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Introduction 

Two-component (spin up/down) fermionic atoms interacting with a short-range 
interaction                 characterized by a scattering length    .  a

Of particular interest is the unitary 
Fermi gas (UFG) describing the limit 
of strongest interaction 
or                 

	a→∞

Many interesting properties: universality, scale invariance,… 

•  A challenging non-perturbative many-body problem 

			V0δ(r− r')

A crossover from BCS for   
to BEC for   

		 (kFa)
−1 ∼ −∞

		 (kFa)
−1 ∼ +∞

Randeria and Taylor (2014) 

		(kFa)
−1 =0



We use finite-temperature AFMC methods in the canonical ensemble of 
fixed particle numbers. 

Quantum Monte Carlo methods: 
 
Diagrammatic Monte Carlo  
 
Auxiliary-field Monte Carlo (AFMC) 
 
Diffusion Monte Carlo (at T=0)  

A variety of theoretical methods have been used to study the thermodynamics 
of the UFG: 

Strong-coupling theories:  
 
Early theories: Leggett (1980), Nozieres and Schmidt-Rink (1985) 
 
T-matrix approaches 
 
Self-consistent Luttinger-Ward theory 



Thermodynamics of the UFG 

•   Superfluid phase transition below a critical temperature     . 	Tc
However, its nature remains incompletely understood.  

•   A pseudogap regime above      and below      was proposed in the UFG,  
  in which pairing correlations exist even though the condensate vanishes. 	Tc

Superfluid “Pseudogap” “Normal”

 The psedogap regime and its extent in the UFG is debated both theoretically 
and experimentally. 

		T *

A pseudogap regime is known from high-Tc superconductors 

Recent review:  S. Jensen, C.N. Gilbreth and Y. Alhassid, arXiv:1807.03913   



Pseudogap regime above     Fermi liquid behavior above  	Tc	Tc

Sagi et al, Boulder (PRL 2015): 
Backbending above     in photoemission 
spectroscopy   	Tc

Nascimbene et al, Paris  (PRL 2011): 
Spin response compatible with Fermi 
liquid behavior 
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FIG. S2. Gaussian fits to PES data at (kFa)�1 = 0.1. a, The white circles indicate the centers

from weighted gaussian fits to EDCs at fixed k. The white line shows the free-particle dispersion,

E = k2. b, Individual EDCs (blue points) are shown, along with the fitted gaussians (red lines).

Here, each EDC is individually normalized to have the same area, as in Ref. [12]. A solid black

line marks E = EF . Red stars show the center of each gaussian, and the dashed red line is a guide

to the eye.
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Ku et al, MIT (Science 2012): 
Equation of state is well described  
by Fermi liquid theory  



Wlazłowski et al (PRL 2013): 
suppression of spin susceptibility above  
(quantum Monte Carlo)  

Enss and Haussmann (PRL 2012): 
No suppression of spin susceptibility 
(Luttinger-Ward theory) 

Magieriski et al (PRL 2009): 
Non-zero gap above  
(quantum Monte Carlo)  	

Tc

	Tc

Theory 
Pseudogap regime above     Fermi liquid behavior above  	Tc	Tc

with an average total particle number of 50–55 on an 83

lattice with periodic boundary conditions [10]. We have
generated between 6000 and 10 000 uncorrelated samples
at each temperature and the statistical errors are typically
below 1%. The systematic errors, some due to finite lattice
effects, others due to finite range effects, are estimated at
about 10%–15%. Our T ¼ 0 extrapolation results [11] for
the energy per particle are systematically lower than pre-
vious fixed-node Monte Carlo results which are variational
[2,3,12]. We have not used the fixed-node approximation
and the value for ! ¼ 5E=3N"F " 0:40 that we extract at
unitarity is in agreement with the auxiliary field
Monte Carlo results of Ref. [13].

