The pseudogap regime in the unitary Fermi gas using canonical–ensemble quantum Monte Carlo

Yoram Alhassid (Yale University)

Collaborators: Scott Jensen (Yale), Chris Gilbreth (INT, U. Washington)

- **Introduction**
- Thermodynamics of the unitary Fermi gas: experiment and theory
- Canonical-ensemble auxiliary-field Monte Carlo (AFMC) method
- The homogenous unitary Fermi gas: lattice formulation
- Signatures of superfluidity
- Is there *a pseudogap* regime in the unitary gas?
- Conclusion and outlook

Introduction

Two-component (spin up/down) fermionic atoms interacting with a short-range interaction $V_0 \delta(\mathbf{r} - \mathbf{r}')$ characterized by a scattering length α .

Many interesting properties: universality, scale invariance,…

• A challenging non-perturbative many-body problem

A variety of theoretical methods have been used to study the thermodynamics of the UFG:

Strong-coupling theories:

Early theories: Leggett (1980), Nozieres and Schmidt-Rink (1985)

T-matrix approaches

Self-consistent Luttinger-Ward theory

Quantum Monte Carlo methods:

Diagrammatic Monte Carlo

Auxiliary-field Monte Carlo (AFMC)

Diffusion Monte Carlo (at T=0)

We use finite-temperature AFMC methods in the canonical ensemble of fixed particle numbers.

Thermodynamics of the UFG

- Superfluid phase transition below a critical temperature $\, T_{_{c}} \,$ However, its nature remains incompletely understood.
- A pseudogap regime above T_c and below T^* was proposed in the UFG, in which pairing correlations exist even though the condensate vanishes.

A pseudogap regime is known from high- T_c superconductors

 The psedogap regime and its extent in the UFG is debated both theoretically and experimentally.

Recent review: S. Jensen, C.N. Gilbreth and Y. Alhassid, arXiv:1807.03913

Experiment

T c

$10⁰$ **a** 2 10^{-1} 1 0 **E (EF)** 10^{-2} −1 $\overline{\mathsf{o}}_{\overline{\mathsf{O}}}$ 10^{-3} −2 -3 0.5 1 1.5 2 10^{-4} **k (kF)**

Pseudogap regime above T_c $\qquad \qquad$ Fermi liquid behavior above T_c

Sagi et al, Boulder (PRL 2015): by F Backbending above T_c in photoemission spectroscopy individually normalized to have the same area, as in Ref. [12]. A solid black the same area, as i FIG. S2. Gaussian fits to PES data at (kFa)¹ = 0*.*1. a, The white circles indicate the centers ackbending above T in photoemission are shown as

Ku et al, MIT (Science 2012): Equation of state is well described by Fermi liquid theory

Nascimbene et al, Paris (PRL 2011): E Spin response compatible with Fermi liquid behavior

Theory **Karlon** \mathbf{L}

T c \overline{D} is determined by the quantity \overline{D} <u>Pseudoaap reaime ab</u> at frequencies !k. The prior probability PðAÞ, describing

Pseudogap regime above T_c \quad \quad Fermi liquid behavior above $\,T_c$ values, and the uit, values, and left-singular functions and left-singular functi e T subset basis for the expansion of the spectral weight \mathcal{C}

Finite-temperature auxiliary-field Monte Carlo (AFMC) method

AFMC is based on the Hubbard-Stratonovich transformation, which describes the Gibbs ensemble $e^{-\beta H}$ at inverse temperature β =1/*T* as a path integral over time-dependent auxiliary fields $\sigma(\tau)$

 $e^{-\beta H} = \int D[\sigma] G_{\sigma} U_{\sigma}$

*G*_σ is a Gaussian weight and *U*_σ is a propagator of *non-interacting* particles moving in external auxiliary fields $\sigma(\tau)$

