From real materials to model Hamiltonians with density matrix downfolding

(Converting a many-electron problem to a fewer-electron one)

Hitesh J. Changlani Florida State University

Based on HJC, H. Zheng, L. K. Wagner J. Chem. Phys. (2015) H.Zheng*, HJC*, K. Williams, B. Busemeyer, L. K. Wagner, Front. Phys (2018)

INT, Univ. Washington, Quantum Monte Carlo workshop, H.J.Changlani, FSU August 2018

Quantum many body problem

$$H \psi = E \psi$$

<u>full H, approximate Ψ </u>

$$\begin{split} H &= -\frac{1}{2}\sum_{i} \nabla_i^2 - \sum_{I,i} \frac{Z_I}{|r_I - r_i|} \\ &+ \sum_{i,j,i < j} \frac{1}{|r_i - r_j|} \end{split}$$

The real thing. Deals with **all electrons** (eg. Fionn's talk).

Hilbert space large, so **smaller** systems.

How do we know we have an "exotic" phase? (eg. spin liquid etc) <u>Approximate "effective" *H*</u>

$$H_{\text{Hubbard}} = -t \sum_{\langle i,j \rangle,\sigma} c^{\dagger}_{i,\sigma} c_{j,\sigma} + U \sum_{i} n^{i}_{\uparrow} n^{i}_{\downarrow}$$

Deals with **valence electrons** only (physically insightful): eg. many models of high Tc superconductivity

Smaller Hilbert space locally, more conducive for **larger scale simulations**

Several new diagnostics to characterize exotic phases

Models: hard to solve exactly

(depends on model)

The Hilbert space is **HUGE**!

 $N=100 \text{ spins} \longrightarrow 10^{16} \text{ PB}$

IBM has largest storage array of 120 PB

But many recent advances

Quantum Monte Carlo (sign problem or trial wavefunction bias)

Ceperley, Becca, Sorella, Scalapino, Scalettar, Zhang, Alavi, Umrigar, Sandvik, Prokof'ev.....

Wilson, White, Ostlund, Nishino, Vidal, Xiang, Verstraete, Cirac

Others: DMFT (Kotliar, Georges, Millis), DMET (Knizia, Chan)

Example of what the "model world" is interested in 2D kagome magnet: experimental realization Herbertsmithite

Kagome phase diagram: many competing phases with similar energy

Quantum spin liquid is a phase of matter with (1) no symmetry breaking, no local order parameter

(2) **topological properties**/fractional anyonic excitations : quantum computation?

Yan, Huse, White (2011) (3) very high multireference character

Many competitive phases (Marston Zeng state: 36 site unit cell) Energy difference between candidates is 0.006 J per site

Where does the "real material" lie in the phase diagram?

Flowchart for strongly correlated models

Fit Experimental data: one personal "success" story for frustrated NaCaNi₂F₇

EXPT 2

Indications for a quantum spin liquid (quantum model solution itself needs more work to be sure)

S. Zhang*, **HJC*,** Plumb, Moessner,Tchernyshyov, to be submitted (2018)

Flowchart for strongly correlated models

<u>Fit Experimental data to get effective Hamiltonian – not always predictive</u>

<u>As theorists, want to minimize dependence on experiments</u> <u>so, the questions are...</u>

- Is electronic structure likely to be "super accurate" to resolve small energy scales in solids (especially strongly correlated Mott insulators)?
 Answer: Who knows the future, but currently it is not
- Does one need to fully solve the many electron problem (obtain eigenstates) to understand the important low-energy physics of a problem? Answer: Not necessarily
- Can electronic structure tell us important physics that helps build relevant useful models (especially for solids) and helps diagnose what is right or wrong with them?
- Answer: This is what the talk is about. I will show that QMC is quite useful for this purpose.

<u>What exactly do we mean by "effective Hamiltonian"?</u> <u>posing the problem</u>

H.J.Changlani, FSU

What is typically done to get a model?

Density functional theory

Get hoppings "t" (integral of the kinetic energy projected in Wannier basis) O. Andersen, R. Martin, Saha-Dasgupta, Valenti...

Hubbard U (Interactions) ? Use Post DFT method, constrained RPA (Imada, Ariyasetiawan, Kotliar, Georges, Biermann, Casula, Werner, Valenti, Jeschke....)

How do we know whether these approximations are good or bad?

