}\\a_{\downarrow\downarrow\uparrow}\\a_{\downarrow\downarrow\uparrow}\end{pmatrix} = \begin{pmatrix}a_{\uparrow\uparrow\uparrow}\\2a_{\uparrow\uparrow\uparrow}-a_{\uparrow\uparrow\downarrow}\\a_{\uparrow\downarrow\downarrow}\\a_{\uparrow\downarrow\uparrow}\\a_{\downarrow\uparrow\uparrow}\\a_{\downarrow\downarrow\uparrow}\\a_{\downarrow\downarrow\uparrow}\end{pmatrix} \neq \begin{pmatrix}a_{\uparrow\uparrow\uparrow}\\a_{\uparrow\uparrow\downarrow}\\a_{\uparrow\uparrow\downarrow}\\a_{\uparrow\uparrow\downarrow}\\a_{\uparrow\uparrow\downarrow}\\a_{\downarrow\uparrow\uparrow}\\a_{\downarrow\downarrow\uparrow}\\a_{\downarrow\downarrow\uparrow}\end{pmatrix}$$

n-body spinor \rightarrow 2^N components.

Spin / Isospin degrees of freedom

Spin/Isospin:

Using an Hubbard-Stratonovich transformation:

$$e^{-\frac{1}{2}\lambda O^2} = \frac{1}{\sqrt{2\pi}} \int dx \; e^{-\frac{x^2}{2} + \sqrt{-\lambda}x \; O}$$

A quadratic operator can be transformed in a linear one, at the price of an integral (per operator).

$$\overline{\sigma_{i}}\left(\begin{pmatrix}\alpha_{1}\,\widehat{p}_{\uparrow}\\\beta_{1}\,\widehat{p}_{\downarrow}\\\gamma_{1}\,\widehat{n}_{\uparrow}\\\delta_{1}\,\widehat{n}_{\downarrow}\end{pmatrix}_{1}\otimes\ldots\otimes\begin{pmatrix}\alpha_{i}\,\widehat{p}_{\uparrow}\\\beta_{i}\,\widehat{p}_{\downarrow}\\\gamma_{i}\,\widehat{n}_{\uparrow}\\\delta_{i}\,\widehat{n}_{\downarrow}\end{pmatrix}_{i}\otimes\ldots\otimes\begin{pmatrix}\alpha_{A}\,\widehat{p}_{\uparrow}\\\beta_{A}\,\widehat{p}_{\downarrow}\\\gamma_{A}\,\widehat{n}_{\uparrow}\\\delta_{A}\,\widehat{n}_{\downarrow}\end{pmatrix}_{A}\right)=\left(\begin{pmatrix}\alpha_{1}\,\widehat{p}_{\uparrow}\\\beta_{1}\,\widehat{p}_{\downarrow}\\\gamma_{1}\,\widehat{n}_{\uparrow}\\\delta_{1}\,\widehat{n}_{\downarrow}\end{pmatrix}_{1}\otimes\ldots\otimes\begin{pmatrix}\alpha_{i}\,\widehat{p}_{\uparrow}\\\beta_{i}\,\widehat{p}_{\downarrow}\\\gamma_{i}\,\widehat{n}_{\uparrow}\\\delta_{i}\,\widehat{n}_{\downarrow}\end{pmatrix}_{i}\otimes\ldots\otimes\begin{pmatrix}\alpha_{A}\,\widehat{p}_{\uparrow}\\\beta_{A}\,\widehat{p}_{\downarrow}\\\gamma_{A}\,\widehat{n}_{\uparrow}\\\delta_{A}\,\widehat{n}_{\downarrow}\end{pmatrix}_{A}\right)$$