 $\langle \hat{O} \rangle = \frac{\text{Tr} \, (\hat{O} e^{-\beta \hat{H}})}{\text{Tr} \, (e^{-\beta \hat{H}})}$ = $\int {\cal D}[\sigma] G_\sigma \langle \hat O \rangle_\sigma {\rm Tr} \, \hat U_\sigma$ $\int {\cal D}[\sigma] G_{\sigma} {\rm Tr} \, \hat{U}_{\sigma}$ where $\langle \hat{O} \rangle_{\sigma} \equiv \text{Tr} \, (\hat{O} \hat{U}_{\sigma}) / \text{Tr} \, \hat{U}_{\sigma}$

Grand-canonical quantities in the integrands can be expressed in terms of the *single-particle* representation matrix **U**_σ of the propagator :

 $Tr U_{\sigma} = det(1 + \mathbf{U}_{\sigma})$

The high-dimensional integration over σ is evaluated by importance sampling.

Canonical-ensemble AFMC

We use exact particle-number projection in the HS transformation

Grand-canonical traces are replaced by canonical traces $\mathit{Tr}\rightarrow\mathit{Tr}_{_{N}}$

For a finite number M of single-particle states, this can be done by an exact discrete Fourier transform

$$
Tr_{N}U_{\sigma} = \frac{e^{-\beta\mu N}}{M} \sum_{m=1}^{M} e^{-i\varphi_{m}N} \det(1 + e^{i\varphi_{m}} e^{\beta\mu} U_{\sigma}) \quad \text{where} \quad \varphi_{m} = 2\pi m/M
$$

• The integrand in the HS transformation reduces to matrix algebra in the single-particle space (of typical dimension \sim 100 - 1000).

 \cdot $O(M^4)$ scaling reduced to $O(M^3)$

[C.N. Gilbreth and Y. Alhassid, Comp. Phys. Comm. (2015)]

Recent review of AFMC: Y. Alhassid, in *Emergent Phenomena in Atomic Nuclei from Large-Scale Modeling,* ed. K.D. Launey (World Scientific 2017) Homogenous Fermi gas: a lattice approach

S. Jensen, C.N. Gilbreth, and Y. Alhassid, arXiv:1801.06163

We use a discrete spatial lattice with spacing $\boldsymbol{\delta x}$ and linear size $\left| {L \! = \! {N_{_{\rm{x}}}}{\delta {\rm{x}}} \right|$

The lattice Hamiltonian for a contact interaction has the form

$$
H = \sum_{\mathbf{k}\sigma} \frac{\hbar^2 k^2}{2m} a_{\mathbf{k}\sigma}^\dagger a_{\mathbf{k}\sigma} + \frac{V_0}{2(\delta x)^3} \sum_{\mathbf{x}_i\sigma} \psi_{\mathbf{x}_i\sigma}^\dagger \psi_{\mathbf{x}_i\sigma}^\dagger \psi_{\mathbf{x}_i\sigma} \psi_{\mathbf{x}_i\sigma}
$$

where k,σ is a single-particle state with momentum \bf{k} and spin $\bf{\sigma}$ and $\boldsymbol{\varPsi}^{\sf \tiny T}_{\mathbf{x},\sigma}$ is a creation operator at site $\mathbf{x}_{_i}$ and spin $\boldsymbol{\sigma}$. $\frac{1}{\mathbf{x}_{i^{\sigma}}}$ is a creation operator at site \mathbf{x}_{i} and spin σ

- Our single-particle model space is the complete first Brillouin zone B in **k**
	- *-* a cube with side k_{c} = π / δx

The interaction is normalized to reproduce the two-particle scattering length *a* on the lattice:

1 $V₀$ = *m* $4\pi\hbar^2$ a $-\frac{mK_{3}}{1.33}$ $4\pi\hbar^2\delta x$ where (for a cube in \bf{k}) $K_3 = 2.4427$... (Werner, Castin, 2012)

Thermodynamic observables

We carried out AFMC calculation for N=20, 40, 80 and 130 atoms on lattices of size $M = 7^3$, 9^3 , 11^3 and 13^3 , respectively, so the filling factor $v = N/M$ remains constant at ~ 0.06 .