Our viewpoint for effective Hamiltonian determination_

- Why treat kinetic and potential parts of Hamiltonian differently?
- Use information from accurate wavefunctions which <u>do not</u> care about this distinction
- Method must have internal consistency checks is the model good or bad?
- Model is an "auxiliary system" with different electron number, so have to "match properties" instead of wavefunctions
- (several variants in other contexts: Ceperley, HJC, Henley, Wagner, White, Chan...)

These ideas motivated our first work: **H.J. Changlani, H. Zheng, L.K. Wagner, J. Chem. Phys (2015)**

Posing the problem precisely

Ab initio density matrix downfolding (AI-DMD)

DMD scheme for effective Hamiltonians

Given a "good" one particle basis

For a single state

$$\tilde{E}_s \equiv \langle H \rangle_s = C + \sum_{ij} t_{ij} \langle c_i^{\dagger} c_j \rangle + \sum_{ijkl} V_{ijkl} \langle c_i^{\dagger} c_j^{\dagger} c_l c_k \rangle$$

TRUE whether state is eigenstate or NOT

$$\begin{array}{c} \tilde{E} \text{or many states} \\ \tilde{E}_{1} \\ \tilde{E}_{2} \\ \tilde{E}_{3} \\ \cdots \\ \cdots \\ \cdots \\ \tilde{E}_{M} \end{array} \right) = \begin{pmatrix} 1 & \langle c_{i}^{\dagger}c_{j} \rangle_{1} & \cdots & \langle c_{i}^{\dagger}c_{j}^{\dagger}c_{l}c_{k} \rangle_{1} & \cdots \\ 1 & \langle c_{i}^{\dagger}c_{j} \rangle_{2} & \cdots & \langle c_{i}^{\dagger}c_{j}^{\dagger}c_{l}c_{k} \rangle_{2} & \cdots \\ 1 & \langle c_{i}^{\dagger}c_{j} \rangle_{3} & \cdots & \langle c_{i}^{\dagger}c_{j}^{\dagger}c_{l}c_{k} \rangle_{3} & \cdots \\ 1 & \langle c_{i}^{\dagger}c_{j} \rangle_{4} & \cdots & \langle c_{i}^{\dagger}c_{j}^{\dagger}c_{l}c_{k} \rangle_{4} & \cdots \\ 1 & \cdots & \cdots & \cdots & \cdots \\ 1 & \langle c_{i}^{\dagger}c_{j} \rangle_{M} & \cdots & \langle c_{i}^{\dagger}c_{j}^{\dagger}c_{l}c_{k} \rangle_{M} & \cdots \end{pmatrix} \begin{pmatrix} C \\ t_{ij} \\ \cdots \\ V_{ijkl} \\ \cdots \\ V_{ijkl} \\ \cdots \end{pmatrix}$$
Energies

AI-DMD scheme for effective Hamiltonians

$$\begin{pmatrix} \tilde{E}_1 \\ \tilde{E}_2 \\ \tilde{E}_3 \\ \cdots \\ \cdots \\ \tilde{E}_M \end{pmatrix} = \begin{pmatrix} 1 & \langle c_i^{\dagger} c_j \rangle_1 & \cdots & \langle c_i^{\dagger} c_j^{\dagger} c_l c_k \rangle_1 & \cdots \\ 1 & \langle c_i^{\dagger} c_j \rangle_2 & \cdots & \langle c_i^{\dagger} c_j^{\dagger} c_l c_k \rangle_2 & \cdots \\ 1 & \langle c_i^{\dagger} c_j \rangle_3 & \cdots & \langle c_i^{\dagger} c_j^{\dagger} c_l c_k \rangle_3 & \cdots \\ 1 & \langle c_i^{\dagger} c_j \rangle_4 & \cdots & \langle c_i^{\dagger} c_j^{\dagger} c_l c_k \rangle_4 & \cdots \\ 1 & \cdots & \cdots & \cdots & \cdots \\ 1 & \langle c_i^{\dagger} c_j \rangle_M & \cdots & \langle c_i^{\dagger} c_j^{\dagger} c_l c_k \rangle_M & \cdots \end{pmatrix} \begin{pmatrix} C \\ t_{ij} \\ \cdots \\ V_{ijkl} \\ \cdots \\ V_{ijkl} \end{pmatrix}$$

E = Energies A = Matrix of density matrices x = Parameters ${f E}=A{f x}$ ${f D}\equiv ||A{f x}-{f E}||^2$ Minimize difference

H.J.Changlani, H. Zheng, L.K. Wagner, JCP (2015)

