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Complex Langevin Equation

CLE: Motivation

Description of QCD under different thermodynamical conditions

Reweighting, Taylor expansion

µ

T

Hadrons

Quark-Gluon
Plasma

Nuclear matter

Colour
Superconductor?

Critical point?

Experimental investigations
in progress (LHC, RHIC)
and planned (FAIR)
Perturbation theory only
applicable at high
temperature/density
(asymptotic freedom)
Full exploration requires
non-perturbative (e.g.
lattice) methods
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Complex Langevin Equation

Standard Monte Carlo methods

Monte Carlo at µ = 0

Theory is simulated on Euclidean spacetime
Path integral weight eiS becomes e−SE ≥ 0
Vacuum expectation values via path integrals

Configurations generated with probability proportional to e−SE

Monte Carlo at µ > 0

At µ > 0 the Euclidean action SE is no longer real (Sign Problem)
For QCD, the fermion determinant acquires a complex phase
e−SE cannot be interpreted as probability distribution
Results from some techniques (e.g., reweighting, Taylor expansion) are not
reliable when µ/T & 1

Felipe Attanasio Complex Langevin and the sign problem in QCD 4 / 28



Complex Langevin Equation

QCD phase diagram

Reweighting, Taylor expansion

µ

T

Hadrons

Quark-Gluon
Plasma

Nuclear matter

Colour
Superconductor?

Critical point?

Standard Monte Carlo methods cannot probe far into the phase diagram
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Complex Langevin Equation

Lattice QCD

Wilson gauge action [Wilson 1974 Phys. Rev. D 10 2445]

Gauge links Uxµ = exp (iaAxµ) ∈ SU(3) “transport” the gauge fields
between x and x+ µ̂ and have the desired gauge transformation behaviour
Simplest gauge invariant objects on the lattice: Plaquettes

Ux,µν = UxµUx+µ̂,νU
†
x+ν̂,µU

†
xν = exp

(
ia2Fx,µν +O(a3)

)

S[U ] = β

3
∑
x

∑
µ<ν

ReTr [1− Ux,µν ]

= β

3
∑
x

∑
µ<ν

Tr
[
1− 1

2
(
Ux,µν + U†x,µν

)]

with β = 6/g2
[Beane et al 2015 J. Phys. G: Nucl.
Part. Phys. 42 034022]
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Complex Langevin Equation

Lattice QCD

Fermi action (näıve)

SF = ψx

[γν
2
(
eµδν,4Uxνψx+ν̂ − e−µδν,4Ux,−νψx−ν̂

)
+mψx

]
=
∑
x,y

ψxMx,yψy

Path integral

Vacuum expectation values via path integration

〈O〉 =
∫
DUDψDψO e−S−SF =

∫
DU det(M) e−S =

∫
DU e−S+ln detM

M depends on the gauge links U and chemical potential µ
Sign problem: (detM(U, µ))∗ = detM(U,−µ∗)
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Complex Langevin Equation

Stochastic quantization

Stochastic quantization [Damgaard and Hüffel, Physics Reports]

Add fictitious time dimension θ to dynamical variables
Evolve them according to a Langevin equation

∂x(θ)
∂θ

= − δS

δx(θ) + η(θ) ,

where S is the action and η(θ) are white noise fields satisfying

〈η(θ)〉 = 0 , 〈η(θ)η(θ′)〉 = 2δ(θ − θ′) ,

Quantum expectation values are computed as averages over the Langevin
time θ after the system reaches equilibrium at θ = θ0

〈O〉 ≡
∫
DxO e−S ≡ lim

θ′→∞

1
θ′ − θ0

∫ θ′

θ0

O(θ)dθ
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Complex Langevin Equation

Complex Langevin method

Complex Langevin [Parisi, Phys. Lett. B131 (1983)]
[Klauder, Acta Phys. Austriaca Suppl. 25 251 (1983)]

Complexify the fields, i.e., give each component an imaginary part
(x→ z = x+ iy)
Rewrite action and observables in term of new fields
It circumvents the sign problem by deforming the path integral into the
complex plane