Calculated from the largest eigenvalue λ_{max} of the pair correlation matrix $\langle a_{\mathbf{k}_1\sigma_1}^{\dagger}a_{\mathbf{k}_2\sigma_2}^{\dagger}a_{\mathbf{k}_4\sigma_4}^{\dagger}a_{\mathbf{k}_3\sigma_3}^{\dagger} \rangle$ using λ using $n = \lambda_{\text{max}}/(N/2)$

We used finite-size scaling to estimate a critical temperature of $T_c = 0.130(15) T_F$ at a filling factor of $v \approx 0.06$

Numerical differentiation *inside* the path integral using the same fields at *T* and $T + dT$, and taking into account *correlated* errors: reduces the statistical errors by an order of magnitude [Liu and Alhassid, PRL **87**, 022501 (2001)]

First *ab initio* calculation of the heat capacity in AFMC in good agreement with the MIT experiment (lambda point).

(iii) Model-independent pairing gap

We define the energy-staggering pairing gap by

 $\Delta_E = [2E(N_\uparrow, N_\downarrow - 1) - E(N_\uparrow, N_\downarrow) - E(N_\uparrow - 1, N_\downarrow - 1)]/2$

where $E(N_{\uparrow}, N_{\perp})$ is the energy for N_{\uparrow} spin-up and N_{\perp} spin-down atoms.

• Requires the canonical ensemble of fixed particle numbers and uses a reprojection method [Alhassid, Liu and Nakada, PRL **83**, 4265 (1999)]

(iv) Static spin susceptibility

$$
\chi_s = \frac{2\beta}{V} \langle (N_\uparrow - N_\downarrow)^2 \rangle
$$

Spin-flip excitations require the breaking of pairs

 \Rightarrow pairing correlations suppress the spin susceptibility

• Pairing gap vanishes above *T c*

- Moderate suppression of the spin susceptibility above *T c*
- $T^* \leq 0.16 T_F$ for $v \approx 0.06$

No clear evidence of pseudogap effects

Is there a pseudogap regime in the UFG?

Two-particle scattering on the lattice [Werner and Castin (PRA 2012)]

Inverse scattering amplitude (s wave) at relative momentum *k*

 f_k^{\cdot} −1 $=-ik+k\cot\delta = -ik-\frac{1}{k}$ *a* + 1 2 $r_e k^2 + ...$ where r_e is the effective range

On a lattice with spacing δx : $r_e \approx 0.337 \delta x$

The above expression for f_k^{-1} holds when the complete first Brillouin zone in momentum space is used. −1

However, when a spherical cutoff of $\pi/\delta x$ is used for the single-particle momentum

 f_k^2 $i^{-1} = -ik +$ *K* 2π $\frac{1}{}$ *a* + 1 2 $r_e k^2 + ...$ where K is the center of mass momentum

A K-dependent shift that does not vanish in the continuum limit $\delta x \rightarrow 0$

• The spherical cutoff does not reproduce the unitary limit

Numerical scattering on the lattice

Thermodynamic observables: no cutoff versus spherical cutoff results

Canonical-ensemble calculations for $N=40$ particles on $M=9³$ lattice

Conclusion

- We carried out accurate finite-temperature AFMC calculations of the unitary Fermi gas.
- Clear signatures of the superfluid phase transition: heat capacity, condensate fraction, pairing gap, and spin susceptibility
- No clear evidence of a pseudogap regime: pairing gap vanishes and moderate suppression of the spin susceptibility above *T c*
- Good agreement with experimental data for the condensate fraction, heat capacity, and low-temperature pairing gap

Outlook

- Extrapolate AFMC calculations to zero density (continuum limit) and thermodynamic limit: a major challenge
- More experiments are needed:
	- (i) uniform trap
	- (ii) spin susceptibility and pairing gap vs. temperature