The numerical determination of Aðp; !Þ via inversion of
Eq. (2) is an ill-posed problem that requires special meth-
ods. We have used two, based on completely different
approaches. The first approach is the maximum entropy
method [14], which is based on Bayes’ theorem. Quantum
Monte Carlo (QMC) calculations provide us with a discrete

set of values ~Gðp; "iÞ, where i ¼ 1; 2; . . . , N " ¼ 50. We
treat them as normally distributed random numbers around
the true values Gðp; "iÞ. The Bayesian strategy consists in

maximizing the posterior probability PðAj ~GÞ /
Pð ~GjAÞPðAÞ of finding the right Aðp; !Þ under the condi-

tion that ~Gðp; "iÞ are known. Here, Pð ~GjAÞ / expð% 1
2#

2Þ
is the likelihood function, where #2 ¼ PN "

i¼1 ½~Gðp; "iÞ %
Gðp; "iÞ'2=$2. The quantity Gðp; "iÞ is determined by the
spectral weight function in the discretized form of Eq. (2)
at frequencies !k. The prior probability PðAÞ, describing

our ignorance about the spectral weight function, is defined
as PðAÞ / exp½%SðMÞ', where %> 0 and SðMÞ is the
relative information entropy with respect to the assumed
model M:

SðMÞ ¼
X

k

!!
!
Aðp; !kÞ %Mð!kÞ

% Aðp; !kÞ ln
"
Aðp; !kÞ
Mð!kÞ

#$
: (4)

Hence the maximization of PðAj ~GÞ leads in practice to the
minimization of the quantity 1

2#
2 % %SðMÞ with respect

to A. Note that the parameter % governs the relative im-
portance of the two terms. The entropy term prevents
excessive inclusion of unjustified structure into the shape
of the spectral weight function. The constraints (3) are
enforced by means of Lagrange multipliers.
The second approach is based on the singular value

decomposition of integral kernel K of Eq. (2), which
can be rewritten in operator form as

G ðp; "iÞ ¼ ðKAÞðp; "iÞ: (5)

The operator K possesses a singular system defined as

K ui ¼ &i ~vi; K( ~vi ¼ &iui; (6)

whereK( denotes the adjoint ofK, the &i are the singular
values, and the ui, ~vi are right-singular functions and left-
singular vectors, respectively. The singular system forms a
suitable basis for the expansion of the spectral weight

FIG. 1 (color online). Spectral weight function Aðp; !Þ for three temperatures: T ¼ 0:15"F " Tc (left upper panel), T ¼ 0:18"F
(right upper panel), and T ¼ 0:20"F (lower panel). The presence of a gap in clearly seen in the upper two panels.
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(ω-µ)/εF

Spectral weight 

Haussmann et al (PRA 2009): 
No pronounced pseudogap  
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Finite-temperature auxiliary-field Monte Carlo (AFMC) method 

  
e−βH = D[σ ]∫  GσUσ

      is a Gaussian weight and      is a propagator of non-interacting 
particles moving in external auxiliary fields   

AFMC is based on the Hubbard-Stratonovich transformation, which 
describes the Gibbs ensemble          at inverse temperature              as a 
path integral over time-dependent auxiliary fields �(⌧)

		β =1/T e−βH

	Gσ
�(⌧)	Uσ

hÔi = Tr (Ôe��Ĥ)

Tr (e��Ĥ)
=

R
D[�]G�hÔi�Tr Û�R

D[�]G�Tr Û�

hÔi� ⌘ Tr (ÔÛ�)/Tr Û�where 

Grand-canonical quantities in the integrands can be expressed in terms 
of the single-particle representation matrix       of the propagator : 

			TrUσ = det(1+Uσ )
	Uσ

The high-dimensional integration over      is evaluated by importance sampling. σ



Canonical-ensemble AFMC 

•   The integrand in the HS transformation reduces to matrix algebra in the   
single-particle space (of typical dimension ~ 100 - 1000). 

We use exact particle-number projection in the HS transformation 

Grand-canonical traces are replaced by canonical traces  	Tr→TrN

For a finite number M of single-particle states, this can be done by an  
exact discrete Fourier transform 

			
TrNUσ = e

−βµN

M
e− iϕmN

m=1
M∑ det(1+eiϕmeβµUσ ) where 		ϕm =2πm/M

Recent review of AFMC: Y. Alhassid, in Emergent Phenomena in Atomic 
Nuclei from Large-Scale Modeling, ed. K.D. Launey (World Scientific 2017) 

		O(M
4 ) 		O(M

3)•           scaling reduced to  

[C.N. Gilbreth and Y. Alhassid, Comp. Phys. Comm. (2015)] 



Homogenous Fermi gas: a lattice approach 

We use a discrete spatial lattice with spacing      and linear size 

			 
H = !2k2

2m akσ
† akσ +

V0
2(δ x)3kσ∑ ψ xiσ

† ψ xiσ '
† ψ xiσ '

ψ xiσxiσ
∑

where       is a single-particle state with momentum     and spin                          
and         is a creation operator at site     and spin    .   

		k ,σ 	k σ
			ψ xiσ

†

		x i σ

•  Our single-particle model space is the complete first Brillouin zone B in   

	δ x

		 
1
V0

= m
4π!2a −

mK3
4π!2δ x 		K3 =2.4427...