Simple toy model: Anharmonic oscil-
lator with complex mass

H = p2

2m + 1
2ωx

2 + 1
4λx

4

Exact partition function:

Z ∝
√

4ξ
ω
eξK− 1

4
(ξ) , ξ = ω2

8λ -0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9

n

Re 〈zn〉/n
Im 〈zn〉/n

Felipe Attanasio Complex Langevin and the sign problem in QCD 9 / 28



Complex Langevin Equation

CLE: Complexification

When can it be trusted? [Aarts, Seiler, Stamatescu, Phys.Rev. D81 (2010) 054508]

Sampling a complex weight ρ(x) of real x using a real weight P (x, y) of
z = x+ iy

For S and O holomorphic

〈O〉ρ = 〈O〉P∫
dzO(z)ρ(z) =

∫
dx dyO(x, y)P (x, y)

Sufficient conditions:
Fast falloff in imaginary direction (y →∞) of P (x, y)
〈L̃O〉 = 0 for all O, with L̃ = [∂z − (∂zS)] ∂z
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Complex Langevin Equation

Stochastic quantization (gauge theories)

Lattice gauge theories [Damgaard and Hüffel, Physics Reports]

Evolve gauge links according to the Langevin equation

Uxµ(θ + ε) = exp [Xxµ]Uxµ(θ) ,

where
Xxµ = iλa(−εDa

xµS [U(θ)] +
√
ε ηaxµ(θ)) ,

λa are the Gell-Mann matrices, ε is the step size, ηaxµ are white noise fields
satisfying

〈ηaxµ〉 = 0 , 〈ηaxµηbyν〉 = 2δabδxyδµν ,

S is the QCD action and Da
xµ is defined as

Da
xµf(U) = ∂

∂α
f(eiαλ

a

Uxµ)
∣∣∣∣
α=0
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Complex Langevin Equation

CLE: Complexification (gauge theories)

Complexification [Aarts, Stamatescu, JHEP 09 (2008) 018]

Allow gauge links to be non-unitary: SU(3) 3 Uxµ → Uxµ ∈ SL(3,C)
Use U−1

xµ instead of U†xµ as
it keeps the action holomorphic;
they coincide on SU(3) but on SL(3,C) it is U−1 that represents the
backwards-pointing link.

That means the plaquette is now

Ux,µν = UxµUx+µ̂,νU
−1
x+ν̂,µU

−1
xν ,

and the Wilson action reads

S[U ] = β

3
∑
x

∑
µ<ν

Tr
[
1− 1

2
(
Ux,µν + U−1

x,µν

)]

Felipe Attanasio Complex Langevin and the sign problem in QCD 12 / 28



Complex Langevin Equation

CLE: Complexification (gauge theories)

Gauge cooling [Seiler, Sexty, Stamatescu, Phys.Lett. B723 (2013) 213-216]

SL(3,C) is not compact ⇒ gauge links can get arbitrarily far from SU(3)
During simulations monitor the distance from the unitary manifold with

d = 1
N3
sNτ

∑
x,µ

Tr
[
UxµU

†
xµ − 1

]2 ≥ 0

Use gauge transformations to decrease d
Uxµ → ΛxUxµΛ−1

x+µ

necessary, but not always sufficient
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Complex Langevin Equation

Results

Observables considered

Polyakov loop: order parameter for confinement in pure Yang-Mills

P = 1
N3
s

∑
~x

〈P~x〉 , P~x =
∏
τ

U4(~x, τ)

Spatial plaquette:

1
3N3

sNτ

∑
x

∑
1<µ<ν<3

〈Ux,µν〉 , Ux,µν = UxµUx+µ̂,νU
−1
x+ν̂,µU

−1
xν

Chiral condensate: order parameter for confinement for massless quarks

〈ψψ〉 = ∂

∂m
lnZ
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Complex Langevin Equation

Heavy-dense QCD

Heavy-dense approximation [Bender et al, Nucl. Phys. Proc. Suppl. 46 (1992) 323]