AI-DMD scheme for effective Hamiltonians

Energy must vary with variation in density matrices to be "relevant" $\begin{pmatrix} \tilde{E}_{1} \\ \tilde{E}_{2} \\ \tilde{E}_{3} \\ \cdots \\ \cdots \\ \cdots \\ \tilde{E}_{M} \end{pmatrix} = \begin{pmatrix} 1 & \langle c_{i}^{\dagger}c_{j}\rangle_{1} & \cdots & \langle c_{i}^{\dagger}c_{j}^{\dagger}c_{l}c_{k}\rangle_{1} & \cdots \\ 1 & \langle c_{i}^{\dagger}c_{j}\rangle_{2} & \cdots & \langle c_{i}^{\dagger}c_{j}^{\dagger}c_{l}c_{k}\rangle_{2} & \cdots \\ 1 & \langle c_{i}^{\dagger}c_{j}\rangle_{3} & \cdots & \langle c_{i}^{\dagger}c_{j}^{\dagger}c_{l}c_{k}\rangle_{3} & \cdots \\ 1 & \langle c_{i}^{\dagger}c_{j}\rangle_{4} & \cdots & \langle c_{i}^{\dagger}c_{j}^{\dagger}c_{l}c_{k}\rangle_{4} & \cdots \\ 1 & \cdots & \cdots & \cdots & \cdots \\ 1 & \langle c_{i}^{\dagger}c_{j}\rangle_{M} & \cdots & \langle c_{i}^{\dagger}c_{j}^{\dagger}c_{l}c_{k}\rangle_{M} & \cdots \end{pmatrix} \begin{pmatrix} C \\ t_{ij} \\ \cdots \\ V_{ijkl} \\ \cdots \\ V_{ijkl} \\ \cdots \end{pmatrix}$

E = Energies A = Matrix of density matrices x = Parameters

H.J.Changlani, FSU

<u>We need a "good" (often local) one particle basis (i)</u> <u>Ab initio density matrix downfolding (AI-DMD)</u>

Examples I will talk about

- A pedagogical toy model that highlights the main ideas (no QMC, everything can be exactly solved) – 3-band Hubbard model to 1-band Hubbard model
- Benzene molecule with QMC
 effective one orbital per site –
- QMC on graphene
- Transition metals, as a futuristic (preliminary) application

Increasing complexity

Example 1: (Toy) Three to one band model at half filling

<u>Example 1: Three to one band model –</u> <u>what are the optimal orbitals?</u>

Example 1: Three to one band model, (renormalized) effective parameters

Example 1: Three to one band model, <u>Multi-scale prediction</u>

- Obtain effective parameters for a 4 unit cell system from downfolding
- Check their transferability/predictive power on a 8 unit cell system by checking energy gaps
- Hilbert space of the 3-band 8 unit cell system is 112 million (Lanczos)
- Hilbert space of the 1-band 8 unit cell system is 4900 (exact diag)

<u>Example 1: Three to one band model –</u> <u>Parameters are energy window dependent</u>

The parameters depend on the energy window of interest, much like what the renormalization group has taught us.

Quantum Monte Carlo in a nutshell

What?

Stochastic sampling of many electron configurations

Optimize many-body wavefunction:

 $\psi_T(r_1, r_2, \dots, r_N) = \mathcal{J} \sum d_i D_i$ Jastrow: Introduces **Determinants** (HF or DFT) electron correlation

Variational Monte Carlo (sample trial wf, often not chemically accurate)

Projector (Diffusion) Monte Carlo: (exact but sign problem)

Diffusion Monte Carlo with nodal constraint (systematic error, but very accurate)

Why?

Scalable, esp. important for solids

Accuracy improvable (by improving wavefunctions)

Can calculate observables (correlation functions, structure factor)

 $\langle c_i^{\dagger} c_j \rangle \left\langle c_i^{\dagger} c_j^{\dagger} c_l c_k \right\rangle$

Refs: Ceperley, Alder, Umrigar, Nightingale, Mitas, Foulkes...