New scaling is 4N instead of 4^N

⁴He

$m_{\pi} = 140 \; MeV$		$m_{\pi} = 510 \; MeV$		$m_{\pi} = 805 \; MeV$	
Λ [fm ⁻¹]	⁴ He Energy [MeV]	Λ [fm ⁻¹]	⁴ He Energy [MeV]	Λ [fm ⁻¹]	⁴ He Energy [MeV]
2	-23.17(2)	2	-31.15(2)	2	-87.9(2)
4	-23.63(3)	4	-34.8(83)	4	-91.3(3)
6	-24.06(2)	6	-36.89(2)	6	-96.4(4)
8	-26.04(5)	8	-37.65(3)	8	-101.3(5)
∞	$-30^{0.3(sys)}_{2.0(stat)}$	00	$-39^{1(sys)}_{2(stat)}$	8	$-124_{1(stat)}^{3(sys)}$
Exp	-28.296	LQCD	-43(14)	LQCD	-107(24)

- Results has been checked using Monte Carlo and diagonalization methods.
- Extrapolation done using $f(x) = a + \frac{b}{\Lambda} + \frac{c}{\Lambda^2}$ excluding $\Lambda = 2$ fm⁻¹.
- All the errors shown are statistical errors from Monte Carlo method and extrapolation errors.
- Physical m_{π} LECs have been fitted using BE(d), a(p n) and BE(³H)

Results: ⁴He

$m_{\pi} = 140 \text{ MeV}$	$m_{\pi} = 510$	MeV	$m_{\pi} = 805 \text{ MeV}$		
$\begin{array}{ccc} \Lambda & {}^{16}\mathrm{O} & 4\alpha \\ [\mathrm{fm}^{-1}] & \mathrm{Energy} & \mathrm{treshold} \\ & & [\mathrm{MeV}] & [\mathrm{MeV}] \end{array}$	Λ ¹⁶ 0 [fm ⁻¹] Energy [MeV]	4α treshold [MeV]	Λ [fm ⁻¹]	¹⁶ O4αEnergytreshold[MeV][MeV]	
2 -97(1) -92.68(8)	2 -114.6(2)	-124.6(1)	2	-347(1) -352.36(4)	
4 -58(1) -94.52(9)	4 -113.8(2)	-139.5(1)	4	-335(1) -365.6(1)	
6 - 50 (1)-100.24(8)	6 -109.7(1)	-147.6(1)	6	-326(1) -387.88(4)	
8 -52(1) -104.2(2)	8 -105.7(5)	-150.6(1)	8	-315(1) -406.9(1)	

- All the errors shown are statistical errors from Monte Carlo method.

unconstrained Monte carlo

¹⁶O - Linear Minimized (LM) + Spline

$m_{\pi} = 140 \text{ MeV}$			$m_{\pi} = 510 \text{ MeV}$			$m_{\pi} = 805 \text{ MeV}$		
Λ [fm ⁻¹]	¹⁶ 0 Energy [MeV]	4α treshold [MeV]	Λ [fm ⁻¹]	¹⁶ 0 Energy [MeV]	4α treshold [MeV]	Λ [fm ⁻¹]	¹⁶ O Energy [MeV]	4α treshold [MeV]
2 4 6	-97.19(6) -92.23(14) -97.51(14)	-92.68(8) -94.52(9) -100.24(8)	2 4 6 8	-116.59(8) -137.15(15) -143.84(17)	-124.6(1) -139.5(1) -147.6(1)	2 4 6 8	-350.69(5) -362.92(7) -382.17(25)	-352.36(4) -365.6(1) -387.88(4) -406.9(1)
× ∞	-100.97(20) $-115^{1(sys)}_{8(stat)}$	-104.2(2) $-120^{1(sys)}_{8(stat)}$	0 	-146.37(27) $-151_{10(stat)}^{2(sys)}$	$-156^{4(sys)}_{8(stat)}$	° ∞	-402.24(39) $-504_{12(stat)}^{20(sys)}$	$-496_{4(stat)}^{9(sys)}$

- All the errors shown are statistical errors from Monte Carlo method.