Heavy quarks → quarks evolve only in Euclidean time direction:

detM(U, µ) =
∏
~x

{
det
[
1 + (2κeµ)Nτ P~x

]2
det
[
1 +

(
2κe−µ

)Nτ P−1
~x

]2
}

Polyakov loop
P~x =

∏
τ

U4(~x, τ)

Exhibits the sign problem: [detM(U, µ)]∗ = detM(U,−µ∗)
Siver-blaze problem at T = 0
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Complex Langevin Equation

Phase boundary of HDQCD [Aarts, Attanasio, Jäger, Sexty, JHEP 09 (2016) 087]
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Complex Langevin Equation

CLE: Instabilities

Gauge cooling (mild sign problem)
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Left: Langevin time history of Polyakov loop
Right: Langevin time history of unitarity norm (“large” but under control)
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Complex Langevin Equation

CLE: Dynamic stabilisation

Dynamic stabilisation [Attanasio, Jäger, hep-lat/1808.04400]

New term in the drift to reduce the non-unitarity of Ux,ν

Xxν = iλa
(
−εDa

x,νS − εαDSM
a
x +
√
ε ηax,ν

)
.

with αDS being a control coefficient

Ma
x : constructed to be irrelevant in the continuum limit

Ma
x only depends on Ux,νU†x,ν (non-unitary part)

Felipe Attanasio Complex Langevin and the sign problem in QCD 18 / 28



Complex Langevin Equation

CLE: Dynamic stabilisation

Dynamic stabilisation (mild sign problem)
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Complex Langevin Equation

Deconfinement in HDQCD

Good agreement with reweighting – even when GC converges to the wrong limit
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Staggered quarks

Dynamical fermions

Staggered quarks

The Langevin drift for Nf flavours of staggered quarks

Da
x,νSF ≡ Da

x,ν ln detM(U, µ)

= NF
4 Tr

[
M−1(U, µ)Da

x,νM(U, µ)
]

Inversion is done with conjugate gradient method

Trace is evaluated by bilinear noise scheme – introduces imaginary
component even for µ = 0!
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Staggered quarks

Staggered quarks (β = 5.6, m = 0.025, NF = 4)

Comparison between CLE + DS runs and HMC (results by P. de Forcrand)
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Green band represents results from HMC simulations
αDS scan of the chiral condensate for a volume of 64
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Staggered quarks

Staggered quarks (β = 5.6, m = 0.025, NF = 4)

Comparison between CLE + DS runs and HMC (results by P. de Forcrand)
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Langevin step size extrapolation of the plaquette for a volume of 124
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Staggered quarks

Staggered quarks (β = 5.6, m = 0.025, NF = 4)

Comparison between CLE + DS runs and HMC (results by P. de Forcrand)

Plaquette ψψ
Volume HMC Langevin HMC Langevin

64 0.58246(8) 0.582452(4) 0.1203(3) 0.1204(2)
84 0.58219(4) 0.582196(1) 0.1316(3) 0.1319(2)
104 0.58200(5) 0.58201(4) 0.1372(3) 0.1370(6)
124 0.58196(6) 0.58195(2) 0.1414(4) 0.1409(3)

Expectation values for the plaquette and chiral condensate for full QCD
Langevin results have been obtained after extrapolation to zero step size
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Staggered quarks

Staggered quarks (β = 5.6, m = 0.025, NF = 2)

Preliminary results at µ > 0 (not extrapolated to zero step size)
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Staggered quarks

Pure Yang-Mills at θ2 > 0

Euclidean Yang-Mills lagrangian with a topological term

LYM = 1
4Tr[FµνFµν ]− iθ g2

64π2 εµνρσTr[FµνFρσ]

Sign problem for real θ
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Staggered quarks

Non-relativistic fermions in 1D [Drut, Loheac, Phys.Rev. D95 (2017) 094502]

Sign problem for polarised systems
Stabilisation method similar to Dynamic Stabilisation
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Staggered quarks

Summary and outlook

Conclusions

Complex Langevin provides a way of circumventing the sign problem
Results in QCD and non-relativistic fermions possible with modified process

Future plans

Map the phase diagram of QCD with light quarks
Further applications in condensed matter
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