QWALK software: Wagner, Bajdich, Mitas, JCP (2009)

One particle orbitals

Occupancy 0.99

Occupancy 0.99

Occupancy 0.5

Testing the one particle basis

Full ab-initio calculation : 30 electrons (eg. 15 u, 15 d)

"Effective" Lattice model: 6 electrons (eg. 3 u, 3 d)

Spin		DFT	SJ-VMC	SJ-DMC	CISDJ-VMC	CISDJ-DM	С	$N_{\uparrow}, N_{\downarrow}$	Used in Fit?
0	T-	37.6303	-37.6229(6)	-37.7213(9)	-37.6352(6)	-37.7259(9)	2.96,2.96	Yes
1	Τ-	37.4634	-37.4546(6)	-37.5555(7)	-37.4814(6)	-37.5707(7)	3.94,1.98	Yes
					-37.4561(6)	-37.5479(6)	3.94,1.98	Yes
					-37.4531(6)	-37.5470(6)	3.94,1.98	Yes
2	T-	37.3203	-37.2987(6)	-37.3974(7)	-37.3141(6)	-37.4020(7)	4.92,1.00	Yes
3	-	37.0378	-37.0116(4)	-37.1074(7)	-37.0118(4)	-37.1083(7)	4.88,0.02	No

Energy Units: Ha

Hubbard model, double occupancy

$$H_{\text{Hubbard}} = -t \sum_{i,j\rangle,\sigma} c_{i,\sigma}^{\dagger} c_{j,\sigma} + U \sum_{i} n_{i,\uparrow} n_{i,\downarrow}$$

Half filled ground state (S=0)

Comparison of model vs ab-initio correlation functions in ground state

Hubbard model

$$\mathbf{E} = A\mathbf{x}$$

Hubbard and extended Hubbard (PPP) model

Reconstructing eigenstates by solving lattice model of 6 electrons + comparison to experiment

Comparable to previous semi-empirical fits + We DO NOT use experimental data!

H.J.Changlani, FSU

Example 3: Graphene (periodic solid) What is the "effective" U ?

Full ab-initio calculation on 3x3 cell : 72 electrons (eg. 36 u, 36 d) "Effective" Lattice model on 3x3 cell: 18 electrons (eg. 9 u, 9 d)

Example 3: Graphene (periodic solid)

Tight binding model

Hubbard model

Our result U*/t approx 1.3 +/- 0.2 , cRPA result 1.6 +/- 0.2 (PRL 2013) Graphene is well in semi-metallic phase

Example 4: Transition metal atoms

rotationally symmetric case: Hund's coupling J

PHYSICAL REVIEW B

VOLUME 28, NUMBER 1

1 JULY 1983

Antiferromagnetism and correlation of electrons in transition metals

A. M. Oleś

Max-Planck-Institut für Festkörperforschung, D-7000 Stuttgart 80, Federal Republic of Germany and Institute of Physics, Jagellonian University, PL-30-059 Kraków, Poland (Received 12 October 1982)

$$H = \sum_{\substack{m,n,i,\sigma \\ i < j}} t_{mn} a_{mi\sigma}^{\dagger} a_{ni\sigma} + (U+2J) \sum_{\substack{m,i \\ m,i}} n_{mi\uparrow} n_{mi\downarrow} + U \sum_{\substack{m,i,j,\sigma \\ i < j}} n_{mi\sigma} n_{mj,-\sigma} + (U-J) \sum_{\substack{m,i,j,\sigma \\ i < j}} n_{mi\sigma} n_{mj\sigma}$$

PHYSICAL REVIEW B 93, 075101 (2016)

Hubbard-like Hamiltonians for interacting electrons in s, p, and d orbitals

M. E. A. Coury,^{1,2,*} S. L. Dudarev,² W. M. C. Foulkes,¹ A. P. Horsfield,^{1,†} Pui-Wai Ma,² and J. S. Spencer¹ ¹Imperial College London, London SW7 2AZ, United Kingdom ²CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, United Kingdom (Received 20 July 2015; revised manuscript received 2 November 2015; published 1 February 2016)

Others: Ohno, Kanamori, Dworin-Narath, Parisier-Pople-Parr, Georges, Kotliar, Imada...

Example 4: Transition metal atoms

rotationally symmetric case: Hund's coupling J

V

Summary of DMD

- Model Hamiltonians using wavefunction data
 main idea is to relate "energies" and "reduced density matrices"
- Look beyond Hubbard-only models, eg. Kanamori form
- Promising but also challenging when many energy scales (FeSe, cuprates)
- *Ab-initio* community can help those studying strongly correlated models

H.J.Changlani, FSU

Acknowledgements

Lucas Wagner Huihuo Zheng

Kiel Williams

Brian Busemeyer

- David Ceperley
- Cyrus Umrigar
- (late) Christopher Henley
- Garnet Chan
- Bryan Clark
- Norm Tubman

Thanks for listening!