Radial density

⁴He radial density

¹⁶O radial density

Oxygen density ($m_{\pi} = 140 \text{ MeV}$)

$$VMC \qquad \mathcal{O}_{VMC} = \frac{\langle \psi_T | \mathcal{O} | \psi_T \rangle}{\langle \psi_T | \psi_T \rangle} \qquad \mathcal{O}_{DMC} = \mathcal{O}_{gs} \text{ only if} \\ \mathcal{O}_{DMC} = \frac{\langle \psi_0 | \mathcal{O} | \psi_T \rangle}{\langle \psi_0 | \psi_T \rangle} \qquad \mathcal{O} \qquad \mathcal{O} \qquad \qquad \mathcal{O} \qquad \qquad \mathcal{O} \qquad \qquad \mathcal{O} \qquad \mathcal{O} \qquad \qquad \mathcal{O} \qquad \mathcal{O} \qquad \qquad \mathcal{O} \qquad \qquad \mathcal{O} \qquad \mathcal{O} \qquad \qquad \mathcal{O}$$

Next to leading order:
$$\delta_{\Lambda}^{ij} = e^{-\frac{1}{2}|r_{ij}|^2 \Lambda^2}$$

$$\begin{split} V^{NLO} &= \sum_{i < j} \left[\left(E_0(\Lambda) + \boldsymbol{r}^2 \ E_1(\Lambda) \right) + \left(E_2(\Lambda) + \boldsymbol{r}^2 \ E_3(\Lambda) \right) \left(\overrightarrow{\sigma_i} \cdot \overrightarrow{\sigma_j} \right) \right] \delta_{\Lambda}^{ij} \\ &+ F_0(\Lambda) \sum_{(i < j) \neq k} \left[\delta_{\Lambda}^{ij} \delta_{\Lambda}^{ik} + \delta_{\Lambda}^{ij} \delta_{\Lambda}^{jk} + \delta_{\Lambda}^{ik} \delta_{\Lambda}^{jk} \right] \end{split}$$

NLO should be treated in first order perturbation theory (NOT ITERATED)!

$$E^{NLO} = \left\langle \psi_{gs} | H_{LO} | \psi_{gs} \right\rangle + \left\langle \psi_{gs} | V^{NLO} | \psi_{gs} \right\rangle$$

It require a precise knowledge of the ground state wave function!

Next to leading order:

 $\delta_{\Lambda}^{ij} = e^{-\frac{1}{2}\left|r_{ij}\right|^2 \Lambda^2}$

System	$(E_0 + E_2 \sigma \sigma) \delta^{ij}_{\Lambda}$	$r^2 \left(E_0 + E_2 \ \sigma \sigma ight) \delta^{ij}_{\Lambda}$	3 - body	< VMC >	< <i>DMC</i> >	MC Corrected estimator	Expected (SVM)
³ H ₁₂₀₀	881.38	-938.77	57.39	5.17(2)	2.42(6)	-0.32(87)	0.
⁴ He ₆₀₀	1661.13	-1862.63	192.57	-9.10(9)	-10.15(14)	-11.2(2)	-11.24

All the energies are measured in MeV

Large cancellation that depend on the knowledge of the wavefunction.

conclusions:

- **EFT**(**#**) is used to <u>connect</u> high- and low- energy theories.
 - The theory is relatively simple

(contains central, $\boldsymbol{\sigma} \cdot \boldsymbol{\sigma}$ and three body forces).

- Be(⁴He) **agreement** with experiments and LQCD prediction ($m_{\pi} = 140, 510, 805$ MeV).
- Oxygen is **unstable with respect 4** α for $m_{\pi} = 140, 510$ and 805 MeV.
- **Quantum Monte Carlo** fulfill greatly the task of bridging the theories.
 - Auxiliary Field allows to perform calculations in medium and large nuclei.
 - Linear Minimization algorithm is crucial in investigate systems with unexpected symmetries.
 - Mixed estimators need special care and a precise variational wave function.
 (Especially in presence of large cancellations)

Thanks for your attention

Cat that guards a door in Jerusalem (old city).