The interaction is normalized to reproduce the two-particle scattering 
 length    on the lattice: 

		kc =π /δ x- a cube with side  

where (for a cube in    ) 

	L=Nxδ x

	a

(Werner, Castin, 2012)  

S. Jensen, C.N. Gilbreth, and Y. Alhassid, arXiv:1801.06163  

 The lattice Hamiltonian for a contact interaction has the form  

	k

	k



Calculated from the largest eigenvalue       of the pair correlation matrix 
                                 using  

(i) Condensate fraction n 

			〈ak1σ1
† ak2σ2

† ak4σ4ak3σ3 〉

We used finite-size scaling to estimate a critical temperature of  
                       at a filling factor of   	ν ≈0.06

	λmax
		n= λmax /(N /2)

Thermodynamic observables  
We carried out AFMC calculation for N=20, 40, 80 and 130 atoms on lattices of 
size                       and      , respectively, so the filling factor               remains 
constant at           .    

		M =73 ,93 ,113 	133

		Tc =0.130(15)TF
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First ab initio calculation of the heat capacity in AFMC in good agreement 
with the MIT experiment (lambda point). 

(i) Heat capacity 

Numerical differentiation inside the path integral using the same fields at  
 and           , and taking into account correlated errors: reduces the statistical  
errors by an order of magnitude [Liu and Alhassid, PRL 87, 022501 (2001)] 

	T
	T +dT
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(iii) Model-independent pairing gap  

We define the energy-staggering pairing gap by 

where                    is the energy for       spin-up and      spin-down atoms.  		E(N↑ ,N↓) 	N↑ 	N↓

•  Requires the canonical ensemble of fixed particle numbers and uses a  
     reprojection method [Alhassid, Liu and Nakada, PRL 83, 4265 (1999)] 

		ΔE = [2E(N↑ ,N↓ −1)−E(N↑ ,N↓)−E(N↑ −1,N↓ −1)]/2
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First calculation of the  
energy-staggering pairing 
gap for the UFG at finite 
temperature  



		
χ s =

2β
V

〈(N↑ −N↓)2〉

Spin-flip excitations require the breaking of pairs 
       pairing correlations suppress the spin susceptibility 

(iv) Static spin susceptibility 

⇒
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Is there a pseudogap regime in the UFG? 

•  Pairing gap vanishes above       

•  Moderate suppression of the spin 
     susceptibility above      
 

	Tc

	Tc

 No clear evidence of pseudogap effects 

		T
* ≤0.16TF for 	ν ≈0.06⇒
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Two-particle scattering on the lattice 

Inverse scattering amplitude (s wave) at relative momentum  

		
fk
−1 = −ik+kcotδ = −ik− 1

a
+ 12rek

2 + ... where      is the effective range  

On a lattice with spacing      : 		re ≈0.337δ x	δ x

	re

The above expression for       holds when the complete first Brillouin 
zone in momentum space is used.    

		π /δ x

		fk
−1

		
fk
−1 = −ik+ K

2π − 1
a
+ 12rek

2 + ... where      is the center of mass momentum 	K

However, when a spherical cutoff of           is used for the single-particle 
 momentum  

A K-dependent shift that does not vanish in the continuum limit    		δ x→0

•  The spherical cutoff does not reproduce the unitary limit  

	k

[Werner and Castin (PRA 2012)]  
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Thermodynamic observables: no cutoff versus spherical cutoff results   

Canonical-ensemble calculations 
for N=40 particles on M=93 lattice 
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Conclusion 

•   We carried out accurate finite-temperature AFMC calculations of the unitary 
Fermi gas. 

 
•     Clear signatures of the superfluid phase transition: heat capacity,   
     condensate fraction, pairing gap, and spin susceptibility  

•    No clear evidence of a pseudogap regime: pairing gap vanishes  
    and moderate suppression of the spin susceptibility above  

•  Good agreement with experimental data for the condensate fraction, heat  
     capacity, and low-temperature pairing gap 

•  More experiments are needed: 
       (i) uniform trap   
       (ii) spin susceptibility and pairing gap vs. temperature 

Outlook 

•  Extrapolate AFMC calculations to zero density (continuum limit) and  
     thermodynamic limit: a major challenge 

	Tc


